© Strojni{ki vestnik 48(2002)8,438-448 © Journal of Mechanical Engineering 48(2002)8,438-448 ISSN 0039-2480 ISSN 0039-2480 UDK 536.7:532.5:004.94 UDC 536.7:532.5:004.94 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Izviren kombiniran ve~fazni model me{alne faze eksplozije pare An Original Combined Multiphase Model of the Steam-Explosion Premixing Phase Matja` Leskovar - Borut Mavko V večfaznem toku so lahko faze razporejene tako, da večfaznega toka ni mogoče obravnavati niti samo z modeli proste površine niti samo z modeli večfaznega toka. Taksno porazdelitev faz srečujemo na primer pri izotermnih preskusih mešalne faze eksplozije pare, kjer razpršene kroglice prodirajo v vodo, medfazna ploskev voda - zrak pa se ne razprši in ostane ostra. Pri modeliranju izotermnih mešalnih preskusov so običajno obravnavane vse tri faze, to so voda, zrak in kroglice, enakovredno z modeli večfaznega toka. Tako je obravnavana medfazna ploskev voda - zrak kot razpršen tok mehurčkov zraka v vodi oziroma kapljic vode v zraku, kar je fizikalno neustrezna slika in zaradi togih medfaznih sklopitvenih členov tudi numerično težko rešljiva naloga. Zato smo si zamislili, da bi izotermni mešalni proces obravnavali z izvirnim kombiniranim večfaznim modelom, pri katerem bi kroglice obravnavali kot običajno z modelom večfaznega toka, medtem ko bi medfazno ploskev voda - zrak obravnavali z modelom proste površine. Z razvitim kombiniranim večfaznim modelom smo simulirali izotermni preskus Q08, ki so ga izvedli na napravi QUEOS. Najbolj problematičen del simuliranja izotermnega mešalnega preskusa je pravilna napoved plinskega stebra, ki se oblikuje med prodiranjem kroglic v vodo. Da bi bolje spoznali, kako se plinski steber oblikuje, smo opravili obsežno parametrično analizo (velikost mreže, začetno debelino medfazne ploskve voda - zrak, gostoto vode, položaj vključitve medfazne sklopitve gibalne količine). Ugotovili smo, da se plinski steber oblikuje tako kakor pri preskusu le, če v modelu medfazno trenje kroglic na vodni gladini obravnavamo na poseben način, ki upošteva nezveznost prehoda zrak - voda. © 2002 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: tok večfazni, modeli večfazni, eksplozija parne, metode z nivojsko funkcijo, simuliranje) In multiphase flow, different phase distributions can occur that cannot be adequately modeled with just free-surface models or with just multiphase models. Such a distribution of phases occurs, for example, in isothermal steam-explosion premixing experiments, where dispersed spheres penetrate the water and the water-air surface remains sharp. A common practice when modeling isothermal premixing experiments is to treat all three phases involved - the water, the air and the spheres’ phase - equally, with multiphase flow models. In this way the water-air surface is treated as a dispersed flow of bubbles in water or droplets in air, which is a physically incorrect picture and because of very strong momentum-coupling terms also numerically not an easily solvable problem. Therefore, we decided to develop an original, combined multiphase model, where the spheres are treated, as is usual, with a multiphase flow model, whereas the water-air surface is treated with a free-surface model. The QUEOS isothermal premixing experiment Q08 was simulated with the developed combined multiphase model. A crucial part in isothermal premixing experiment simulations is the correct prediction of the gas chimney, which forms during the spheres’ penetration into the water. To get a better understanding of the gas-chimney formation an extensive parametric analysis (mesh size, initial water-air surface thickness, water density, interfacial momentum-coupling starting position) was performed. We established that the right gas-chimney formation can be obtained if a special spheres’ drag treatment at the water-air surface, which considers the discontinuous