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Abstract

In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players
alternate turns, move with equal speed, and have full information about the state of the
game. We consider the most restrictive capture condition: a pursuer must become colocated
with the evader to win the game. We prove two general results about this adversarial motion
planning problem in geometric spaces. First, we show that one pursuer has a winning
strategy in any compact CAT(0) space. This complements a result of Alexander, Bishop and
Ghrist, who provide a winning strategy for a game with positive capture radius. Second,
we consider the game played in a compact domain in Euclidean two-space with piecewise
analytic boundary and arbitrary Euler characteristic. We show that three pursuers always
have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from
polygonal environments to our more general setting.
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1 Introduction
A pursuit-evasion game in a domain D is played between a team of pursuers p1, p2, . . . , pk
and an evader e. The pursuers win if some pi becomes colocated with the evader after
a finite number of turns, meaning that the distance d(pi, e) = 0. When this occurs, we
say that pi captures e. We consider the discrete time version of the game, which proceeds
in turns. Initially, the pursuers choose their positions p0

1, p
0
2, . . . , p

0
k, and then the evader

chooses his initial position e0. In turn t ≥ 1, each pursuer pi moves from her current
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position pt−1
i to a point pti ∈ B(pt−1

i , 1) = {x ∈ D | d(pt−1
i , x) ≤ 1}. If the evader

has been captured, then the game ends with the pursuers victorious. Otherwise, the evader
moves from et−1 to a point et ∈ B(et−1, 1). The evader wins if he remains uncaptured
forever. We consider the full-information (full-visibility) game in which each player knows
the environment and the locations of all the other players. Furthermore, the pursuers may
coordinate their movements.

Turn-based pursuit games in simply connected domains have been well-characterized:
one pursuer is sufficient to capture the evader. Winning pursuer strategies have been found
for environments in En [21, 16], and in simply connected polygons [14]. Taking a geomet-
ric viewpoint and using the weaker capture criterion d(p, e) < ε for some constant ε > 0,
Alexander, Bishop and Ghrist [3] proved that a single pursuer can capture an evader in any
compact CAT(0) by heading directly towards the evader at maximum speed. We provide an
alternate strategy for a compact CAT(0) space that achieves d(p, e) = 0 in a finite number
of turns. Our winning pursuer strategy is a generalization of lion’s strategy, which has been
used successfully in En [21] and in simple polygons [14]. We defer the description of this
strategy to Section 2.

Theorem 1.1. A pursuer p using lion’s strategy in a compact CAT(0) space D, captures
the evader e by achieving d(p, e) = 0 after at most diam(D)2 turns.

Theorem 1.1 implies that a single pursuer can become colocated with an evader in
a simply connected, compact domain D ⊂ E2. In particular, this result holds for the
polygonal setting in [14]. Notably, the general CAT(0) viewpoint leads to an improved
capture time bound for polygons, compared to the O(n · diam(D)) result in [14], where n
is the number of vertices of polygon D.

It is easy to construct compact domains that are evader win: removing one large open set
from the middle of a simply connected domain tips the game in the evader’s favor. Indeed,
the evader can keep this large obstruction between himself and the pursuer, indefinitely.
Such an open set is called an obstacle or hole in the environment. It is not hard to show
that adding a second pursuer to this two-dimensional domain gives the game back to the
pursuers. Adding multiple obstacles creates a distinct topology, and it is natural to wonder
how many pursuers are needed to capture an evader in such an environment. The analogous
question has been resolved for pursuit-evasion games in certain two-dimensional environ-
ments. Aigner and Fromme [1] proved that three pursuers are sufficient for pursuit-evasion
on a planar graph. Bhadauria, Klein, Isler and Suri [8] showed that the analogous result
holds in a two-dimensional polygonal environment with polygonal holes. We generalize
the latter three-pursuer result to a broader class of geometric spaces.

Our pursuit game takes place in a compact and path-connected domain D ⊂ E2. The
set D contains a finite set of disjoint open obstacles O = {O1, O2, . . . , Ok}. The do-
main boundary is ∂D = {∂O0, ∂O1, ∂O2, . . . , ∂Ok} where we define ∂O0 to be the outer
boundary of D, for convenience. We place two conditions on the boundary. First, ∂D can
be decomposed into a finite number of analytic curves γ(t) = (x(t), y(t)) for 0 ≤ t ≤ 1,
where each of x(t), y(t) can locally be expanded as convergent power series. Second,
we require that ∂D is a 1-manifold: for any x ∈ ∂D, there exists an ε > 0, such that
B(x, ε) ∩ ∂D is homeomorphic to E1. In other words, we forbid self-intersections. For
brevity, we say that a domain D satisfying these properties is piecewise analytic. We list
three consequences of these conditions. First, the number of singular points on the bound-
ary is finite. Second, the absolute value of the curvature at the nonsingular points of ∂D



A. Beveridge and Y. Cai: Pursuit-evasion in a two-dimensional domain 189

is bounded above by some constant κmax > 0. Third, there is a minimum separation
dmin > 0 between boundary components: d(Oi, Oj) > dmin for all 0 ≤ i < j ≤ k.
During the game, the pursuers will guard a sequence of geodesics; crucially, we will see
in Section 4 that each of these geodesics is also piecewise analytic. This brings us to our
main result.

Theorem 1.2. Three pursuers can capture an evader in a compact domain in E2 with
piecewise analytic boundary. The number of turns required to capture the evader for a
domain with k obstacles is O(2k · diam(D) + diam(D)2).

At a high level, our winning three-pursuer strategy builds on those found in [1, 8],
and we are indebted to those previous papers. However, our geometric and topological
approach is entirely new. In particular, our arguments are grounded in a careful investiga-
tion of the convexity, curvature and homotopy classes of geodesic curves in our domain.
Furthermore, Theorem 1.2 significantly extends the class of known three-pursuer-win do-
mains.

Finally, we recently became aware of an unpublished technical report of Zhou et. al
[22] that proves a similar result. Like our proof, their strategy adapts that of [8] to a more
general setting. However, our underlying methodology is quite distinct: we use a homotopy
based argument, while they use a geometric one. Furthermore, we devote more attention
to the boundary of our region. In particular, we use analytic curves (rather than smooth
curves) to avoid potential pathologies of geodesics. We provide more detail on finding
guardable paths: we explain how to restrict ourselves to finding geodesics in closed sets,
rather than in sets that are neither open nor closed (see Lemma 3.6 below). Finally, they
use an endgame that requires two aggressive pursuers. We stick with lion’s strategy due to
its broad applicability to CAT(0) spaces.

1.1 Related Work

Pursuit-evasion games are a class of adversarial motion planning problems. Chung,
Hollinger and Isler [11] provide an informative survey of pursuit games in mobile robotics.
The interdisciplinary literature on pursuit-evasion games spans a range of settings and
variations. Pursuit games have been studied in many environments, including graphs, in
polygonal environments and in geometric spaces. Researchers have considered motion
constraints such as speed differentials between the players, constraints on acceleration, and
energy budgets. As for sensing models, the players may have full information about the po-
sitions of other players, or they may have incomplete or imperfect information. Typically,
the capture condition requires achieving colocation, a proximity threshold, or sensory visi-
bility (such as a non-obstructed view of the evader).

