Scientific paper Ab Initio Studies on 5-Bromo-10-Oxa-3-Thiatricyclo[5.2.1.01,5]-Dec-8-Ene 3,3-Dioxide Hakan Arslan1'* and Aydin Demircan2 1 Department of Chemistry, Faculty of Arts and Science, Mersin University, 33343-Mersin, Turkey 2 Department of Chemistry, Faculty of Liberal Arts and Science, University of Nigde, 51100-Nigde, Turkey * Corresponding author: Tel: (90)(532)7073122, E-mail: arslanh@mersin.edu.tr Received: 08-03-2007 Abstract 5-Bromo-10-oxa-3-thiatricyclo[5.2.1.01,5]-dec-8-ene 3,3-dioxide (BOTCDO) was synthesized from the reaction between 2-(2-bromoallylsulfanylmethyl)-furan and m-chloroperbenzoic acid in dichloromethane. The molecular structure and vibrational frequencies of BOTCDO in the ground state have been investigated with ab initio (HF) and density functional theory methods (B3LYP, B3PW91 and MPW1PW91) implementing the standard 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT methods show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of title compound and calculated results by HF and DFT methods indicate that MPW1PW91 is superior to the scaled HF approach for molecular problems. Optimal uniform scaling factors calculated for the title compound are 0.8920, 0.9553, 0.9518 and 0.9452 for HF, B3LYP, B3PW91 and MPW1PW91 methods, respectively. Keywords: HF; DFT; FT-IR spectrum; quantum chemical calculations; furans; sulfoxide. 1. Introduction The renewal of interest in cycloaromatization reactions over the last decade has clearly intensified due to the elegant mode of action of the enediyne natural products.1'2 In particular, the intramolecular Diels-Alder (IMDA) cycloaddition has been extensively used for assembly of complex molecular architectures of designed or natural products origin.3-5 Biosynthetic pathways incorporating IMDA reactions have been recognized and examples of biomimetic total synthesis of natural products by using a key IMDA cycloaddition are known.5-7 IMDA reactions between unactivated furans and dienophiles take place generally at lower temperature compared to their intermolecular counterparts,8 and thus, they have a much higher scope with respect to the necessary activation of the reaction partners.9 Furthermore, success of IMDA cycloaddition critically depends on the length of the tether connecting the furan with the dienophile unit.1011 The utility of sulfoxide have received great attention in point of chemical and biological properties.2,13 The sul-fonyl functional group has recently been shown to potently inhibit a variety of enzymatic processes providing unique properties for drug design and medicinal chem- istry.1415 Furthermore, alkenyl sulfones are well known for their ability to inhibit many types of cycteine proteases.161. The alkenyl sulfones are reversible inhibitors of these enzymes through conjugate addition of the thiol of the active site cycteine residue, mimicking the initial co-valent adduct in normal proteolytic turnover. Particularly, Hanzlick18 proposed alkenyl sulfone series as potential cysteine protease inhibitors targeting the plant protease papain. In the point of chemical properties view, sulfoxides used as dienophiles in a Diels-Alder reaction and their 1,4-cycloadditon have attracted considerable attention19. The sulfonyl group has versatile functionality in organic synthesis and can be conveniently eliminated resulting in an alkene.20,21 Moreover sulfonyl group can also be converted to the corresponding ketone by oxidative desul-fonylation.22 From synthetic and medicinal chemistry point of view, tricyclicsulfone, 5-bromo-10-oxa-3-thia-tri-cyclo[5.2.1.015]dec-8-ene-3,3-dioxide (BOTCDO) might be a convenient route for the development of combinatorial furan chemistry. In our further systematic studies on IMDA cycload-diton of furans,23'24 we have recently synthesized the Scheme 1 tricyclicsulfones (3) by oxidizing the thermal intramolecular Diels-Alder cycloadduct, (2)25,26 (Scheme 1). 2-{[(2-bromoprop-2-en-1-yl)thio]}methyl}furan (1) was derived from furfurylmercaptanol by employing Williamson ether synthesis.27 Irradiation of thioether, 2-{[(2-bromoprop-2-en-1-yl)thio]methyl}furan in a commercial microwave oven (2450 MHz) in solvent-free condition for 12 min underwent [4+2] cycloaddition and gave 5-bromo-10-oxa-3-thia-tricyclo[5.2.1.01,5]dec-8-ene, (2) with modest yield. The tricyclclic cycloadduct, (2) was then oxidized to sul-fones, 5-bromo-10-oxa-3-thia-tricyclo[5.2.1.01,5]dec-8-ene-3,3-dioxide (3), using m-chloroperbenzoic acid (m-CPBA) in dichloromethane at 0 °C giving 78% yield.2526 Several theoretical methods are useful in analyzing vibrational spectra of organic molecules. These methods can be roughly divided into the following groups: classical mechanics, semi-empirical quantum mechanical methods, ab initio quantum mechanical method and ab initio followed by empirical scaling of the force constants. Ab initio molecular orbital calculation is relatively successful approaches to the calculation of vibrational spectrum of closed shell organic molecules. However, raw frequency values computed at the Hartree-Fock level contain known systematic errors due to neglecting electron correlation. Therefore, it is necessary to scale frequencies predicted at the Hartree-Fock level. DFT methods are gaining popularity recently as a cost-effective general procedure for