air-water transition, is incorporated into the model. © 2002 Journal of Mechanical Engineering. All rights reserved. (Keywords: multiphase flow, multiphase models, steam explosion, level set methods, simulations) 0 UVOD Porazdelitev faz v večfaznem toku je lahko različna. Tako so lahko faze na primer razporejene v večja območja, ki so med seboj ločena z gladko medfazno 0 INTRODUCTION In multiphase flow different phase distributions can occur, these range from unmixed-phase distributions, where the phases are arranged VBgfFMK stran 438 Leskovar M. - Mavko B.: Izvirni kombinirani ve~fazni - An Original Combined Multiphase ploskvijo (npr. stratificiran tok). Takšne večfazne tokove opisujemo z modeli proste površine, ki temeljijo na reševanju Navier-Stokesovih enačb ob upoštevanju medfaznih robnih pogojev. Drugo skrajnost pomenijo večfazni tokovi z razpršenimi fazami (npr. mehurčkast tok), pri katerih je medfazno ploskev praktično nemogoče spremljati in jih zato opisujemo z modeli večfaznega toka ki temeljijo na manj natančnih povprečenih Navier-Stokosovih enačbah. Med tema obema skrajnostma (ločene faze - razpršene faze) obstajajo še številne porazdelitve faz, ki jih ni mogoče obravnavati niti samo z modeli proste površine niti samo z modeli večfaznega toka. Te porazdelitve faz lahko razdelimo v dve skupini. Prvo skupino predstavljajo tiste porazdelitve faz, pri katerih so faze razpršene le na določenih območjih, medtem ko so drugje ločene z gladko medfazno ploskvijo [1]. Takšna porazdelitev faz se pojavi na primer v kasnejši fazi razvoja Kelvin-Helmholtzove nestabilnosti. Drugo skupino pa predstavljajo tiste porazdelitve faz, pri katerih so nekatere faze ločene z gladko medfazno ploskvijo, medtem ko so druge faze razpršene. Takšno porazdelitev faz srečamo na primer pri izotermnih preskusih mešalne faze eksplozije pare, pri katerih spuščajo različne curke hladnih kroglic v posodo, napolnjeno z vodo [2]. V tem prispevku bomo predstavili izvirni kombinirani večfazni model, ki smo ga razvili za modeliranje izotermnih preskusov mešalne faze parne eksplozije [3]. Nova zasnova obravnave večfaznih tokov je dovolj splošna, da jo je mogoče preprosto prilagoditi tudi za obravnavo vseh drugih porazdelitev faz druge obsežne skupine faznih porazdelitev. 1 MODELIRANJE VEČFAZNEGA TOKA Pri modeliranju izotermnih mešalnih preskusov so običajno obravnavane vse faze, to so voda, zrak in kroglice, enakovredno z modeli večfaznega toka [4]. Ti modeli večfaznega toka temeljijo na predpostavki, da vsaka faza z določeno fazno verjetnostjo kot oblak zaseda celotno simulirno območje in da so faze med seboj povezane z medfaznimi sklopitvenimi členi. Značilnost izotermnih mešalnih preskusov je, da ostaneta voda in zrak med celotnim preskusom ločena z gladko medfazno ploskvijo, kakor je shematično prikazano na sliki 1, kjer so predstavljene tri mrežne celice. Indeksa a in w označujeta fazi zraka in vode, Dv pa je razlika vektorjev hitrosti zraka in vode. Pri modelu večfaznega toka opisujemo medfazno ploskev voda - zrak kot razpršen tok mehurčkov zraka v vodi oz. kapljic vode v zraku (sl. 1), kar je fizikalno neustrezna slika. Ker so medfazni sklopitveni členi gibalne količine v razpršenih tokovih, pri katerih je razmerje gostot faz veliko, togi, so pri izrecnih numeričnih metodah potrebni zelo majhni časovni koraki, pojavijo pa se tudi težave s konvergenco [5]. Poleg tega se medfazna ploskev voda - zrak numerično razprši zaradi numerične difuzije in larger regions separated by a smooth interface (for example, stratified flow), to mixed distributions, where the phases are dispersed and it is practically impossible to track the phase interfaces (for example, bubbly flow). In between there is a variety of phases’ distributions, which cannot be adequately modeled with just free-surface models, which are based on Navier-Stokes equations that consider the interface boundary conditions, or