Pursuit games enjoy a wide range of applications, including intruder neutralization,
search-and-rescue, and environmental monitoring of tagged wildlife. In these settings,
modeling an adversarial evader gives worst-case feasibility and time bounds. For an over-
view of pursuit-evasion on graphs, see the monograph by Bonato and Nowakowski [9].
Kopparty and Ravishankar [16] give a nice an introduction to pursuit in the polygonal
setting.

Research on pursuit-evasion spans nearly a century. In the 1930s, Rado posed the
Lion and Man game in which a lion hunts the man in a circular arena. The players move
with equal speeds, and the lion wins if it achieves colocation. At first blush, it seems that
lion should be able to capture man, regardless of the man’s evasive strategy. However,
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Besicovitch showed that when the game is played in continuous time, the man can follow
a spiraling path so that lion can get arbitrarily close, but cannot achieve colocation [17].
However, when lion and man move in discrete time steps, our intuition prevails: lion does
have a winning strategy [21].

The past decade has witnessed a renaissance of pursuit-evasion results in multiple dis-
ciplines. Prominent research efforts come from the robotics community, where pursuit-
evasion in polygonal environments is a productive setting for exploring autonomous agents.
Pursuit-evasion has also thrived in the graph theory community, where it is known as the
game of Cops and Robbers. More recently, researchers have started exploring pursuit-
evasion games in topological spaces. This is a natural evolution for the study of pursuit-
evasion games. Indeed, determining the number of pursuers required to capture an evader
in a given environment becomes a question about its topology since the various loops and
holes of the environment provide escape routes for the evader.

The classic paper of Aigner and Fromme [1] initiated the study of multiple pursuers
versus a single evader on a graph. In this turn-based game, agents can move to adjacent
vertices, and the cops win if one of them becomes colocated with the robber. This paper
introduced the cop number of a graph, which is the minimum number of pursuers (cops)
needed to catch the evader (robber). Aigner and Fromme proved that the cop number of
any planar graph is at most 3. This bound is tight, as the dodecahedron graph requires
three cops. At a high level, their winning pursuer strategy proceeds as follows. Two cops
guard distinct (u, v)-paths where u, v are vertices of the graph G. This restricts the robber
movement to a subgraph ofG. The third pursuer then guards another (u, v)-path, chosen so
that (1) the robber’s movement is further restricted, and (2) one of the other cops no longer
needs to guard its path. This frees up that cop to continue the pursuit. This process repeats
until the evader is caught.

More recently, an analogous result was proven by Bhadauria, Klein, Isler and Suri
[8] for pursuit-evasion games in a two-dimensional polygonal environment with polygonal
holes. In this turn-based game, an agent can move to any point within unit distance of its
current location. Like Aigner and Fromme, they use colocation as their capture criterion.
Bhadauria et al. prove that three pursuers are sufficient for pursuit-evasion in this setting,
and that this bound is tight. The pursuer strategy is inspired by the Aigner and Fromme
strategy for planar graphs: two pursuers guard paths that confine the evader while the
third pursuer takes control of another path that further restricts the evader’s movement. Of
course, the details of the pursuit and the technical proofs are quite different from the graph
case. Their proofs make heavy use of the polygonal nature of the environment, both to find
the paths to guard and to guarantee that their pursuit finishes in finite time.

Just as the proofs of Bhadauria et al. were inspired by Aigner and Fromme, our proof of
Theorem 1.2 is inspired by those for the polygonal environment. Bhadauria et al. actually
give two different winning strategies for three pursuers. At a high level, these strategies
progress in the same way, but the tactics for choosing paths and how to guard them are
different. Herein, we adapt their shortest path strategy to our setting. Our more general
geometric environment introduces a distinctive set of challenges to overcome. In particular,
we do not have a finite set of polygonal vertices to use as a backbone for our guarded paths.
Instead, we rely on homotopy classes to differentiate between paths to guard. Looking
beyond the high-level structure of our pursuer strategy, the arguments (and their technical
details) in this paper are wholly distinct from those found in [8], and our result applies to a
much broader class of environments.
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Finally, we note that our result follows in the footsteps of other recent explorations
of pursuit-evasion games in general geometric and topological domains. Pursuit-evasion
games in such spaces have further applications in robotics, where agents must navigate
and coordinate in high dimensional configuration spaces. Alexander, Bishop and Ghrist
helped to pioneer this subject, studying pursuit-evasion games with the capture condition
d(p, e) < ε for some constant ε > 0 (rather that colocation). In [3], Alexander, Bishop
and Ghrist prove that a single pursuer can capture an evader in any compact CAT(0) space:
the simple pursuit strategy of heading directly towards the evader is a winning strategy. In
[5], these authors explore the simple pursuit strategy in unbounded CAT(K) spaces with
positive curvature K > 0, developing connections between evader-win environments and
the total curvature of the pursuer’s trajectory. Finally, in [4], they consider pursuit games
in unbounded Euclidean domains using multiple pursuers. They provide conditions on
the initial configuration of the players that guarantee capture, generalizing (and amending)
results of Sgall [21] and Kopparty and Ravishankar [16].

1.2 Preliminaries

We introduce some notation and review some concepts and results from algebraic topology
[13]. We then prove three lemmas about convex paths in two-dimensional compact regions
with piecewise analytic boundary.

A topological space is a set X along with a collection of subsets of X , called open sets
that satisfy a sequence of axioms [7]. A map f : X → Y between two spaces is continuous
when the inverse image of every open set in Y is open in X . A path Π : [0, 1] → D is
a continuous map from the interval [0, 1] to D, with initial point Π(0) and terminal point
Π(1). The length l(Π) of this path is its arc length in Euclidean space E2. A path Π is
a loop when Π(0) = Π(1). A simple path has no self-intersections, meaning that Π is
injective. By abusing notation, we write x ∈ Π when x = Π(t) for some t ∈ [0, 1]. For
x, y ∈ Π, we use Π(x, y) to denote the subpath connecting these points. The space X is
path-connected if there exists a path between any pair of points x, y ∈ X .

A homotopy of paths is a family of maps ft : [0, 1] → X, t ∈ [0, 1], such that the
associated map F : [0, 1] × [0, 1] → X given by F (s, t) = ft(s) is continuous, and the
endpoints ft(0) = x0 and ft(1) = x1 are independent of t. The paths f0 and f1 are called
homotopic. The relation of homotopy on paths with fixed endpoints is an equivalence
relation and we use [f ] to denote the homotopy class of the curve f under this relation. The
set [f ] of loops in X at the basepoint x0 forms a group under path composition, called the
fundamental group of X at the basepoint x0. The space X is simply connected when it is
path-connected and its fundamental group is trivial. For example, a subspace X of E2 is
simply connected if and only if it has the same homotopy type as a 2-disc.