studying the physical properties of molecules.28 Much effort has been devoted to refining the methodology and exploring the limits of its applicability.29,30 In the recent theoretical studies,31,32 the harmonic vibrational frequencies for a large number of molecules were computed with Hartree-Fock and Density functional methods. On the basis of a comparison of computed and observed fundamental vibrational frequencies, the scaled DFT methods were found to be reliable. In the present study, we have, therefore, calculated the vibrational frequencies and geometric parameters of the title compound in the ground state to distinguish the fundamentals from the experimental vibrational frequencies and geometric parameters, by using the Hartree-Fock,33 density functional using Becke's three-parameter hybrid method31 with the Lee, Yang, and Parr correlation functional methods,32 the Barone and Adamo's Beckestyle one-parameter functional using the modified Per-dew-Wang exchange and Perdew-Wang 91 correlation method,34,35 Becke's three parameter exchange functional combined with gradient corrected correlation functional of Perdew and Wang's 1991,36,37 with the standard 6-31G(d) basis set. Furthermore, we interpreted the calculated spectra of in terms of potential energy distributions (PEDs) and made the assignment of the experimental bands due to PED analysis results. In continuation of our theoretical studies, in the present work we checked the relative performance of B3LYP, B3PW91 and MPW 1PW91 methods, as well as of HF for comparison, at the 6-31G(d) level taking as a test compound 5-bromo-10-oxa-3-thiatricyclo[5.2.1.01,5]-dec-8-ene 3,3-dioxide. 2. Experimental 2.1. Synthesis of 5-bromo-10-oxa-3-thiatri-cyclo[5.2.1.01,5]-dec-8-ene 3,3-dioxide To a solution of meta-chloroperbenzoic acid (m-CP-BA) (300 mg, 1.2 mmol) which was previously purified and recrystallized in dry diethyl ether, in dichloromethane (10 mL), cooled to 0 °C, was added dropwise a solution of 2-(2-bromo-allylsulfanylmethyl)-furan (140 mg, 0.6 mmol) in dichloromethane (10 mL) over 3 min. The reaction mixture was stirred at room temperature for 4 h and the diluted with cold 4% sodium bicarbonate solution (4 mL). The organic layer was separated, washed with water (20 mL) and concentrated in vacuo. The crude solid residue was subjected to flash column chromatography to afford titled compound. EtOAc / n-Hexane (3:7) [R: 0.27] was used as eluent to provide pure dioxide. Off pale yellow crystals (for re-crystallization, 1:1 Ether / DCM): yield 120 mg (78%); m.p. 142-144 °C; §H (300 MHz CDCl3):6.57 (dd, 1H, J1 1.8 Hz, J2 5.7 Hz, AB ), 6.35 (d, 1H, J 5.7 Hz, AB), 5.13 (dd, 1H, J1 1.8 Hz, J2 4.8 Hz), 3.93 (d, 1H, J 12.3 Hz, AB), 3.86 (d, 1H, J 12.5 Hz, AB), 3.65 (d, 1H, J 12.3 Hz, AB), 3.59 (d, 1H, J 12.5 Hz, AB), 2.53 (dd, 1H, J1 4.8 Hz, J2 12.0 Hz, AB), 1.98 (d, 1H, J 12.0 Hz, AB). 5C (75 MHz CDCl3): 135.0, 131.1, 128.5, 119.2 (q), 76.5 (q), 67.4, 52.3, 50.9, 46.7. m/z : 266 [M+(81Br),% 16], 264 [M+(79Br),% 16], 184.9 [M+(81Br)-(C5H5O),% 10], 121 [M+-(SO2+Br),% 16], 81 [(C5H5O)+,% 16], 55 [(C3H3O)+,% 40]. E. A. Required for C8H9O3SBr: C, 36.24%; H, 3.42%. Found: C, 36.48%; H, 3.21%. Wavenumber. cm Figure 1: FT-IR spectrum of 5-bromo-10-oxa- 3-thiatricyclo[5.2.1.0u]-dec-8 -ene 3,3-dioxide recorded at room temperature. 2.2. Instrumentation The room temperature attenuated total reflection Fourier transform infrared (FT-IR ATR) solid state spectrum of the 5-bromo-10-oxa-3-thiatricyclo[5.2.1.01,5]-dec-8-ene 3,3-dioxide was registered using Varian FTS1000 FT-IR spectrometer with Diamond/ZnSe prism (4000-525 cm-1; number of scans: 250; resolution: 1 cm-1) (Fig. 1). 2.3. Calculations Details All the calculations were performed with the Gaussian 03W program package on a double Xeon/3.2 GHz processor with 8 GB Ram.38 The molecular structure of the BOTCDO, in the ground state are optimized by using the Hartree-Fock (HF),33 density functional using Becke's three-parameter hybrid method31 with the Lee, Yang, and Parr correlation functional methods32 (B3LYP), the Barone and Adamo's Becke-style one-parameter functional using the modified Perdew-Wang exchange and Perdew-Wang 91 correlation method, (mPW1PW91),34,35 Becke's three parameter exchange functional combined with gradient corrected correlation functional of Perdew and Wang's 1991 (B3PW91),637 and 6-31G(d) basis set. The vibrational frequencies were also calculated with these methods. The frequency values computed at these levels contain known systematic errors.39 Therefore, we have used the scaling factor values of 0.8992, 0.9614, 0.9573 and 0.9500 for HF, B3LYP, B3PW91 and MPW1P W91, respectively.40,41 We have also calculated optimal scaling factors for all investigated methods. The assignment of the calculated wave numbers is aided by the animation option of GaussView 3.0 graphical interface for gaussian programs, which gives a visual presentation of the shape of the vibrational modes.42 Furthermore, theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.43 3. Results and Discussion 3.1. Geometry Optimization The crystal and molecular structure of 5-bromo-10-oxa-3-thiatricyclo[5.2.1.01,5]-dec-8-ene 3,3-dioxide have been reported.26 The structure parameters is orthorhom-bic, the space group Pbca, with the cell dimensions a = 10.1723 (6) À, b = 10.3446 (9) À, c = 17.6278 (10) À and V = 1854.9 (2) À3. In this work, we performed full geometry optimization of the title compound. The crystal and optimized structure of BOTCDO with the labelling of atoms is given in Fig. 2. The optimized geometrical parameters (bond length and angles) by HF, B3LYP, B3P W91 and MPW1PW91 methods with 6-31G(d) as basis (a) o o— O- J N ' \Jtf\J a ^ j. ¿K S* 0~ C? (b) \ / Figure 2: The optimized molecular structure (a) and ORTEP-3 view (50% probability displacement ellipsoids) of the title compound, with the atom numbering scheme (b). set are listed in Table 1. Also, Table 1 compares the calculated geometrical parameters with the experimental data. As follows from this comparison, the bond lengths and angles calculated for the title compound show quite good agreement with experimental values. However, owing to our calculations, DFT method correlates well for the bond length and angle in comparison to the HF method. The largest difference between experimental and calculated DFT bond length and angle is about 0.049 Á and 2.8°. In the intermolecular hydrogen bond distances for a Donor-Hydrogen-Acceptor system, D-H distance is typically ~1.1 Á, whereas HA distance is ~1.6 to 2.0 Á. The crys- Table 1: Optimized and experimental geometries of the title compound in the ground state. Calculated DFT Parameters Experimental HF B3LYP B3PW91 MPW1PW91 Bond lengths (A) R(1,2) 1.542(5) 1.549 1.553 1.547 1.544 R(1,8) 1.478(5) 1.570 1.595 1.588 1.583 R(1,12) 1.517(5) 1.530 1.526 1.522 1.520 R(1,19) 1.961(3) 1.958 1.985 1.964 1.956 R(2,5) 1.554(6) 1.555 1.567 1.562 1.559 R(5,6) 1.487(7) 1.520 1.521 1.517 1.515 R(5,15) 1.463(5) 1.416 1.444 1.436 1.432 R(6,7) 1.318(7) 1.317 1.335 1.334 1.332 R(7,8) 1.504(5) 1.519 1.522 1.518 1.515 R(8,9) 1.492(5) 1.513 1.512 1.508 1.506 R(8,15) 1.440(4) 1.409 1.438 1.429 1.425 R(9,18) 1.785(4) 1.802 1.848 1.835 1.827 R(12,18) 1.797(4) 1.802 1.846 1.833 1.824 R(16,18) 1.433(3) 1.435 1.469 1.465 1.461 R(17,18) 1.437(3) 1.435 1.469 1.465 1.461 r 0.9843 0.9848 0.9837 0.9838 Bond angles (°) A(2,1,8) 101.8(3) 101.15 101.32 101.30 101.31 A(2,1,12) 114.6(3) 114.74 115.26 115.08 114.97 A(2,1,19) 113.7(3) 113.12 112.68 112.95 113.09 A(8,1,12) 105.7(3) 105.66 106.46 106.13 105.95 A(8,1,19) 110.8(2) 111.99 111.26 111.18 111.19 A(12,1,19) 109.6(2) 109.68 109.43 109.69 109.80 A(1,2,5) 100.1(3) 99.88 100.33 100.22 100.17 A(2,5,6) 108.3(4) 107.75 107.58 107.18 107.08 A(2,5,15) 100.6(3) 100.97 100.93 101.18 101.23 A(6,5,15) 102.0(3) 101.36 101.87 102.08 102.08 A(5,6,7) 106.5(4) 105.65 105.71 105.56 105.54 A(6,7,8) 105.5(4) 105.12 105.36 105.15 105.09 A(1,8,7) 109.7(3) 109.94 108.97 108.69 108.68 A(1,8,9) 110.8(3) 111.13 111.71 111.48 111.41 A(1,8,15) 97.2(2) 97.80 97.65 97.86 97.92 A(7,8,9) 121.3(3) 121.05 121.21 121.20 121.23 A(7,8,15) 102.5(3) 102.00 102.43 102.67 102.69 A(9,8,15) 112.5(3) 112.12 111.98 112.14 112.13 A(8,9,18) 106.1(2) 106.51 106.84 106.86 106.82 A(1,12,18) 107.3(2) 107.22 107.15 107.12 107.02 A(5,15,8) 95.1(3) 97.43 96.52 96.51 96.57 A(9,18,12) 97.41(17) 96.82 95.71 95.79 95.88 A(9,18,16) 110.6(2) 110.34 110.30 110.34 110.36 A(9,18,17) 109.59(16) 108.80 108.68 108.64 108.58 A(12,18,16) 109.77(19) 108.99 109.00 108.98 109.02 A(12,18,17) 110.00(16) 109.92 109.82 109.85 109.77 A(16,18,17) 117.62(18) 120.59 120.50 120.45 120.44 r 0.9900 0.9903 0.9901 0.9901 Table 2: Vibrational wavenumbers obtained for the title compound at MPW1PW91/6-31G(d) levela. Num- Wave number IR Inten. Red Force ber Exp. Unsealed Scaledb Sealede Abs. Rel. mass Constant Assignments, PED (%)d 1 3156 3300 3119 3135 2 1 1.11 7.11 vCH, C6,7, sym (98) 2 3097 3274 3094 3110 1 1 1.09 6.88 vCH, C6,7, asym (100) 3 3009 3219 3042 3058 2 1 1.11 6.77 vCH, C9, asym (100) 4 3009 3216 3039 3055 1 1 1.11 6.75 vCH, C12, asym (99) 5 3005 3196 3020 3036 24 19 1.09 6.57 Vch, C5 (92) 6 3005 3191 3016 3031 4 3 1.10 6.62 vCH, C2, asym (93) 7 2987 3145 2973 2988 1 0 1.06 6.17 vCH, C9, sym (100) 8 2966 3139 2967 2982 0 0 1.06 6.15 vCH, C12, sym (97) 9 2930 3125 2954 2969 11 9 1.06 6.12 Vch, C2, sym (97) 10 1573 1683 1591 1599 3 2 6.52 10.89 Vc=C (84) 11 1450 1520 1437 1444 6 5 1.09 1.48 8CH2, scis, C2 (89) 12 1413 1470 1389 1396 12 9 1.12 1.43 8CH2, scis, C9 (72) 13 1398 1467 1386 1393 18 15 1.10 1.40 8CH2, scis, C12 (72) 14 1314 1376 1301 1307 32 26 2.80 3.13 8=ch, ipb (60) 15 1294 1371 1295 1302 78 63 3.46 3.83 vs=o, (54) 16 1262 1367 1292 1299 87 70 2.73 3.01 5och (11) + 5CH2, wagg, C8 (22) 17 1254 1340 1267 1273 2 1 1.56 1.65 6ch2, wagg, C8 (10) + 5och (43) 18 1243 1297 1226 1232 24 20 1.54 1.53 8ch2, wagg, C12 (26) + 6ra, C5 (17) 19 1210 1292 1221 1227 0 0 1.70 1.67 6=ch, ipb, C6,7 (24)+ 6CH2, wagg, C2,12 (28) 20 1203 1264 1195 1201 51 41 1.51 1.42 6ch2, wagg, C2,12 (36) + 6=^, ipb (24) 21 1188 1246 1178 1184 5 4 1.81 1.66 vco, (11) + 6ch2, wagg, C9,12 (43) 22 1176 1232 1164 1170 23 18 1.55 1.39 VCC (14) + 6ch twist, C2 (50) 23 1146 1214 1147 1153 22 18 1.59 1.38 6ch twist, C9,12 (60) 24 1126 1169 1105 1111 36 29 1.36 1.09 6ch twist, C12,9 (65) 25 1092 1144 1082 1087 124 100 5.51 4.25 vs=o, (69) 26 1062 1132 1070 1075 6 5 1.59 1.20 VCC, (14) + 6ch twist, C2 (29) 27 1054 1112 1051 1057 39 32 1.83 1.34 6^, ipb (20) + 6ch twist, C2 (19) 28 1030 1088 1028 1034 11 9 1.80 1.26 6=ch, ipb (12) + 6ch twist, C9 (26) 29 1015 1050 992 997 16 13 2.61 1.69 vcc, (27) + 