just with multiphase flow models, which are based on less accurate, averaged Navier-Stokes equations. In general, these phase distributions can be classified in two groups. The first group comprises cases where the phases are only dispersed in some domains, whereas elsewhere the phase interfaces are smooth [1]. Such a phase distribution occurs, for example, at a late stage of the Kelvin-Helmholtz instability. The second group comprises cases where some phases are separated with a smooth interface, whereas the other phases are dispersed. Such a phase distribution occurs, for example, in isothermal steam-explosion premixing experiments, where different jets of cold spheres are injected into a water pool [2]. In this paper an original combined multiphase model developed for isothermal steam-explosion premixing experiments modeling will be presented [3]. This new concept of multiphase-flow treatment is general enough for it to be easily adapted to all other cases of phase distribution of the comprehensive second-phase distributions group. 1 MULTIPHASE FLOW MODELING A common practice in isothermal premixing experiments modeling is to treat all three phases involved – the water, the air and the spheres’ phase – equally with multiphase flow models [4]. These multiphase flow models are based on the assumption that each of the phases occupies, with a given phase-presence probability, the whole simulated region as a cloud, and that the phases interact through interfacial coupling terms. The special feature of isothermal premixing experiments is that the water and air phases remain separated by a free surface during the whole experiment, as shown schematically in Figure 1, where three mesh cells are presented. The indices a and w correspond to the air and water phases and D vr aw is the difference between the air- and water-velocity vectors. In the multiphase flow model the water-air surface is treated as a dispersed flow of air bubbles in water or water droplets in air (Fig. 1), which is a physically uncorrect picture. Since the interfacial momentum coupling terms in dispersed flows of fluids with high density ratios are very stiff, convergence problems occur and in explicit numerical methods extremely small time steps have to be used [5]. In addition, since in multiphase flow models | lgfinHi(s)bJ][M]lfi[j;?n 02-8______ stran 439 I^BSSIfTMlGC Leskovar M. - Mavko B.: Izvirni kombinirani ve~fazni - An Original Combined Multiphase [6], ker pri modelih večfaznega toka medfazni ploskvi ne posvečamo posebne pozornosti. Zato smo se odločili, da bomo medfazno ploskev voda - zrak obravnavali z modelom proste površine in tako odpravili vse omenjene pomanjkljivosti obravnave medfazne ploskve z modelom večfaznega toka, ki ni primeren za takšne probleme. Pri modelih proste površine uporabljamo za zasledovanje stične površine posebne algoritme, na stični površini pa vzamemo povprečne lastnosti faz (sl. 1). Ker se faze ne mešajo, zadošča za opis večfaznega toka eno hitrostno polje. Formalno lahko zato vodo in zrak obravnavamo kot eno, združeno fazo z nezveznimi faznimi lastnostmi na medfazni ploskvi voda - zrak in tako lahko izotermni mešalni potek obravnavamo kot navidez dvofazen tok razpršenih kroglic v kontinuumu združene faze voda - zrak. To je bistvo izvirnega kombiniranega večfaznega modela, pri katerem kroglice obravnavamo z modelom večfaznega toka, združeno fazo voda - zrak pa z modelom proste površine. no special attention is given to the phases’ interface, the water-air surface numerically spreads due to numerical diffusion [6]. Therefore, we decided to treat the water-air surface with a free-surface model and suppress, in this way, all the mentioned drawbacks of treating the phases’ interface with multiphase flow models, which are not suited for such problems. In free-surface models special interface-tracking algorithms are used, and since the phases do not mix