We now turn to some geometric properties of paths in E2. The distance d(x, y) between
points x, y ∈ X is the length of a shortest (x, y)-path in X . When restricting ourselves to
R ⊂ X , we use dR(x, y) to denote the distance between these points in the subdomain.
We will frequently consider a subdomain R enclosed by two simple (u, v)-paths Π1,Π2.
We denote such a set as R[Π1,Π2] ⊂ X .

For aC2 path γ : [0, T ]→ E2, its curvature at γ(t) is defined as κ(t) = ± ||γ
′(t)×γ′′(t)||
||γ′(t)||3 ,

with the sign positive if the tangent turns counterclockwise, and negative if the tangent
turns clockwise. The smoothness of a piecewise analytic curve γ : [0, 1] → E2 ensures
that its absolute curvature is bounded at its nonsingular points. If γ is piecewise C2 and
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Figure 1: (a) A piecewise convex (u, v)-path Π. (b) Shortcutting a non-convex (u, v)-path
Π1.

continuous, with t0 < t1 < · · · < tn as the preimages of the singular points, then its total
curvature is

κtotal(γ) =

n∑
i=1

∫ t1

ti−1

κ(t)dt+

n∑
i=1

θi

where θi is the exterior angle at γ(ti), and θn = 0 when γ(t0) 6= γ(tn). This brings us to
the celebrated Gauss-Bonnet Theorem which relates the total curvature of a closed curve
with the Euler characteristic of its enclosed region. In our setting, the Euler characteristic
equals 1− k, where k is the number of obstacles in the region R.

Theorem 1.3. [Gauss-Bonnet Theorem, cf. [12]] Given a compact region R ⊂ E2 with
boundary ∂R, we have

κtotal(∂R) = 2πχ(R),

where χ(R) is the Euler characteristic of R.

We use the Gauss-Bonnet Theorem to understand the effect of obstacles on shortest
paths. In particular, we will consider pairs of paths Π1,Π2 with shared endpoints u, v.
These paths will be piecewise analytic (so that they have a finite number of singular points).
Our goal is to prove that if the shortest (u, v)-path is not unique, then each shortest path
must touch an obstacle in the given region. We begin with a definition of convexity, which
we define for the broader family of piecewise C2 smooth curves; an example is shown in
Figure 1(a).

Definition 1.4. Let Π : [0, 1] → E2 be a piecewise C2 smooth curve in E2. Then Π is
convex when the following holds for any point x ∈ Π\{u, v}:
(a) If Π is C2 smooth at x, then the curvature at x is nonpositive;
(b) If Π is not C2 smooth at x, then the tangent line at x turns clockwise by an angle
0 ≤ θ ≤ π.

The definition for a concave curve is similar, but the curvature must be nonnegative and
the tangent line must turn counterclockwise. Note that if the (u, v)-curve Π is convex, then
the (v, u)-curve Γ given by Γ(t) = Π(1− t) is concave.

Lemma 1.5. Let Π1 and Π2 be two piecewise analytic (u, v)-paths with Π1∩Π2 = {u, v}
and such that R[Π1,Π2] lies to the left of Π1. If the curve Π1 is a shortest (u, v)-path in
R[Π1,Π2] and touches no obstacle inside R[Π1,Π2], then Π1 is convex in R[Π1,Π2].
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Note that the curve Π1 does not to need to be a straight line: see Figure 1(a) for an
example. Similar convex bounding curves will arise as the pursuers remove obstacles from
the evader’s reach.

Proof. We prove the lemma by contradiction. Suppose that there exists an x ∈ Π\{u, v}
where the convexity of Π1 in R[Π1,Π2] is violated. Either (a) Π1 is C2 smooth at x, but
the curvature at x is positive, or (b) Π1 is not C2 smooth at x, and the tangent line turns
counterclockwise by an angle 0 < θ < π at x, creating a non-convex corner. Let d0 denote
the minimum distance between Π1 and any obstacle O ∈ R[Π1,Π2] with Π1 ∩ ∂O = ∅.

Suppose that the curvature at x is positive, see Figure 1(b). There must be a C2 subpath
Πx between y1 and y2 of Π1 around xwith positive curvature. Using the lower bound d0 on
the separation between Π1 and any obstacles inside R[Π1,Π2] and Π2, we may take y1, y2

to be close enough so that the line segment Λ connecting y1 and y2 lies inside R[Π1,Π2]
and does not encounter any obstacles. Replacing Πx with Λ creates a path that is strictly
shorter than Π1, contradicting the minimality of Π1.

Next suppose there is a non-convex corner at x. By an analogous argument to the
previous case, we can create a short-cut Λ around x to make a shorter path than Π1, a
contradiction.

Lemma 1.6. Let Π1,Π2 be two (u, v)-paths with Π1 ∩Π2 = {u, v}. Suppose that Π1 is a
convex and piecewise analytic (u, v)-path in R[Π1,Π2], and let Π2 be a convex and piece-
wise analytic (v, u)-path in R[Π1,Π2]. Then Π1 and Π2 are both straight lines connecting
u, v.

Proof. Let Q = Q[Π1,Π2] be the simply connected, closed region between Π1 and Π2

(so we ignore all obstacles in D). The concatenation of Π1(u, v) and Π2(v, u) is a loop
∂Q bounding the simply connected region Q. By the Gauss-Bonnet Theorem 1.3, the total
curvature along ∂Q equals 2πχ(Q) = 2π. We decompose the total curvature of ∂Q as
the sum of total curvature of Π1 and Π2 respectively, and the exterior angles at u and v.
Because of convexity, both Π1 and Π2 have total curvature no greater than 0. As for the
two angles at u, v, neither can exceed π. Therefore the total curvature of the loop does not
exceed 2π, and could only achieve 2π when κtotal(Π1) = κtotal(Π2) = 0. Therefore, Π1

and Π2 are both straight lines connecting u and v.

Lemma 1.7. Suppose Π1,Π2 are two shortest (u, v)-paths in the region R = R[Π1,Π2],
with Π1 ∩Π2 = {u, v}. Then each of Π1,Π2 touches at least one obstacle in R.

Proof. Suppose that the conclusion is false. Without loss of generality, Π1 does not touch
any obstacles in R. By Lemma 1.5, the (u, v)-path Π1 is convex in R. Let Q be the simply
connected region obtained by removing the obstacles in R. We have l(Π1) = l(Π2), so
they are both shortest (u, v)-paths in the simply connected environment Q. Therefore Π2

is also convex by Lemma 1.5, if parameterized as a path from v to u. By Lemma 1.6, Π1

and Π2 are both straight lines connecting u, v, which contradicts Π1 ∩ Π2 = {u, v}. This
proves that when there is more than one shortest (u, v)-path, each of these paths must touch
an obstacle inside R.