6=ch, ipb (12) 30 987 1038 981 986 35 28 2.42 1.53 6cco, (14) 31 963 995 940 945 35 28 2.36 1.37 6CH2, rock, C9 (18) + vco (20) + 6CCO, (22) 32 943 975 921 926 6 5 3.22 1.80 vcc, (29) 33 925 960 907 912 16 13 2.11 1.15 VCC, (54) 34 917 946 894 899 6 5 1.46 0.77 y=ch,(73) 35 895 936 885 889 5 4 2.07 1.07 VCC, (11) + 6CH2, rock, C12 (14) 36 865 899 850 854 11 9 2.27 1.08 VCC, (20) + 6CH2, rock, C2 (11) 37 817 863 815 820 11 9 2.92 1.28 vco (23) + 6cc=c, (25) 38 809 856 809 813 9 7 3.19 1.37 vco (11) + 6COC, (27) + 6CH2, rock, C9 (14) 39 773 816 771 775 32 26 5.97 2.34 vcs (22) + yc, C8 (14) 40 724 793 750 753 2 1 2.96 1.10 6CCC, (10) + 6CH2, rock, C9,12 (16) 41 712 747 706 710 14 12 2.76 0.91 6CC=C (11) + Y=CH (17) 42 687 725 685 689 25 20 1.99 0.62 y=ch, (24) 43 658 711 672 675 3 3 3.86 1.15 6scc, (10) + 6ccc, (28) 44 628 680 643 646 7 5 4.33 1.18 vcc (12) + 6cco, (11) + yc (14) 45 611 643 607 610 6 5 5.00 1.22 6cco,(21) 46 547 563 532 535 7 6 3.15 0.59 TCC (16) 47 - 553 523 526 25 20 7.61 1.37 6o=s=o, (40) 48 - 481 455 457 25 20 5.36 0.73 6o=s=o, (40) + tco, (20) 49 - 454 429 431 31 25 5.35 0.65 Yc, (43) + yc (15) 50 - 404 382 384 4 3 2.27 0.22 6ccc,(13) 51 - 365 345 346 0 0 2.45 0.19 Ys, (34) 52 - 348 329 331 1 1 2.37 0.17 VcBr(15) + 6cco, (14) + Yc(10) 53 - 316 299 301 5 4 6.31 0.37 VcBr (14) + Vcs (20) + yc (10) 54 - 299 283 284 0 0 4.03 0.21 VcBr(20) + 6osc, (12) + 6ccBr, (19) 55 - 289 274 275 2 2 5.47 0.27 6scc, (22) + 6o=s=o, (15) 56 - 242 228 230 2 2 5.78 0.20 6cco, (14) + 6ccc, (19) + ys, (17) Number Wave number IR Inten. Red Force Exp. Unsealed Scaledb Scaled0 Abs. Rel. mass Constant Assignments, PED (%)d 57 58 59 60 194 138 100 53 183 131 94 50 184 131 95 50 9.37 6.93 6.49 7.44 0.21 0.08 0.04 0.01 5, OSC (12) + CCBr' (35) Yc, (43) + Tcc(21) Tcc (21) + Yc, (20) Tcc (58) 0.9998 0.9998 0.9998 Mean deviation 79.44 Mean absol. deviation 79.44 Average absol. error 5.46 RMSmol RMSover Scaling Factor 96.39 84.40 -2.52 13.46 1.11 16.39 14.35 0.9452 -73.19 73.19 5.30 83.52 73.13 0.9500 a Harmonic frequencies (in cm-1), IR intensities (km mol-1), reduced masses (amu) and force constants (m dyn A-1). b Scaling Factor calculated in this research. c Scaling factor obtained from Ref.40 d V, stretching; 8, bending; ipb, in-plane bending; Y, out-of-plane bending; T, torsion; sym, symmetric; asym, asymmetric; wagg, wagging; twist, twisting; rock, rocking; sciss; scissoring; PED less than 10% are not shown. r taline form of the title compound has two intermolecular interactions (C7-H7A-O2'', with H-O = 2.42 Á (i = 1/2 + x, y, 1/2-z) and C8-H8A...O3", with H...O = 2.42 Á (ii = -1/2 + x, y, 1/2-z)). According to these crystalline geometrical parameters, we can say that the title compound has too weak molecular interactions. The good correlation between the experimental and calculated structure parameters confirmed these weak intermolecular interactions. As a result, the optimized bond lengths and angles by DFT method show the best agreement with the experimental values. 3.2. Vibrational Frequencies The literature search has revealed that DFT calculations and vibrational analysis have not been reported so far on 5-bromo-10-oxa-3-thiatricyclo[5.2.1 .01,5]-dec-8-ene 3,3-dioxide. Therefore, we have calculated the theoretical vibrational spectra of 5-bromo-10-oxa-3-thiatricy-clo[5.2.1.01,5]-dec-8-ene 3,3-dioxide by using HF, B3LYP, B3PW91 and MPW1PW91 methods with 6-31G(d) basis set. Theoretical and experimental results of the title compound are shown in Table 2 and supplementary materials as Table S1-S3. The vibrational bands assignments have been made by using both the animation option of Gauss View 3.0 graphical interface for gaussian programs42 and VEDA 4 program.43 All the calculated spectra are in a good agreement with the experimental one. All three hybrid functions are superior to HF in terms of realistic reproduction of both band intensity distribution and general spectral features. The IR bands at 3156 and 3097 cm-1 in FT-IR spectrum of the title compound have been designated to symmetric and asymmetric VCH stretching fundamentals of C6 and C7 atoms, respectively.4445 The wave numbers corresponding to the aliphatic vch stretching are listed in and Table 2 and Table S1-S3. A good coincidence of theoretical wave numbers with that of experimental evaluations is found in the symmetric and asymmetric stretching vibrations of the -CH2- moieties. The vibrational spectra show five bands in the aliphatic vch stretching region and are evident overlap between the different C-H stretching modes. Seven bands at 3042, 3039, 3020, 3016, 2973, 2967 and 2954 cm-1 were calculated in this research (MPW1PW91). First three is asymmetric VC-H stretching band and the last three bands symmetric vc-h stretching band for -CH2- group. These assignments were also supported by the literature. 