the phases’ flow is described with only one velocity field. At the phase interfaces the average phase properties are taken (Fig. 1). In this way the water and air phases can be regarded as a single, joint phase with discontinuous phase properties at the water-air interface, and consequently the isothermal premixing process can be treated as a quasi two-phase flow of dispersed spheres in the continuous joint water-air phase. This is the essence of the original combined multiphase model, where the spheres are treated with a multiphase flow model and the joint water-air phase with a free-surface model. preskus experiment model proste površine model večfaznega toka free-surface model multiphase flow model ra ra ,rw D vr aw = 0 r ra aw r D vr aw = 0 r ra ra ,rw 0 aw rw Sl. 1. Obravnava medfazne ploskve voda - zrak pri modelu proste površine in modelu večfaznega toka Fig. 1. Water-air surface treatment in the free-surface model and the multiphase flow model 2 METODA Z NIVOJSKO FUNKCIJO Vsako fazo v tako definiranem navidez dvofaznem toku, razpršeno fazo kroglic in kontinuum združene faze voda - zrak, smo opisali s kontinuitetno in gibalno enačbo, kar je opisano v [7] in [8]. Medfazno ploskev voda - zrak smo določevali z metodo z nivojsko funkcijo [9], ki je namenjena reševanju problemov s stično površino in se v zadnjih letih veliko uporablja. Pri metodi z nivojsko funkcijo modeliramo medfazno ploskev kot ničelno izohipso f = 0 gladke nivojske funkcije, ki je definirana na celotnem obravnavanem območju kot f(r r,t = 0) = ±d(r), kjer je d(r) najmanjša razdalja do medfazne ploskve pri začetnem času t = 0. Glavne lastnosti nivojske funkcije so, da je v področju ene faze pozitivna, v področju druge faze negativna in da je gladka. Časovni razvoj lege medfazne ploskve določujemo z enačbo nivojske funkcije: 2 THE LEVEL-SET METHOD Each phase in the so-defined quasi two-phase flow - the dispersed spheres’ phase and the continuum joint water-air phase - was described using the continuity and momentum equations as explained in [7] and [8]. The water-air surface was determined using the front-capturing level-set method [9], which was developed for free-surface problems and has been widely used in recent years. In the level-set method the phases’ interface is modeled as the zero set f = 0 of a smooth signed normal distance function, defined on the entire physical domain as f(r, t = 0) = ±d(r r), where d(r r) is the signed minimum distance from the two-fluid interface at the initial time t = 0. The interface position is determined by solving the Hamilton-Jacobi-type level-set equation on the whole domain: VBgfFMK stran 440 Leskovar M. - Mavko B.: Izvirni kombinirani ve~fazni - An Original Combined Multiphase df ( r s. (1), ki pomika ničelno izohipso nivojske funkcije tako, kakor se premika stična površina. Ker je f gladka funkcija, v nasprotju z gostoto združene faze voda -zrak, ki je na medfazni ploskvi nezvezna, numerično reševanje enačbe nivojske funkcije (1) ni problematično. Gostota združene faze voda - zrak je določena z nivojsko funkcijo kot: which moves the zero level of f in exactly the same way as the actual two-fluid interface moves. Since f is a smooth function, unlike the density of the joint water-air phase, which undergoes a jump at the waterair interface, the level-set equation (1) is more easily solved numerically. The density of the joint water-air phase is determined from the level-set function as: r ( f )=' (rw+ra)/2, f = 0 (2). ra, f<0 Če bi predpis (2) uporabljali dosledno, bi dobili stopničast, nezvezen potek gostote in pojavile bi se nestabilnosti, ki bi bile še posebej izrazite pri velikih razmerjih gostot. Zato je priporočljivo potek gostote na medfazni ploskvi nekoliko zgladiti z: If this prescription (2) were to be used in a straightforward way a graded solution would result and instabilities would occur, especially for large density