This concludes our topological and geometric preliminaries.
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Figure 2: Lion’s strategy in E2. On each move, the pursuer moves on the line segment
connecting the center c to the evader, and increases her distance from c.

2 Lion’s Strategy in a CAT(0) space
In this section, we describe a winning strategy for a single pursuer in a compact CAT(0)
domain, and prove Theorem 1.1. Our strategy generalizes lion’s strategy for pursuit in
E2, introduced by Sgall [21]. This strategy was adapted for pursuit in polygonal regions
by Isler, Kannan and Khanna [14]. Their adaptation relies heavily on the vertices of the
polygon P and gives a capture time of n · diam(P )2, where n is the number of vertices
of P . We give a version of lion’s strategy that succeeds in any compact CAT(0) domain D
(including polygons) with capture time bounded by diam(D)2.

Sgall’s version of lion’s strategy proceeds as follows. Fix a point c as the center of our
pursuit, see Figure 2. The pursuer starts at p = c and the evader starts at some point e.
On her first move, the pursuer moves directly towards e along the line ce. Considering a
general round, the pursuer will be on the line segment between c and e prior to the evader
move. After the evader moves to e′ ∈ B(e, 1), the pursuer looks at the circle centered at p
with radius ε. If e is inside this circle, then the pursuer can capture the evader. Otherwise,
this circle intersects the line segment ce′ at two points. The pursuer moves to the point p′

that is closer to e.

Lemma 2.1 (Sgall [21]). A pursuer using lion’s strategy in E2 re-establishes her location
on the line segment between c and the evader. Furthermore, if the evader moves from e to
e′ and the pursuer moves from p to p′ then d(c, p′)2 ≥ d(c, p)2 + 1.

Before generalizing lion’s strategy, we introduce of the basics of a CAT(0) geometry;
see [10] for a thorough treatment. A complete metric space (X, d) is a geodesic space
when there is a unique path Π(x, y) whose length is the metric distance d(x, y). This
path Π(x, y) is called a geodesic (or shortest path). A triangle4xyz between three points
x, y, z ∈ X is the triple of geodesics Π(x, y),Π(y, z),Π(z, x). To each 4xyz ∈ X , we
associate a comparison triangle4x̃ỹz̃ ⊂ E2 whose side lengths in E2 are the same as the
lengths of the corresponding geodesics in X . The complete geodesic metric space (X, d)
is CAT(0) when no triangle in X has a geodesic chord that is longer than the corresponding
chord in the comparison triangle. In other words, pick any triangle 4xyz and any points
u ∈ Π(x, y) and v ∈ Π(y, z). Let ũ ∈ x̃ỹ and ṽ ∈ ỹz̃ be the corresponding points, chosen
distancewise on the edges x̃ỹ and ỹz̃. If the space X is CAT(0) then dX(u, v) ≤ dE2(ũ, ṽ).
Colloquially, this is called the “no fat triangles” property, since it also implies that the sum
of the angles of the triangle is not greater than π.

Our CAT(0) lion’s strategy generalizes the extended lion’s strategy for polygons of Isler
et al. [14]. The pursuer starts at a fixed center point c and her goal is to stay on the shortest
path Π(c, e) at all times. In particular, assume that pt is on the shortest path Π(c, et) and
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that the evader moves from et to et+1. If d(pt, et+1) ≤ 1 then the purser responds by
capturing the evader. Otherwise, the pursuer draws the unit circle C centered at pt and
moves to the point in C ∩Π(c, et+1) that is closest to et+1.

Lemma 2.2 (Lion’s Strategy). A pursuer using lion’s strategy in a CAT(0) space (X, d) re-
establishes her location on the line segment between c and the evader. Furthermore, if the
evader moves from e to e′ and the pursuer moves from p to p′ then d(c, p′)2 ≥ d(c, p)2 + 1.

Proof. Suppose that p ∈ Π(c, e) and then the evader moves to e′. Consider the CAT(0)
triangle 4cee′ and its comparison triangle 4c̃ẽẽ′ in E2. Look at the corresponding E2

pursuit-evasion game with the pursuer at p̃ ∈ c̃ẽ. By Lemma 2.1, the pursuer can move to
a point p̃′ ∈ c̃ẽ′ such that dE2(c̃, p̃′)2 ≥ dE2(c̃, p̃)2 + 1. Since there are no fat triangles in
X , we have dX(p, p′) ≤ dE2(p̃, p̃′) where p′ ∈ Π(c, e′) is the point corresponding to p̃′.
Therefore, in our original game, the pursuer can move to the point p′ ∈ Π(c, e′), which
satisfies dX(c, p′)2 ≥ dX(c, p)2 + 1.

Finally, we prove Theorem 1.1: lion’s strategy succeeds in a CAT(0) domain.

Proof of Theorem 1.1. Consider a pursuit-evasion game in the compact CAT(0) domain D.
Pick any c ∈ ∂D as our center point. Using lion’s strategy, the pursuer increases her
distance from c with every step by Lemma 2.2, so she captures the evader after at most
diam(D)2 rounds.

3 Minimal Paths and Guarding
The key to our pursuit strategy is the ability of one pursuer to guard a shortest path, meaning
that the evader cannot cross this path without being caught by a pursuer. When this shortest
path splits the domain into two subdomains, the evader will be trapped in a smaller region.
We refer to this region as the evader territory. In fact, we will be able to also guard a
“second shortest path” when the shortest path is already guarded. The definitions and
lemmas in this section are adaptations of the minimal path formulations introduced in [8]
and further developed in [6]. Recall that we use d(x, y) to denote the length of a shortest
(x, y)-path in D. In addition, we will use X̊ and X to denote the interior and the closure of
a set X , respectively.

Definition 3.1. Let X ⊂ D be a path-connected region. The simple path Π ⊂ X is
minimal in X when for any y1, y2 ∈ Π and any z ∈ X , we have dΠ(y1, y2) ≤ dX(y1, z) +
dX(z, y2).

Definition 3.2. Let Z ⊂ X and let Π be a minimal (u, v)-path in Z where u, v ∈ ∂Z.
Then the path projection with anchor u is the function π : Z → Π defined as follows. If
dZ(u, z) < dZ(u, v) = dΠ(u, v), then π(z) is the unique point x ∈ Π with dΠ(u, x) =
dZ(u, z). For the remaining z ∈ Z\Π, we set π(z) = v.

We make a few observations. IfX = D, then a shortest (x, y)-path is always a minimal
path in D. In this case, we can define the path projection π : D → Π. When X ( D, we
might have dX(x1, x2) > d(x1, x2). In this case, a shortest path in X will be minimal in
X , but it will not be minimal in D. Next, we show that a path projection is non-expansive,
meaning that distances cannot increase.
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Lemma 3.3. Let π : Z → Π be a path projection onto a minimal path in Z. Then
dΠ(π(z1), π(z2)) ≤ dZ(z1, z2) for all z1, z2 ∈ Z.