44,46 Table 3: Mean deviation, mean absolute deviation, correlation coefficient, root mean square and average absolute error between the calculated and observed fundamental vibrational frequencies for the title compound. Parameters HF B3LYP DFT B3PW91 MPW1PW91 Scaling Factor 0.8920 0.9553 0.9518 0.9452 Mean deviation 12.29 -5.05 -3.87 -2.52 Mean absolute deviation 26.87 14.66 14.42 13.46 Average absolute error 2.21 1.25 1.20 1.11 RMSmol 31.71 17.77 17.16 16.39 RMS0ver 27.76 15.59 15.02 14.35 r 0.9997 0.9998 0.9998 0.9998 Table S1: Vibrational wavenumbers obtained for the title compound at HF/6-31G(d) level a. Number Wave number IR intensity Red mass Force Constant Exp. Unscaled Scaledb Scaledc Abs. Rel. 1 3156 3443 3071 3096 2 1 1.11 7.02 2 3097 3415 3046 3071 2 1 1.09 6.79 3 3009 3359 2996 3021 1 1 1.11 6.70 4 3009 3355 2993 3017 1 1 1.11 6.68 5 3005 3344 2983 3007 24 16 1.09 6.49 6 3005 3329 2970 2994 5 3 1.10 6.53 7 2987 3290 2935 2959 0 0 1.06 6.10 8 2966 3286 2931 2954 0 0 1.06 6.08 9 2930 3263 2910 2934 12 8 1.06 6.05 10 1573 1816 1620 1633 3 2 6.50 10.66 11 1450 1647 1469 1481 6 4 1.08 1.46 12 1413 1600 1427 1438 11 7 1.12 1.41 13 1398 1593 1421 1433 18 12 1.10 1.38 14 1314 1493 1331 1342 23 16 2.48 2.72 15 1294 1489 1328 1339 17 11 2.17 2.36 16 1262 1467 1309 1319 148 100 6.00 6.47 17 1254 1461 1303 1314 2 1 1.54 1.60 18 1243 1440 1284 1295 21 14 1.52 1.48 19 1210 1415 1262 1272 0 0 1.72 1.66 20 1203 1397 1246 1257 50 34 1.47 1.36 21 1188 1357 1210 1220 6 4 1.79 1.61 22 1176 1334 1190 1200 22 15 1.54 1.36 23 1146 1324 1181 1191 20 13 1.56 1.33 24 1126 1279 1141 1150 31 21 1.34 1.06 25 1092 1236 1102 1111 128 86 5.62 4.23 26 1062 1216 1085 1094 7 4 1.62 1.20 27 1054 1210 1079 1088 39 26 1.73 1.24 28 1030 1182 1054 1063 11 7 1.90 1.30 29 1015 1151 1027 1035 15 10 2.63 1.67 30 987 1134 1011 1019 35 23 2.44 1.52 31 963 1103 984 992 35 24 2.40 1.37 32 943 1071 956 963 6 4 3.40 1.87 33 925 1060 946 954 16 11 2.14 1.14 34 917 1029 918 926 6 4 1.48 0.76 35 895 1014 905 912 5 4 2.06 1.04 36 865 964 860 867 11 7 2.26 1.06 37 817 940 839 846 11 7 3.08 1.32 38 809 921 822 828 9 6 3.12 1.32 39 773 900 802 809 33 22 6.11 2.33 40 724 867 774 780 2 1 3.02 1.09 41 712 816 728 734 16 11 2.73 0.88 42 687 804 718 723 23 16 1.99 0.60 43 658 793 707 713 4 2 3.95 1.13 44 628 732 653 658 7 5 4.44 1.18 45 611 695 620 625 6 4 5.04 1.20 46 547 614 548 552 7 5 3.12 0.57 47 - 603 538 542 24 16 7.89 1.39 48 - 520 464 468 25 17 5.37 0.72 49 - 504 449 453 30 20 5.35 0.64 50 - 438 391 394 4 3 2.25 0.21 51 - 402 359 362 0 0 2.44 0.19 52 - 377 337 339 1 1 2.40 0.17 53 - 341 304 307 5 3 6.35 0.36 54 - 327 291 294 0 0 4.00 0.21 55 - 318 284 286 2 2 5.70 0.28 56 - 261 233 235 2 1 5.81 0.20 57 - 216 193 194 1 1 9.42 0.20 58 - 149 133 134 2 2 6.95 0.08 Number Wave number IR intensity Red Force Exp. Unsealed Scaledb Sealedc Abs. Rel. mass Constant 59 - 112 100 101 1 0 6.43 0.04 60 - 55 49 50 3 2 7.52 0.01 r 0.9997 0.9997 0.9997 Mean deviation 185.28 12.29 -131.67 Mean absolute deviation 185.28 26.87 131.67 Average absolute error 14.03 2.21 8.54 RMSmol 200.90 31.71 168.10 RMS0ver 175.91 27.76 147.19 Scaling Factor - 0.8920 0.8992 a Harmonic frequencies (in cm '), IR intensities (km mol '), reduced masses (amu) and force constants (m dyn A '). b Scaling Factor calculated in this research. c Scaling factor obtained from Ref. 41. Table S2: Vibrational wavenumbers obtained for the title compound at B3LYP/6-31G(d) levela. Number Wave number IR intensity Red mass Force Constant Exp. Unsealed Scaledb Scalede Abs. Rel. 1 3156 3268 3121 3142 2 2 1.11 6.96 2 3097 3241 3096 3116 2 2 1.09 6.74 3 3009 3188 3045 3065 1 1 1.11 6.64 4 3009 3187 3045 3064 0 0 1.11 6.64 5 3005 3165 3024 3043 27 22 1.09 6.45 6 3005 3160 3019 3038 5 4 1.10 6.49 7 2987 3119 2980 2999 0 0 1.06 6.06 8 2966 3115 2976 2995 1 1 1.06 6.05 9 2930 3097 2959 2978 13 11 1.06 6.02 10 1573 1660 1586 1596 3 2 6.37 10.35 11 1450 1521 1453 1462 5 4 1.08 1.48 12 1413 1470 1404 1413 7 6 1.10 1.40 13 1398 1468 1402 1411 17 14 1.10 1.40 14 1314 1360 1299 1307 10 9 1.87 2.04 15 1294 1352 1292 1300 15 13 2.25 2.43 16 1262 1332 1273 1281 119 100 4.35 4.55 17 1254 1327 1268 1276 28 24 1.68 1.74 18 1243 1286 1228 1236 14 12 1.50 1.46 19 1210 1279 1222 1230 2 2 1.74 1.68 20 1203 1252 1196 1203 42 36 1.39 1.28 21 1188 1229 1174 1181 13 11 1.68 1.49 22 1176 1219 1164 1172 18 15 1.56 1.36 23 1146 1199 1146 1153 13 11 1.52 1.29 24 1126 1161 1109 1116 24 21 1.30 1.03 25 1092 1121 1070 1077 26 22 1.70 1.26 26 1062 1113 1063 1070 112 94 5.11 3.73 27 1054 1096 1047 1054 48 41 1.67 1.18 28 1030 1070 1022 1029 12 10 2.22 1.50 29 1015 1027 981 988 15 13 2.60 1.62 30 987 1014 968 975 32 27 2.49 1.51 31 963 974 931 937 35 30 2.41 1.35 32 943 954 911 917 10 8 3.82 2.05 33 925 941 899 904 9 8 1.91 1.00 34 917 932 890 896 12 10 1.65 0.85 35 895 921 879 885 4 4 2.09 1.04 36 865 885 845 851 11 9 2.42 1.12 37 817 844 806 811 13 11 2.77 1.16 38 809 843 806 811 11 9 3.75 1.57 39 773 791 756 761 33 27 6.32 2.33 40 724 775 740 745 2 1 3.08 1.09 Number Wave number IR intensity Red Force Exp. Unsealed Scaledb Sealedc Abs. Rel. mass Constant 41 712 736 703 707 16 14 2.72 0.87 42 687 709 677 682 19 16 2.04 0.60 43 658 684 653 658 4 3 3.94 1.09 44 628 662 632 637 8 6 4.70 1.21 45 611 632 604 608 7 6 5.20 1.22 46 547 556 531 535 7 6 3.11 0.57 47 - 543 518 522 23 20 8.19 1.42 48 - 474 453 456 25 21 5.37 0.71 49 - 445 425 428 30 25 5.33 0.62 50 - 403 385 387 4 3 2.22 0.21 51 - 358 342 345 0 0 2.40 0.18 52 - 344 329 331 1 1 2.48 0.17 53 - 307 293 295 5 4 6.15 0.34 54 - 292 279 281 1 0 4.15 0.21 55 - 284 271 273 2 2 6.13 0.29 56 - 239 228 230 2 2 5.94 0.20 57 - 191 183 184 1 1 9.51 0.20 58 - 137 131 132 2 2 7.01 0.08 59 - 99 94 95 1 0 6.34 0.04 60 - 51 49 49 3 2 7.68 0.01 r 0.9998 0.9998 0.9998 Mean deviation 61.04 -5.05 -59.51 Mean absolute deviation 