ratios. Therefore, it is recommendable to smooth the density at the interface as: r (f) rw , ( rw+ra) + ( rw ra ) 2 1 (pf — + — sin ep \ e f>e f\ 10C). povečamo (Cup> 10C). Na sliki 11 je prikazan izračunani The calculated pressure in the water 250 mm above tlak v vodi, 250 mm nad dnom posode, za različne the bottom of the vessel is presented for different vrednosti koeficienta trenja kroglic Cup. S slik 11 in 9 je spheres’ drag coefficients Cup in Figure 11. From Figs. razvidno, da ima koeficient trenja kroglic v najvišji 11 and 9 it is evident that the spheres’ drag coefficient mrežni ravnini prehodne plasti zrak - voda zanemarljiv at the upmost mesh plane of the water-air transition vpliv na rezultate simuliranj, če je dovolj velik (Cu4 layer has a negligible influence on the simulation 10C). Zato smo v našem kombiniranem večfaznem results if it is large enough (Cup > 10C). So, in our | lgfinHi(s)bJ][M]lfi[j;?n 02-8______ stran 445 I^BSSIfTMlGC Leskovar M. - Mavko B.: Izvirni kombinirani ve~fazni - An Original Combined Multiphase modelu za koeficient trenja kroglic v najvišji mrežni ravnini prehodne plasti zrak - voda vzeli naslednjo od velikosti mrežne razdalje odvisno vrednost: combined multiphase model at the upmost mesh plane of the water-air transition layer the following grid-dependent spheres’ drag coefficient was chosen: Cup = 0,01m 10 C Dh (5), ki upošteva dejstvo, da je na gostejši mreži vpliv v eni mrežni ravnini povečanega koeficienta trenja kroglic manjši. 120 ¦ J i 1 K-.V \ \ \ j 100 80 lIpL | j ', '-¦;¦:'. 60 40 20 im 0 0 10 20 30 40 0 10 20 30 40 10 20 30 40 1x C 10x C 20x C Sl. 9. Rezultati simuliranj ob času 635 ms za različne vrednosti koeficienta trenja kroglic v najvišji mrežni ravnini prehodne plasti zrak - voda Fig. 9. The simulation results at time 635 ms for different spheres’ drag coefficients at the upmost mesh plane of the water-air transition layer Na sliki 10 so prikazani rezultati simuliranj na mrežah različnih velikostih, opravljenih s spremenjenim koeficientom trenja kroglic (5). Vidimo, da se na vseh mrežah plinski steber razvije tako kakor v preskusih (sl. 3). Na sliki 11 so prikazane še tlačne krivulje, izračunane na mrežah različnih velikosti. Tlačne krivulje so sicer nekoliko odvisne od velikosti mreže tudi na gostejših mrežah (velikost mrež: 1x, 1,5x in 2x), vendar se to zgodi predvsem zaradi velike občutljivosti problema. Tako lahko sklepamo, da je osnovna mreža velikosti 1x z mrežno razdaljo 1 cm primerna za takšne vrste simuliranj. 0,5 0,55 0,6 0,65 0,7 0,75 čas / time (s) 0,8 which takes into account the fact that on a finer grid the influence of the spheres’ drag-coefficient increase in one mesh plane is lower. 0 !|| HI || 'III 1 40! 'am&Ml l\\\ s0 !j|f|i2§IJi L t li^^-'""""'"^/^! SJj||l§§§§ ii^vvK^^SK)! t \ww''^-~^z^/yf \\W§LsB%il m^isHg! 1 i ^iü^^t^i'/' t 0 5 10 15 20 10 20 30 40 20 40 60 80 0,5x 1x 2x Sl. 10. Rezultati simuliranj ob času 610 ms na mrežah različnih velikosti, opravljenih s spremenjenim koeficientom trenja kroglic Fig. 10. The simulation results at time 610 ms performed with the modified spheres’ drag coefficient on different mesh sizes The results of the simulations performed with the modified spheres‘ drag coefficient (Eq. 5) on different mesh sizes are presented in Figure 10. It is evident that the gas chimney develops like in the experiments (Fig. 3). The pressure curves calculated on different mesh sizes are presented in Figure 11. The pressure curves are also somewhat grid dependent on the finer meshes (mesh sizes: 1x, 1.5x and 2x), but that is mainly because of the very sensitive nature of the problem. We can conclude that the basic mesh size of 1x with the grid spacing of 1 cm is adequate for this type of simulation. t-------------------------- . -------0.25x -----0.5x -------1x - =2x --------- - ------lC^ - 45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 čas / time (s) Sl. 