Proof. The proof is a straight-forward argument using the triangle inequality. We consider
the case z1, z2 ∈ Z with d(u, z1) ≤ d(u, z2) ≤ d(u, v). We have

dZ(z2, z1) ≥ dZ(z2, u)− dZ(z1, u) = dΠ(π(z2), u)− dΠ(π(z1), u)

= dΠ(π(z2), π(z1)).

The other non-trivial cases are argued similarly.

A single pursuer can turn a minimal path Π into an impassable boundary: once the pur-
suer has attained the position p = π(e), the evader cannot cross Π without being captured
in response. The proof of the following lemma is similar to the analogous result in [6], but
we include this brief argument for completeness.

Lemma 3.4 (Guarding Lemma). Let π : X → Π be a path projection onto the minimal
(u, v)-path Π ⊂ X . Consider a pursuit-evasion game between pursuer p and evader e in
the environment X .

(a) After O(diam(X)) turns, the pursuer can attain pt = π(et−1).

(b) Thereafter, the pursuer can re-establish ps+1 = π(es) for all s ≥ t.
(c) If the evader moves so that a shortest path from es−1 to es intersects Π, then the

pursuer can capture the evader at time s+ 1.

Proof. To achieve (a), the pursuer moves as follows. First, p travels to u, reaching this
point in O(diam(X)) turns. Next, p traverses along Π until first achieving d(u, pi) ≤
d(u, π(ei−1)) < d(u, pi) + 1. If pi = π(ei−1) then we are done. Otherwise, when the
evader moves, we either have d(u, pi)− 1 < d(u, π(ei)) ≤ d(u, pi) + 1 or d(u, pi) + 1 <
d(u, π(ei)) < d(u, pi) + 2 by Lemma 3.3. In the former case, p can move to π(ei) in
response, achieving her goal. In the latter case, p will increase her distance from u by one
unit, re-establishing d(u, pi+1) ≤ d(u, π(ei)) < d(u, pi+1) + 1. This latter evader move
can only be made O(diam(X)) times, after which the pursuer acheives p = π(e).

Next, suppose that ps = π(es−1) and that es−1 ∈ X\Π. The pursuer can stay on the
evader projection by induction since

dΠ(ps, π(es)) = dΠ(π(es−1), π(es)) ≤ d(es−1, es) ≤ 1,

so (b) holds. As for (c), suppose that a shortest path from es−1 to es includes the point
y ∈ Π. Then

d(ps, es) ≤ dΠ(π(es−1), y) + d(y, es) ≤ d(es−1, y) + d(y, es) = d(es−1, es) = 1.

Therefore the pursuer can capture the evader on her next move.

The Guarding Lemma is the cornerstone of our pursuer strategy. When the pursuer
moves as specified in the lemma, we say that she guards the path Π. In Section 4, our
pursuers will repeatedly guard paths chosen to reduce the number of obstacles in the evader
territory. Once the evader is trapped in a region that is obstacle-free, we have reached the
endgame of the pursuit.
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Lemma 3.5. Suppose that the evader is located in a simply connected region R whose
boundary consists of subcurves of the original boundary ∂D and two guarded paths Π1

and Π2. If the evader remains in R, then the third pursuer can capture him in finite time.
If the evader tries to leave the region through Π1 or Π2, then he will be captured by the
guarding pursuer.

Proof. By Lemma 3.4, if the evader tries to leave this region, he will be caught by either p1

or p2. If the evader remains in this component, then Theorem 1.1 guarantees that pursuer
p3 captures the evader in a finite number of moves.

The remainder of this section is devoted to identifying guardable paths that touch ob-
stacles. Guarding such a path will neutralize the threat posed by the obstacle. First, we
consider the case when p1 guards the unique shortest (u, v)-path Π1 that touches an ob-
stacle O in the evader region. The objective of p2 is to guard another (u, v)-path Π2 of
a different homotopy type. This path can be guarded even when Π2 is longer than Π1,
provided that any path shorter than Π2 also intersects Π1.

Lemma 3.6. Suppose that the evader territory R = R[Π1,∆] is bounded by the unique
(u, v)-shortest path Π1 and another boundary curve ∆. Furthermore, suppose that Π1

touches an obstacle O and that Π1 is guarded by p1. Then we can find a (u, v)-path
Π2 ⊂ R with the following properties: (a) O ⊂ R[Π1,Π2], so that the homotopy type of
Π2 is different than that of Π1; and (b) Π2 is guardable by p2, provided that Π1 remains
guarded by p1.

A naive attempt to find such a path is to pick some x ∈ Π1 ∩ Ō and find a shortest
path that does not include the point x. However, R\{x} is not a closed set, which would
complicate our argument. Furthermore, it could be that the next shortest path includes x
without using this point as a shortcut around the obstacle O, as shown in Figure 3(b).1 We
handle both problems by removing a small and well-chosen open region A near x, rather
than removing the point x. The delicate choice of A relies on two consequences of our
piecewise analytic boundary: the finite upper bound κmax > 0 on the curvature and the
minimum distance dmin > 0 between boundary components.

Proof. First, suppose that Π1 ∩ ∂O includes a continuous subcurve C ⊂ Π1. Pick x ∈ C̊
and ε > 0 so that B(x, ε) ∩ R ⊂ O. Let R′ = R\B̊(x, ε), which effectively absorbs
the obstacle into the boundary, see Figure 3 (a). The region R′ is closed, so there is a
well-defined shortest (u, v)-path Π2 ⊂ R′. The path Π2 is guardable in R′, and therefore
it is guardable by p2 in R, provided that p1 guards Π1. Indeed, any shorter path in R
must go through the point x, so Lemma 3.4 guarantees that an evader using such a path
will be caught by p1. Finally, we note that Π1,Π2 have distinct homotopy types because
O ⊂ R[Π1,Π2].

Next, we consider the case where Π1 ∩ Ō contains no continuous curves: we just focus
on the first point x ∈ Π1 ∩ Ō encountered as we move from u to v. Locally around
x, the path Π1 and the boundary ∂O separate R into two external regions (outside of Π
and inside ∂O) and two internal regions, see Figure 3 (b). The shortest path Π1 does not
self-intersect, so locally near x, this path consists of two curves meeting at x, creating an

1We note that this unusual circumstance is overlooked in [8], where it can occur during their minimal path
strategy. This case can be easily handled in a manner analogous to our approach, but based on the visibility graph
of their environment.
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Figure 3: Finding the second shortest path. (a) When Π1 ∩ ∂O contains a curve, we can
remove a small open ball. (b) The shortest path Π1 touches obstacle O at x. The second
shortest path Π2 goes aroundO, but includes the point x. (c) Finding Π2 requires removing
a small, open, triangular set A between Π1 and O, and then finding the shortest (u, v)-path
in the closed set R\A. (d) Any path that crosses the line segment yz can be short-cut.

interior angle smaller than 2π. Therefore, at least one of the two interior angles made by
Π1 and the obstacle tangent line(s) at x is strictly less than π. This local region is where
we will remove our triangular open set.