61.04 14.66 59.51 Average absolute error 3.93 1.25 4.56 RMSmo, 78.76 17.77 65.68 RMS0ver 68.96 15.56 57.50 Scaling Factor - 0.9553 0.9614 a Harmonic frequencies (in cm 1), IR intensities (km mol 1), reduced masses (amu) and force constants (m dyn A 1). b Scaling Factor calculated in this research. c Scaling factor obtained from Ref. 41. Table S3: Vibrational wavenumbers obtained for the title compound at B3PW91/6-31G(d) level a. Number Wave number IR intensity Red mass Force Constant Exp. Unscaled Scaledb Scaledc Abs. Rel. 1 3156 3280 3122 3140 2 1 1.11 7.02 2 3097 3253 3096 3114 2 1 1.09 6.79 3 3009 3200 3046 3064 1 1 1.11 6.70 4 3009 3198 3043 3061 1 1 1.11 6.68 5 3005 3175 3022 3039 24 16 1.09 6.49 6 3005 3171 3018 3036 5 3 1.10 6.53 7 2987 3128 2977 2994 0 0 1.06 6.10 8 2966 3122 2971 2988 0 0 1.06 6.08 9 2930 3106 2956 2974 12 8 1.06 6.05 10 1573 1669 1589 1598 3 2 6.50 10.66 11 1450 1513 1440 1448 6 4 1.08 1.46 12 1413 1462 1392 1400 11 7 1.12 1.41 13 1398 1459 1389 1397 18 12 1.10 1.38 14 1314 1364 1298 1306 23 16 2.48 2.72 15 1294 1358 1293 1300 17 11 2.17 2.36 16 1262 1353 1288 1295 148 100 6.00 6.47 17 1254 1329 1265 1273 2 1 1.54 1.60 18 1243 1286 1224 1231 21 14 1.52 1.48 19 1210 1281 1219 1227 0 0 1.72 1.66 20 1203 1253 1192 1199 50 34 1.47 1.36 21 1188 1234 1175 1182 6 4 1.79 1.61 22 1176 1222 1163 1170 22 15 1.54 1.36 Number Wave number IR intensity Red Force Exp. Unsealed Scaledb Sealedc Abs. Rel. mass Constant 23 1146 1204 1145 1152 20 13 1.56 1.33 24 1126 1160 1104 1111 31 21 1.34 1.06 25 1092 1131 1076 1082 128 86 5.62 4.23 26 1062 1123 1069 1075 7 4 1.62 1.20 27 1054 1103 1049 1055 39 26 1.73 1.24 28 1030 1078 1026 1032 11 7 1.90 1.30 29 1015 1038 988 994 15 10 2.63 1.67 30 987 1026 976 982 35 23 2.44 1.52 31 963 983 936 941 35 24 2.40 1.37 32 943 964 918 923 6 4 3.40 1.87 33 925 950 905 910 16 11 2.14 1.14 34 917 936 891 896 6 4 1.48 0.76 35 895 927 882 887 5 4 2.06 1.04 36 865 891 848 853 11 7 2.26 1.06 37 817 854 812 817 11 7 3.08 1.32 38 809 848 807 812 9 6 3.12 1.32 39 773 804 765 769 33 22 6.11 2.33 40 724 784 746 750 2 1 3.02 1.09 41 712 740 704 708 16 11 2.73 0.88 42 687 716 681 685 23 16 1.99 0.60 43 658 698 664 668 4 2 3.95 1.13 44 628 672 640 644 7 5 4.44 1.18 45 611 637 606 609 6 4 5.04 1.20 46 547 559 532 535 7 5 3.12 0.57 47 - 547 521 524 24 16 7.89 1.39 48 - 477 454 456 25 17 5.37 0.72 49 - 449 427 430 30 20 5.35 0.64 50 - 402 383 385 4 3 2.25 0.21 51 - 361 343 345 0 0 2.44 0.19 52 - 345 329 330 1 1 2.40 0.17 53 - 312 297 299 5 3 6.35 0.36 54 - 295 281 283 0 0 4.00 0.21 55 - 287 273 274 2 2 5.70 0.28 56 - 240 229 230 2 1 5.81 0.20 57 - 192 183 184 1 1 9.42 0.20 58 - 138 131 132 2 2 6.95 0.08 59 - 99 94 95 1 0 6.43 0.04 60 - 52 50 50 3 2 7.52 0.01 r 0.9998 0.9998 0.9998 Mean deviation 67.68 -3.87 -64.16 Mean absolute deviation 67.68 14.42 64.16 Average absolute error 4.52 1.20 4.77 RMSmol 84.76 17.16 72.02 RMS1™ 74.22 15.02 63.06 Scaling Factor - 0.9518 0.9573 a Harmonic frequencies (in cm 1), IR intensities (km mol 1), reduced masses (amu) and force constants (m dyn A 1). b Scaling Factor calculated in this research. c Scaling factor obtained from Ref. 41. Calculations of the vibrational spectra of hydrogen bonded systems are extremely demanding since their potential energy hyper surfaces are highly anharmonic; therefore, calculations of the vibrational spectra in the harmonic approximation are of very limited value. Some methods have been developed for solving this problem such as vari-ational solving of the Schrodinger equation47. However, according to single crystal X-ray diffraction data, the title compound has not got any strong hydrogen bond. Therefo- re, we did not focus on the hydrogen bonds for the title compound. The crystalline form of the title compound has two weak molecular interactions (C7-H7A—O2 and C8-H8A...O3). The biggest difference between calculated and experimental vC-H stretching vibrations of the -CH2- moieties is 33 and 30 cm-1 for vC9-H and vC12-H stretching, respectively. These discrepancies for vC9-H and vC12-H stretching vibrational modes come from the formation of weak intermolecular hydrogen bonding with C-H. The biological effects are often connected with the capability of contributing into intermolecular interactions during formation of supramolecular compounds with bio-macromolecules. Hydrogen bonds are implicated in regulating dioxygen activation in methane monooxyge-nase,48,49 and hydrogen atom abstraction in lipoxyge-nase.50-54 As the inhibition of some enzymes by derivatives of the title compound can be attributed to weak intermolecular interactions, the title compound may itself posses same biological activity due to the presence of these interactions. The peaks appearing in the region (600-1500 cm-1) are associated with the scissoring, rocking, wagging and twisting modes of methylene groups. The vibrational modes of scissoring, rocking, wagging and twisting are well defined in all the calculations. The bands observed at 1450, 1413 and 1398 cm-1 in FT-IR spectrum correspond to scissoring deformation of -C(2)H2-, -C(9)H2- and -C(12)H2- group in the title compound.44,45 The wagging, twisting and rocking vibrational modes are distributed in a wide range.44-46,55,56 The rocking -CH2- is assigned in the wave number range of 950-800 cm-1 and the wave number shift of these bands