11. Tlačne krivulje, izračunane za različne vrednosti koeficienta trenja kroglic Cup (leva stran) in na mrežah različnih velikosti (desna stran) Fig. 11. Pressure curves calculated for different spheres’ drag coefficients Cup (left-hand side) and on different mesh sizes (right-hand side) VH^tTPsDDIK stran 446 120 120 100 100 80 60 40 20 20 Leskovar M. - Mavko B.: Izvirni kombinirani ve~fazni - An Original Combined Multiphase Z razvitim kombiniranim večfaznim modelom z ustrezno spremenjenim koeficientom trenja kroglic v najvišji mrežni ravnini prehodne plasti zrak - voda (5) smo ponovno simulirali mešalni preskus Q08. Rezultati simuliranja so predstavljeni v prispevku [8]. 4 SKLEP Predstavili smo novo zasnovo obravnave večfaznih tokov, to je opis s kombiniranim večfaznim modelom, in jo preskusili na primeru izotermnega preskusa mešalne faze eksplozije pare. Ključna zamisel opisa večfaznega toka s kombiniranim večfaznim modelom je, da obravnavamo faze, ki ostanejo ločene s prosto površino (voda in zrak) z modelom proste površine kot eno, združeno fazo z nezveznimi faznimi lastnostmi, medtem ko preostale faze (kroglice) obravnavamo kakor običajno z modelom večfaznega toka. Stično površino (voda - zrak) določamo z nivojsko funkcijo, ki se v zadnjih letih veliko uporablja. Z razvitim izvirnim kombiniranim večfaznim modelom smo simulirali mešalni preskus Q08, ki so ga izvedli na napravi QUEOS. Rezultati simuliranj so pokazali, da se plinski steber, ki nastane med prodiranjem kroglic v vodo, začne zapirati na napačnem mestu na vrhu stebra. Ugotovili smo, da pride do tega zaradi zvezne spremembe gostote na medfazni ploskvi voda - zrak v modelu preskusa, saj je nad čisto fazo vode zaradi opisa s končnimi razlikami vedno prehodna plast z vmesno gostoto. Ta prehodna plast zaduši brizganje vode, do katerega pride pri preskusih med prodiranjem padajočih kroglic v vodo, in povzroči nefizikalno zapiranje zračnega stebra na vrhu. To podedovano numerično pomanjkljivost modela smo odpravili s posebno obravnavo medfaznega trenja kroglic na vodni gladini, na kateri smo koeficient trenja kroglic v najvišji mrežni ravnini prehodne plasti zrak - voda ustrezno povečali in tako dosegli skokovito spremembo medfazne sklopitve gibalne količine kroglic na medfazni ploskvi zrak -voda, tako kakor je to dejansko. Opravljena parametrična analiza je pokazala, da ima koeficient trenja kroglic v najvišji mrežni ravnini prehodne plasti zrak - voda zanemarljiv vpliv na rezultate simuliranj, če je dovolj velik. Tako smo lahko določili optimalno vrednost spremenjenega koeficienta trenja kroglic. Konvergenčna analiza je pokazala, da je mrežna razdalja 1 cm primerna za takšne vrste simuliranj. Zahvala Avtorji se zahvaljujejo Ministrstvu za šolstvo, znanost in šport, ki je finančno podprlo raziskavo v okviru raziskovalnega projekta Z2-3514. With the developed combined multiphase model taking into account the modified spheres’ drag coefficient at the upmost mesh plane of the water-air transition layer (Eq. 5) the premixing experiment Q08 was simulated once again. The results of the simulation were presented in the paper [8]. 4 CONCLUSION A new concept of multiphase flow treatment, the combined multiphase model formulation, was presented and applied to isothermal steam-explosion premixing experiments. The main idea of the combined multiphase model formulation is to treat the phases, which remain separated by a free surface (water and air), with a free-surface model as a single, joint phase with discontinuous phase properties, whereas the other phases (spheres) are treated, as is usual, with a multiphase flow model. The free surface (water-air) is determined with the front-capturing level-set method, which was widely used in recent years. Using the developed, original, combined multiphase model the QUEOS isothermal premixing experiment Q08 was simulated. The simulation results showed that the