Without loss of generality, suppose that the subpath Π1(x, v) helps to bound this local
region. Take points y ∈ Π1(x, v) and z ∈ ∂O (traveling counterclockwise from x) such
that 0 < dΠ1

(x, y) = d∂O(x, z) < dmin/2, and the angle ∠yxz < π. Let A ⊂ B(x, dmin)
be the closed region with endpoints (x, y, z), where the third curve is the unique shortest
(y, z)-path Γ, see Figure 3 (c). The bound on the absolute curvature κmax allows us to
choose our y, z so that the region A is essentially triangular. Since dmin is the minimum
distance between obstacles, A is obstacle-free, so Γ is a straight line segment.

We remove the relatively open set A′ = A\Γ from our domain. We then find the
shortest (u, v)-path Π2 in the closed set R = R\A′. We claim that p2 can guard Π2 in R,
provided that p1 guards Π1. As in the previous case, the shorter paths that go through x
are not available to the evader. Therefore, we must show that any path in R that visits A′

is longer than Π2. Such a path Λ must enter and leave A′ through Γ, say at points a, b, see
Figure 3 (d). However, the subpath Λ(a, b) can be replaced with the unique shortest path
Γ(a, b) without changing the homotopy type, a contradiction. Once again, Π1,Π2 have
distinct homotopy types because O ⊂ R[Π1,Π2].

We refer to the paths Π1,Π2 from Lemma 3.6 as a guardable pair. Provided that
the shortest (u, v)-path Π1 is guarded, the “second shortest (u, v)-path” Π2 can also be
guarded. The following corollary is a variation of the lemma.

Corollary 3.7. Let Π1,Π2 be (u, v)-paths that are guarded by p1, p2, respectively. Suppose
that for i = 1, 2, the path Πi touches an obstacle Oi, where O1 6= O2. Then we can find
a path Π3 with the following properties: (a) the homotopy type of Π3 is different than the
homotopy types of Π1 and Π2, and in particular, Oi ∈ R[Πi,Π3] for i = 1, 2; and (b) Π3

is guardable by p3, provided that Π1,Π2 remain guarded by p1, p2.

Proof. The proof is similar to the proof of Lemma 3.6. This time, we must remove an
open set A near x ∈ Π1 ∩ O1 and an open set B′ near y ∈ Π2 ∩ O2. We then find Π3 in
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R\(A′ ∪B′).

This concludes our search for guardable paths that touch obstacles. The next section
lays out the three-pursuer strategy for capturing the evader in a two-dimensional domain.

4 Shortest Path Strategy
In this section, we prove Theorem 1.2: three pursuers can capture an evader in a two-
dimensional compact domain with piecewise analytic boundary. We adapt the the shortest
path strategy of Bhaudaria et al. [8] to our more general setting. In particular, our guard-
able path lemmas from Section 3 supplant their use of polygon vertices to find successive
paths. Their algorithm guarantees success by reducing the number of polygon vertices in
the evader territory. Instead, we keep track of the threat level of obstacles to argue that the
evader becomes trapped in a simply connected region.

Our pursuit proceeds in rounds. At the start of a round, at most two pursuers guard
paths. The third pursuer moves to guard another path with the goal of eliminating obstacles
from the evader territory. This third path will either be a shortest path, or it will create
a guardable pair with the currently guarded path(s). Once this third path is guarded, the
evader is trapped in a smaller region, which releases one of the other pursuers to continue
the process. This continues until the evader is trapped in a simply connected region, where
the free pursuer can capture the evader by Lemma 3.5.

We start by showing that the boundary of the evader territory is always piecewise an-
alytic, after recalling two definitions. First, the endpoints of a line segment touching the
boundary ∂D are called switch points. Second, a point x is an accumulation point (or limit
point) of a set S when any open set containing x contains an infinite number of elements
in S. We make use of the following result about the interaction of a geodesic with the
boundary of the domain.

Theorem 4.1 (Albrecht and Berg [2]). If M is a 2-dimensional analytic manifold with
boundary embedded in E2, and γ is a geodesic in M , then the switch points on γ have no
accumulation points.

We restrict ourselves to analytic boundary, instead of smooth (C2, or even C∞) bound-
ary, to avoid some potentially pathological behavior of geodesics. For example, Albrecht
and Berg [2] construct a geodesic inC∞ environment, that achieves a Cantor set of positive
measure as the accumulation of switch points. This unusual geometry hampers our ability
to confine the evader in a well-defined connected component. Theorem 4.1 ensures that our
new evader territory will be bounded by piecewise analytic curves.

Lemma 4.2. Let D be a compact domain with piecewise analytic boundary. If Π is a
shortest path in D, then Π is piecewise analytic. Furthermore, if D\Π is disconnected,
then it contains finitely many connected components, and the boundary of each connected
component is piecewise analytic.

Proof. LetB ⊂ ∂(Π\∂D) be the set of switch points. We claim thatB is finite. Otherwise,
there must be an accumulation point of B since l(Π) is finite, contradicting Theorem 4.1.
Now we can use the finite set B as endpoints to partition Π so that each subcurve is either
in the boundary ∂D, or in the interior D̊. Since any shortest path in the interior D̊ must be
a line segment, the path Π is piecewise analytic. For each connected component of D\Π,
its boundary is a subset of Π ∪ ∂D, hence is piecewise analytic.
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In order to prove Theorem 1.2, we will show that our pursuit succeeds in finite time. To
aid in this effort, we assign a threat level to each of the k obstacles in the original domain.
These threat levels will reliably decrease during pursuit. An obstacle is in one of three
states: dangerous, safe, or removed. A removed obstacle lies outside the evader territory.
A safe obstacle lies in the evader territory and touches a currently guarded path. This
obstacle is not a threat because the evader cannot circle around the object without being
captured. The remaining obstacles are dangerous. Finally, we say that the evader territory
is dangerous if it contains at least one dangerous obstacle.

At the start of pursuit, all obstacles are dangerous. So long as there are still dangerous
obstacles, a round consists of taking control of a guardable path. This effort succeeds in a
finite number of moves by Lemma 3.4. We will show that after at most two rounds, either
a dangerous obstacle transitions to safe/removed, or a safe obstacle transitions to removed.
This is our notion of progress: after at most 2k rounds, the evader territory is not dangerous.
From here forward, we focus on the transition of the threat levels of obstacles.

In general, our evader territory will be bounded by part of the domain boundary ∂D
and by at most two guarded paths Π1,Π2. At the end of a round, the evader territory will
be updated, bounded in part by updated paths Π′1,Π

′
2. If these guarded paths intersect or

share subpaths, then the evader is actually trapped in a smaller region by Lemma 3.4. When
this is the case, we advance the endpoint(s) of our paths so that these are the only point(s)
shared by our paths. This obviates the need to discuss degenerate cases.