is due to the atom nature in which the -CH2- group is bonded. The -CH2- rocking vibra-tional modes are intensive bands in which can be appreciating the vibrational coupling with other vibrational modes.55,56 All these bands are assigned using calculated potential energy distribution. The two vS=O stretching modes were calculated at 1294 and 1092 cm-1 and observed in reasonably good agreement at 1322 and 1106 cm-1 in the infrared spectrum of vinylsulfonamide57. The band observed at 773 cm-1 in FT-IR spectrum corresponds to vC-S stretching vibration in the title compound. The calculated DFT/6-31G(d) scaled value for the title compound is 771 cm-1, this value is well in agreement with the experimental wave number. This result was confirmed by Bensebaa et al.58 A general better performance of B3LYP, B3PW91 and MPW1PW91 versus HF can be quantitatively characterized by using the mean deviation, mean absolute deviation, average absolute error, root mean square values and coefficients of correlation (cc) between the calculated and observed vibration frequencies and given in Table 2 and Table S1-S3. The root mean square (RMS) values were obtained in this study using the equations (12) and (13) from Ref.41 The cc values for all three DFT methods were bigger than 0.9998, whereas for HF it was 0.9997: these values are very close to those reported for the literature data.40,59-65 These results indicate that the DFT calculations approximate the observed fundamental frequencies much better than the HF results. Furthermore, the MPW1PW91 method calculations approximate the observed fundamental frequencies much better than the other investigated DFT methods results. The small difference between experimental and calculated vibrational modes is observed. We note that the experimental results belong to solid phase and theoretical calculations belong to gaseous phase. Finally, one should mention scaling factors, which are crucial for IR spectral predictions. To calculate optimal scaling factors, X, we employed a least-square procedure using the equation (10) from Ref.41; Where raitheor and vfxpt are the ith theoretical harmonic and ith experimental fundamental frequencies (in cm-1), respectively. Only single (uniform) scaling factors were calculated, without discrimination for different vibrations. The values obtained are 0.8920, 0.9452, 0.9518 and 0.9553 for HF, MPW1PW91, B3PW91 and B3LYP, respectively. They are very close to those recommended by Scott & Radom and Kuppens et al.4041 for the same levels of theory and increase in the same order of HF, MPW1PW91, B3PW91 and B3LYP. Thus, for future IR spectral predictions for unknown derivatives of the title compound, one can recommend scaling factors of 0.892, 0.945, 0.952 and 0.955 for HF, MPW1PW91, B3PW91 and B3LYP, respectively. 4. Conclusions The ground state geometries were optimized using the HF, B3LYP, B3PW91 and MPW1PW91 methods with the 6-31G(d) basis set. The vibrational frequencies were also calculated with these methods. IR spectrum of the title compound computed is in a good agreement with its observed FT-IR spectrum. The correlation between the calculated and experimental vibration frequencies is characterized by the coefficients of bigger than 0.9998 for all three DFT methods and 0.9997 for HF. Optimal uniform scaling factors calculated for the title compound are 0.8920, 0.9452, 0.9518 and 0.9553 for HF, MPW1PW91, B3PW91 and B3LYP, respectively. For IR spectrum predictions for the title compound type derivatives, any of the three hybrid functions can be equally successfully used. Taking into account small variations of the scaling factors for the derivatives of the title compound, for future IR spectral predictions for unknown compounds of this class, one can recommend scaling factors of 0.892, 0.945, 0.952 and 0.955 for HF, MPW1PW91, B3PW91 and B3LYP, respectively. 5. Acknowledgements This work was supported by the Mersin University Research Fund (Project no: BAP.ECZ.F.TB.(HA).2006-1). We thank TUBITAK for generous financial support for the experimental part of this work (P.N: 2377(103T121)). 6. References 1. K.K. Wang, Chem. Rev. 1996, 96(1), 207-222. 2. K.C. Nicolaou, W.M. Dai, S.C. Tsay, V.A. Estevez, Science 1992, 256, 1172-1178. 3. A.G. Fallis, Can. J. Chem. 1984, 62, 183-234. 4. B.R. Bear, S.M. Sparks, K.J. Shea, Angew. Chem. Int. Ed. 2001, 40(5), 821-849. 5. E.M. Stocking, R.M. Williams, Angew. Chem. Int. Ed. 2003, 42, 3078-3115. 6. C.O. Kappe, S.S. Murphree, A. Padwa, Tetrahedron 1997, 53, 14179-14233. 7. A.C. Brickwood, M.G.B. Drew, L.M. Harwood, T. Ishikawa, F. Marais, V. Morisson, J. Chem. Soc. Perkin. Trans. 1999, 1(8), 913-921. 8. M.E. Jung, J. Gervey, J. Am.Chem. Soc. 1989, 111, 5469-5470. 9. B.H. Lipshutz, Chem. Rev. 1986, 86(5), 795-819. 10. H.J. Wu, S.H. Lin, C.C. Lin, Heterocycles 1994, 38(7), 1507-1518. 11. J.A. Marshall, X.J. Wang, J. Org. Chem. 1992, 57(12), 3387-3396. 12. C. Maignan, F. Belkasmioui, Tetrahedron Lett. 1988, 29, 2823-2824. 13. C. Maignan, R.A. Raphael, Tetrahedron 1983, 39, 3245-3249. 14. M.G. Gotz, C.R. Caffrey, E. Hansell, J.H. McKerrow, J.C. Powers, Bioorg Med. Chem. 2004, 12, 5203-5211. 15. D.C. Meadows, T.B. Mathews, T.W. North, M.J. Hadd, C.L. Kuo, N. Neamati, J. Gervay-Hague, J. Med. Chem. 2005, 48, 4526-4534. 