gas chimney, which forms during the spheres’ penetration into the water, starts to close at the wrong place at the top of the chimney. It was established that this happens because of the gradual change of the density at the water-air surface in the experimental model, since there is always a transition layer with intermediate phases’ density over the pure water phase due to the finite differences’ description. This transition layer chokes the water splashing observed in the experiments and causes the unphysical gas-chimney closing at the top. This inherent deficiency of the numerical model was compensated with a special spheres’ drag treatment at the air-water surface, where the spheres’ drag coefficient at the upmost mesh plane of the waterair transition layer was appropriately increased and so an abrupt rise of the spheres’ interfacial momentum coupling at the water-air surface, as occurs in reality, is achieved. The performed parametric analysis showed that the spheres’ drag coefficient at the upmost mesh point of the water-air transition layer has a negligible influence on the simulation results if it is large enough. So, the optimum value of the modified spheres’ drag coefficient could be established. The convergence analysis showed that a 1-cm grid spacing is appropriate for this kind of simulation. Acknowledgment The authors gratefully acknowledge the support of the Ministry of Education, Science and Sport of the Republic of Slovenia in the frame of the Research Project Z2-3514. | lgfinHi(s)bJ][M]lfi[j;?n 02-8______ stran 447 I^BSSIfTMlGC Leskovar M. - Mavko B.: Izvirni kombinirani ve~fazni - An Original Combined Multiphase [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 5 LITERATURA 5 REFERENCES Černe, G., I. Tiselj, S. Petelin (2000) Upgrade of the VOF method for the simulation of the dispersed flow. FEDSM 2000, Vol. 251, New York, NY, CD-ROM. Turland, B.D., G.P Dobson (1996) Molten fuel coolant interactions: A state of the art report. European Commission, Nuclear Science and Technology, Luxembourg, ISSN 1018-5593. Leskovar, M., J. Marn (1999) A combined single-multiphase flow formulation of the premixing phase using the level set method. Nuclear Energy in Central Europe ‘99, Portorož, Slovenija, Proceedings, 233-240. Theofanous, T.G., W.W. Yuen, S. Angelini (1999) The verification basis of the PM-ALPHA code. Nuclear Engineering and Design, Vol. 189, 59-102. Tiselj, I., G. Černe (2000) Some comments on the behaviour of the RELAP5 numerical scheme at very small time steps. Nucl. sci. eng, Vol. 134, 306-311. Leskovar, M., J. Marn, B. Mavko (2000) Numerical analysis of multiphase mixing - comparison of first and second order accurate schemes. Fluid Mechanics Research, Vol. 27, 1-32. Marn, J., M. Leskovar (1996) Simulation of steam explosion premixing phase using probabilistic multiphase flow equations. Fluid Mechanics Research, Vol. 22 (1), 44-55. Leskovar, M., B. Mavko (2002) Simuliranje izotermnega QUEOS preskusa mešalne faze eksplozije pare Q08. Strojniški vestnik, Vol. 48(2002)8, 449-458. Sethian, JA. (1998) Level set methods. Cambridge University Press, Cambridge. Meyer, L., G. Schumacher (1996) QUEOS, a simulation-experiment of the premixing phase of a steam explosion with hot spheres in water, base case experiments. FZKA Report 5612, Forschungszentrum Karlsruhe. Leskovar, M., J. Marn, B. Mavko (2000) The influence of the accuracy of the numerical methods on steam-explosion premixing-phase simulation results. Journal of Mechanical Engineering, Vol. 46, 607-621. Naslov avtorjev: dr. Matjaž Leskovar profdr. Borut Mavko Institut “Jožef Stefan” Jamova 39 1000 Ljubljana matjaz.leskovar@ijs.si borut.mavko@ijs.si Authors’ Address: Matjaž Leskovar Borut Mavko “Jožef Stefan” Institute Jamova 39 1000 Ljubljana, Slovenia matjaz.leskovar@ijs.si borut.mavko@ijs.si Prejeto: Received: 6.8.2001 Sprejeto: Accepted: 20.9.2002 VH^tTPsDDIK stran 448