The first round is an initialization round, so all obstacles might still be dangerous when
this round completes. However, we will be able to neutralize at least one obstacle in the
subsequent round. To kick off the first round, we pick points u, v ∈ ∂D, chosen so that
they divide the outer boundary into two curves ∆1,∆2 of equal length, see Figure 4(a). Let
Π1 be a shortest (u, v)-path; if there are multiple shortest paths (in which case each touches
an obstacle), then we pick one arbitrarily. Using Lemma 3.4, p1 moves to guard Π1. The
round ends when p1 has attained guarding position, trapping the evader in a subdomain
that is bounded by Π1 and one of ∆1,∆2. The evader could be trapped in a smaller pocket
region between Π1 and a subcurve ∆3 of an obstacle O ⊂ D, see Figure 4(b). In the latter
case, the obstacle O is marked as removed and we treat ∆3 as the new outer boundary.
After updating the evader territory R, any obstacle O 6⊂ R is marked as removed. Any
obstacle O ⊂ R that touches Π1 or Π2 is marked as safe.

For the remainder of the game, the evader territory is one of the following types.

• Type 0 region: A region containing no dangerous obstacles.

• Type 1 region: A dangerous three-sided region bounded by a (u, v)-shortest path
Π1, a (u,w)-shortest path Π2 and a (v, w)-path ∆ ⊂ ∂D. No obstacle touches both
Π1,Π2.

• Type 1′ region: A dangerous two-sided region bounded by a (u, v)-shortest path Π1

and a (u, v)-path ∆ ⊂ ∂D. We treat this as a special case of the previous type, where
Π2 consists of the single point w = u. This point is on Π1, so it is guarded by p1.

• Type 2 region: A dangerous two-sided region bounded by (u, v)-paths Π1,Π2, each
of which touches an obstacle in the evader territory. The path Π1 is a shortest (u, v)-
path in this region. The path Π2 might also be a shortest (u, v)-path, or it could be
a “second shortest path,” meaning that it is a shortest (u, v)-path among the set of
(u, v)-paths that are not homotopic to Π1. No obstacle touches both Π1,Π2.
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Figure 4: The shortest (u, v)-path Π1 guarded in round one. (a) The path Π1 partitions the
outer boundary to subcurves ∆1,∆2 of equal length. (b) The evader may be trapped in a
pocket between the path Π1 and the boundary subcurve ∆3 of obstacle O.

• Type 3 region: a dangerous 4-sided region bounded by a (u, v)-shortest path Π1, a
(w, x)-shortest path Π2, a (v, w)-path ∆1 from the boundary and a (u, x)-path ∆2

from the boundary. These vertices are arranged so that they are ordered clockwise as
u, v, w, x. No obstacle touches both Π1,Π2.

For example, after the initialization round, the evader territory is a type 1′ region, bounded
by a guarded path and part of the boundary ∂D. Finally, we emphasize that Lemma 4.2
ensures that the boundary of the evader region is always piecewise analytic, since it consists
of sub-curves of the piecewise analytic boundary along with one or more shortest paths.

We now describe the different types of rounds. In regions of type 1, 1′ and 2, we will
always transition at least one obstacle. At the end of such a round, the evader could now be
trapped in a region of any type. Type 3 rounds are slightly different. Our primary goal is
to trap the evader in a type 1 region, where we will surely make progress in the subsequent
round. However, it is possible to transition an object via a type 3 move (just as in the
initialization round). In this case, we make immediate progress, and the evader could then
be trapped in a region of any type.

First we consider type 1 regions. This also handles type 1′ regions as a special case.
We use the following lemma to identify a point x ∈ ∆ and a shortest (u, x)-path to guard
during this round.

Lemma 4.3. Let shortest paths Π0(u, v),Π1(u,w) and boundary path ∆(v, w) bound a
type 1 environment R. If R contains obstacles, then there exists a point x ∈ ∆ such that
there are multiple shortest (u, x)-paths in R, each of which touches at least one obstacle.

Proof. Parameterize the boundary path as ∆ : [0, 1]→ R. We prove the lemma by contra-
diction.

Suppose that for every t ∈ [0, 1], the shortest (u,∆(t))-path Πt is unique. Denote its
length by l(Πt) = d(u,∆(t)). Define the function n(t) to be the number of obstacles in the
region Rt bounded by Π0,Πt and ∆. The function n(t) is well-defined by the uniqueness
of each Πt. Furthermore, n(0) = 0, and n(1) > 0, so there must be a jump discontinuity
somewhere in [0, 1]. Let s = inf{t ∈ [0, 1] : n(t) > 0}.

Case 1: n(s) > 0 where 0 < s ≤ 1. (Recall that n(0) = 0, so s > 0.) Let Γ be
a shortest (u,∆(s))-path that is of the same homotopy class as Π0. The choice of s and
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Figure 5: Representative examples of a type 1 move, where we transition to (a) a type 1
region, (b) a type 1 or type 1′ region, (c) a type 1 or a type 3 region, (d) a type 1 or type 2
region, (e) a type 1 or type 3 region.

the uniqueness of Πs guarantee that l(Γ) > l(Πs). Also no obstacles are contained in
the region bounded by Π0,Γ and ∆(0, s). By the definition of Γ, for all t ∈ [0, s), we
have `(Γ) ≤ `(Γt) + `(∆(t, s)). By the continuity of l(Πt) = d(u,∆(t)) with respect to
t ∈ [0, s), we have l(Γ) ≤ l(Πt) + l(∆(t, s)), so

l(Γ) ≤ lim
t→s−

(
l(Πt) + l(∆(t, s))

)
= l(Πs) + 0 = l(Πs).

This contradicts l(Γ) > l(Πs), so Πs is not the unique shortest (u,∆(s))-path.
Case 2: n(s) = 0, where 0 ≤ s < 1. Let {si} be an infinite sequence si → s+, such

that n(si) > 0 for all i. There are finite number of obstacles, so by taking a subsequence
if necessary, we can assume that the shortest paths {Πsi} are of the same homotopy class.
Let Γ be the shortest (u,∆(s))-path of this homotopy class. We have l(Γ) ≤ l(Πsi) +
l(∆(s, si)) for all i, and therefore

l(Γ) ≤ lim
i→∞

(
l(Πsi) + l(∆(s, si))

)
= l(Πs),

where the limit holds by the continuity of distances in the region. However, this contradicts
the uniqueness of Πs which would require l(Πs) < l(Γ).

Thus we can conclude that are multiple shortest (u, x)-paths. By Lemma 1.7, each of
these paths touches at least one obstacle.

Having found the next path to guard, we now prove that we transition an object during
a type 1 move.

Lemma 4.4. Suppose that the evader is trapped in a type 1 (or type 1′) region. Then the
third pursuer can guard a path that transitions an obstacle state.