16. W.R. Roush, S.L. Gwaltney, J. Cheng, K.A. Scheidt, J.H. McKerrow, E. Hansell, J. Am. Chem. Soc. 1998, 120, 10994-10995. 17. B.A. Frankel, M. Bentley, R.G. Kruger, D.G. McCafferty, J. Am. Chem. Soc, 2004, 126, 3404-3405. 18. S. Liu, R.P. Hanzlik, J. Med. Chem, 1992, 35, 1067-1075. 19. O. Delucchi, D. Fabbri, V. Lucchini, Tetrahedron 1992, 48(8), 1485-1496. 20. R.D. Little, S.D. Myong, Tetrahedron Lett. 1980, 21, 3339-3342. 21. R. Lopez, J.C. Carretaro, Tetrahedron Asymmetry 1991, 2, 93-96. 22. F.M. Leon, J.C. Carretero, Tetrahedron Lett. 1991, 32, 5405-5408. 23. A. Demircan, P.J. Parsons, Heterocycl. Commun 2002, 8, 531-536. 24. A. Demircan, M. Karaarslan, E. Turac, Heterocycl. Commun. 2006, 12, 233-240. 25. M. Karaarslan, A. Demircan, Asian J. Chem. 2007, 19, 2999-3006. 26. B. Kosar, E. Gokturk, A. Demircan, O. Buyukgungor, Acta Cryst. 2006, E62, o3868-o3869. 27. A.W. Williamson, J. Am. Chem. Soc. 1852, 4, 229-236. 28. W. Kohn, L.J. Sham, Phys. Rev. 1965, A140, 1133-1138. 29. B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 1992, 97, 7846-7848. 30. B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 1993, 98, 5612-5626. 31. A.D. Becke, Phys. Rev. 1988, A38, 3098-3100. 32. C. Lee, W. Yang, R.G. Parr, Phys. Rev. 1988, B37, 785-789. 33. C. Moller, M.S. Plesset, Phys. Rev. 1934, 46, 618-622. 34. C. Adamo, V. Barone, J. Chem. Phys. 1998, 108, 664-675. 35. K. Burke, J.P. Perdew, I.Y. Wang, J.F. Dobson, G. Vignale, M.P. Das, Electronic Density Functional Theory: Recent Progress and New Directions, New York, 1998, 87-205. 36. A.D. Becke, J. Chem. Phys. 1993, 98, 5648-5652. 37. J.P. Predew, Y. Wang, Phys. Rev. B 1992, 45, 13244-13249. 38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M.W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople. Gaussian 03, Revision C.02, Gaussian Inc., Pittsburgh, PA, 2003. 39. J.B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian, Gaussian Pitttsburg, PA, 1993. 40. T. Kuppens, K. Vandyck, J. Van derEycken, W. Herrebout, B. Van derVeken P. Bultinck, Spectrochim. Acta A. 2006, doi:10.1016/j.saa.2006.07.034. 41. A.P. Scott, L. Radom, J. Phys. Chem. 1996, 100(41), 1650216513. 42. GaussView, Version 3.07, R. Dennington, T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, and R. Gilliland, Semi-chem, Inc., Shawnee Mission, KS, 2003. 43. M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004. 44. S. Bayari, S. Saglam, H.F. Ustundag, J. Mol. Struct. (Theochem) 2005, 726, 225-232. 45. M. Silverstein, G. Clayton Basseler, C. Morill, Spectrome-tric Identification of Organic Compounds, Wiley, New York, 1981, 76-101. 46. N. Sundaraganesan, H. Saleem, S. Mohan, M. Ramalingam, Spectrochim. Acta A 2005, 61, 377-385. 47. J. Stare, J. Mavri, Comput. Phys. Comm., 2002, 143, 222240. 48. B.D. Dunietz, M.D. Beachy, Y. Cao, D.A. Whittington, S.J. Lippard, R.A. Friesner, J. Am. Chem. Soc., 2000, 122, 28282839. 49. B.F. Gherman, B.D. Dunietz, D.A. Whittington, S.J. Lippard, R.A. Friesner, J. Am. Chem. Soc., 2001, 123, 38363837. 50. E. Hatcher, A.V. Soudackov, S.H. Schiffer, J. Am. Chem. Soc., 2004, 126, 5763-5775. 51. M.J. Knapp, K. Rickert, J.P. Klinman, J. Am. Chem. Soc., 2002, 124, 3865-3874. 52. M.H.K. Olsson, P.E.M. Siegbahn, A. Warshel, J. Am. Chem Soc., 2004, 126, 2820-2828. 53. M.H.M. Olsson, J. Mavri, A. Warshel, Phil. Trans. R. Soc. B., 2006, 361, 1417-1432. 54. D.R. Tomchick, P. Phan, M. Cymborowski, W. Minor, T.R. Holman, Biochemistry, 2001, 40, 7509-7517. 55. R. Kimmelma, M.J. Hotokka, Mol. Struct. (Theochem) 1997, 418, 189-196. 56. N. Sundaraganesan, C. Meganathan, B. Anand, C. Lapouge, Spectrochim. Acta A 2006, 66, 773-780. 57. H.A. Badawi, Spectrochim. Acta A 2005, 61, 1445-1451. 58. F. Bensebaa, Y. Zhou, A.G. Brolo, D.E. Irish, Y. Beslandes, E. Kruus, T.H. Ellis, Spectrochim. Acta A 1999, 55, 12291236. 59. H. Arslan, U. Flörke, N. Külcü, N. Spectrochim. Acta A 2006, doi:10.1016/j.saa.2006.09.011. 60. H. Arslan, Ö. Algül, Y. Dündar, Vibrat. Spectrosc. 2006, doi:10.1016/j.vibspec.2006.12.003. 61. H. Arslan, F.M. Emen, N. Külcü, N. Asian J. Chem. 2007, 19(3), 1888-1896. 62. H. Arslan, Ö. Algül, Asian J. Chem 2007, 19(3), 2229-2235. 63. T. Kupka, R. Wrzalik, G. Pasterna, K. Pasterny, J. Mol. Struct. 2002, 616, 17-32. 64. R. Wysokinski, J. Kuduk-Jaworska, D. Michalska, J. of Mol. Struc. (Theochem) 2006, 758(2-3), 169-179. 65. J. Hanuza, W. Sasiadek, J. Michalski, J. Lorenc, M. Maczka, A.A. Kaminskii, A.V. Butashin, H. Klapper, J. Hulliger, A.F.A. Mohmed, Vib. Spectr. 2004, 34, 253-268. Povzetek 5-bromo-10-oksa-3-tiatriciklo[5.2.1.01,5]-dek-8-ene 3,3-dioksid (BOTCDO) je bil sintetiziran na osnovi reakcije med 2-(2-bromoalilsulfanilmetil)-furanom in rn-kloroperbenzojeve kisline v diklormetanu. Molekularno strukturo in vibracijske frekvence BOTCDO v osnovnem stanju smo raziskovali z metodami ab initio (HF) in teorijo gostotnega funkcionala (B3LYP, B3PW91 in MPW1PW91) s pomočjo standardnega 6-31G(d) baznega seta. Dolžine vezi in velikosti kotov geometrije optimirane s HF in DFT kažejo najboljše ujemanje z eksperimentalnimi podatki. Primerjava dejanskih osnovnih vibracijskih frekvenc obravnavanih spojin z izračunanimi (HF in DFT) nakazujejo, da je MPW1PW91 metoda boljša od normalizirane HF metode za molekularne probleme. Najboljši normalizacijski faktorji obravnavanih spojin za metode HF, B3LYP, B3PW91 in MPW1PW91 so 0.8920, 0.9553, 0.9518 in 0.9452.