Proof. By Lemma 4.3, there is some point x ∈ ∆ with multiple shortest (u, x)-paths, each
of which touches an obstacle. Let Π3 be one of these shortest (u, x)-paths. If x = v then
we take a path Π3 6= Π1. Similarly if x = w we choose Π3 6= Π2. When x /∈ {v, w}, we
can choose Π3 arbitrarily from the collection of (u, x)-shortest paths. Pursuer p3 moves to
guard Π3, which traps the evader in either R[Π1,Π3] or R[Π3,Π2]. Any obstacles in the
other region are marked as removed.

Without loss of generality, letO ⊂ R[Π1,Π3] be an obstacle touched by Π3, see Figure
5(a). Suppose that prior to p3 guarding Π3, the object O was dangerous. If e ∈ R[Π3,Π2]
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then O transitions to removed. If e ∈ R[Π1,Π3] then O transitions to safe. However, we
may be in a more advantageous position, shown in Figure 5(b): the evader could be trapped
in a pocket between obstacle O and path Π3. In this case, the new evader territory is type
1′ and the obstacle O is marked as removed, since it is now part of the outer boundary of
the evader territory.

Next, suppose thatO was already safe, touched by Π1. If e ∈ R[Π2,Π3] after p3 guards
Π3, then O transitions from safe to removed. If the evader is trapped in a pocket region
between O and Π3, we proceed as in the previous case. Otherwise, we have e ∈ R[Π1,Π3]
and the obstacle O separates R[Π1,Π3] into disjoint regions, as shown in Figure 5(c). The
evader is trapped in one of these two subregions because both Π1,Π3 are guarded. Let
∆′ be the subcurve of ∂O that bounds the effective evader territory. We update the evader
territory appropriately, bounded by ∆′ and subpaths of Π1,Π3, and perhaps part of ∆. The
result is a region of type 1 or 3. The obstacle O is marked as removed: it is now part of the
boundary. This reduces the number of safe obstacles.

When Π3 touches multiple obstacles, each of them transitions to a lower threat level.
Figures 5(d) and (e) show that we can also end up in a type 2 or 3 region, depending on the
configuration of these obstacles and the location of the evader at the end of the round.

Next, we consider a type 2 region. Such a region is bounded by (u, v)-paths Π1,Π2

that form a guardable pair, where Π1,Π2 touch safe obstaclesO1, O2, respectively. Without
loss of generality, Π1 is a shortest (u, v)-path in the region, and Π2 is either another shortest
path, or a “second shortest path” as found in Lemma 3.6. (A type 1 move can lead to the
first case. A type 2 move can lead to the second case, as we are about to see.)

Lemma 4.5. Suppose that the evader is trapped in a type 2 region. Then the third pursuer
can guard a path that transitions an obstacle state.

Proof. Use Corollary 3.7 to find a guardable (u, v)-path Π3 inR[Π1,Π2] whose homotopy
type is distinct from that of both Π1,Π2. Pursuer p3 establishes a guarding position on
Π3. The evader is now trapped in either R[Π1,Π3] or R[Π3,Π2], so one of O1, O2 tran-
sitions from safe to removed. Furthermore, Π3 must touch at least one obstacle in each
of R[Π1,Π3] or R[Π3,Π2]. Otherwise, Π3 would be shorter than one of Π1,Π2, which
contradicts the minimality of that path in R[Π1,Π2]. Depending on the configuration of
the obstacles, we may be able to restrict the evader territory further. After doing so, the
evader territory may be of any possible type, as shown in Figure 6 (a).

This brings our discussion to a type 3 region, with p1 guarding a shortest (u, v)-path
Π1 and p2 guarding a shortest (w, x)-path Π2. Our primary goal is to trap the evader in a
type 1 region, but we might end up transitioning an obstacle instead. In the latter case, the
new evader territory can be of any type, as explained below.

Lemma 4.6. Suppose that the evader is trapped in a type 3 region. Then the third pursuer
can guard a path so that either (a) the evader is trapped in a type 1 region, or (b) an
obstacle transitions to a lower threat level.

Proof. Let Π3 be a (u,w)-minimal path. Pursuer p3 moves to guard this path using Lemma
3.4. This traps the evader in a smaller region: without loss of generality, this region is
bounded by Π1,∆1,Π3. If Π3 does not touch any obstacles in this region, then the evader
is now in a type 1 region. If Π3 touches an obstacle O, then this obstacle transitions to
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Figure 6: Examples of moves where the new guarded path Π3 divides the region into five
subregions, each identified by its type. (a) A type 2 move. (b) A type 3 move.

either safe or removed. The evader could be trapped in a region of any type, as shown in
Figure 6 (b).

We can now prove our main theorem: three pursuers can capture the evader in a two-
dimensional compact domain with piecewise analytic boundary.

Proof of Theorem 1.2. The first round traps the evader in a type 1′ region, or transitions an
obstacle state. If we are in a region of type 1, 1′ or 2 then we transition an obstacle state in
the current round by Lemma 4.4 and Lemma 4.5. When we are in a type 3 region, Lemma
4.6 ensures that we either trap the evader in a type 1 region, or we transition an obstacle.
With each path that we guard, the boundary of the updated evader territory is still piecewise
analytic by Lemma 4.2. At the end of the round, we update the evader territory and our
value for minimum obstacle separation since our new guarded path might be closer to an
obstacle than the current value dmin. (Note that the maximum boundary curvature κmax

never increases since all additions to the boundary are line segments.)
After at most 2k rounds, we have transitioned all k obstacles to either safe or removed.

Once all obstacles have been transitioned, the evader is trapped in a simply connected type
0 region. Lemma 3.5 shows that the evader will then be caught. Each round completes in
finite time, so the three pursuers win the game. The capture time upper bound of O(2k ·
diam(D) + diam(D)2) follows easily. The time required to guard any shortest path is
diam(D) by Lemma 3.4 and lion’s strategy completes in time diam(D)2 by Theorem 1.1.

5 Conclusion
In this paper, we described a winning pursuer strategy for a single pursuer in a CAT(0) space
for turn-based pursuit with capture criterion d(p, e) = 0. We then restricted our attention to
compact domains in E2 with piecewise analytic boundary. We showed that three pursuers
are sufficient to catch an evader in such environments. By adding a fourth pursuer for use
in the final endgame, our strategy could be quickly adapted to a winning strategy in the
continuous time version. However, a clever use of the two guarding pursuers during the
endgame shows that three pursuers are actually sufficient: see [22] for details.

There are plenty of avenues for reseach in geometric pursuit-evasion. Pursuit-evasion
results on polyhedral surfaces are an active area of current research [15, 18, 19]. For ex-
ample, Klein and Suri [15] have proven that 4g + 4 pursuers have a winning strategy on a
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polyhedral surface of genus g. Meanwhile, Schröder [20] has proven that at mostb3g/2c+2
pursuers are needed for a graph of genus g (meaning that such a graph can be drawn on a
surface of genus g without edge crossings). It would be natural to consider this question
for topological surfaces, or to start by trying to improve the bound for polyhedral surfaces.
Likewise, there are a wealth of motion and sensory constraints to consider. Most of these
variations of pursuit-evasion have a natural analog in a more general geometric setting.
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