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A new approach to the solution of a plane problem of the theory of elasticity with the use of two harmonic functions with a
Cauchy-Riemann analytical link is developed. The analysis of the harmonic functions shows that some allow a new approach to
the solution of problems of the theory of elasticity. For the solution of linear differential equations a fundamental substitution is
used, written in the general form �(x,y) = y = C� · exp �, with � = �(x,y) as a function of the strain centre.

The transformations are explained with the properties of harmonic functions, where the Cauchy-Riemann relations can be used.
The considered variants extend the possibilities for solutions and, if necessary, to obtain suitable functions for predetermined
tasks. The new method is universal and can be effectively used when the fields of stresses and strains are described with
trigonometric expressions.
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Razvit je bil nov na~in re{evanja ravninskega problema teorije elasti~nosti s Cauchy-Riemanovo analiti~no zvezo. Analiza
harmoni~nih funkcij poka`e, da nekatere omogo~ajo nov na~in za re{itve problemov iz teorije elasti~nosti. Za re{itev linearnih
diferencialnih ena~b se uporablja temeljna substitucija, zapisana v splo{ni obliki z �(x,y) = y = C� · exp �, z � = �(x,y) kot
funkcijo sredi{~a deformacije.

Transformacije smo razlo`ili z lastnostmi harmoni~nih funkcij, pri katerih je dovoljena uporaba Cauchy-Riemanovih povezav.
Upo{tevane variante raz{irjajo mo`nost re{itev in, ~e je potrebno, omogo~ijo, da dobimo re{itve za vnaprej na~rtovano uporabo.
Nova metoda je univerzalna in se lahko u~inkovito uporabi, ~e so polja napetosti in deformacij opisana s trigonometri~nimi
odvisnostmi.

Klju~ne besede: teorija elesti~nosti, harmoni~ne funkcije, Cauchy-Riemanovi izrazi

1 INTRODUCTION AND FORMULATION OF
THE TASK

The analysis of the peculiarities of the harmonic
functions shows that some of them allow new
approaches to the solution of problems of the theory of
elasticity. Let us consider a plane problem of this theory.
We have a set of equilibrium equations1.

∂
∂

∂
∂

� �
x xy

x y
+ = 0;

∂
∂

∂
∂

� �xy y

x y
+ = 0 (1)

The equation of joint strains

∇ + =2 0( )� �x y (2)

The stresses’ boundary conditions

�
� �

�� � �n =
−

⋅ ⋅
x y

xy2
2 2sin cos (3)

Applying these expressions, the harmonic law of the
distribution of contact stresses is determined2, which
formally coincides with that in3:

� � �n = − ⋅ −( , ) sin( )x y AF 2

where �(x,y) is the coordinate function of the strain
centre; A is the constant determining the elastic state of
a deformable medium; F is the coordinate function
characterizing the allocation of contact shearing
stresses; � is the slope angle of an element.

In place of equations (1) and (2), the biharmonic
equation (4) can be applied:
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with � as a stress function.
The expression fulfils the boundary conditions (3)

� �xy x y A= ⋅( , ) sin( )F (5)

The stress difference in (3) is determined with

� � �x y x y A− = ⋅ ⋅2 ( , ) cos( )F (6)

2 SOLUTION OF THE TASK

The fundamental substitution is often used during the
solution of linear differential equations4, which can be
written in the following general form

�(x,y) = � = C� · exp � (7)
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with � = �(x,y) being the unknown coordinate function
of the strain centre.

Let us examine the harmonic functions AF and �.
The analytical link between them is admitted by the
Cauchy-Riemann expressions 4,5

� x yA= ± F � y xA= ± F (8)

After the derivation of equation (5), consideration of
equation (7) and substitution in the equilibrium equa-
tions we obtain
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with �y, AFx as the partial derivatives of the appropriate
functions of the coordinates y and x. Passing from one
variable to the other with the help of (8), we obtain,
after integration and simplifications, the normal and
shearing stresses

� � �� � ���x C A f y C= ⋅ ⋅exp cos( F
� � �� � ���y C A f x C= ⋅ ⋅exp cos( F (9)

� � ��xy C A= ⋅ ⋅exp sin( F
Substituting f(y) = f(x) = 0 in (9), we obtain the

relation (6) that fulfils the boundary conditions for
equation (3).

Considering (9), the sum of the stresses is

� �x y C+ = 2

and the equation of joint strains (2) is automatically
fulfilled. It is interesting that during the evaluation of
the Laplacian for each value C A� � �⋅ ⋅exp cos( F and the
substitution (8) the identity 0 0≡ is obtained. Using this
peculiarity, the sum of stresses can be expressed as a
product of the functions

� � � � �' exp cos(= + = ⋅ ⋅ ⋅x y n C AF (10)

with n as the number that defines the influences of
hydrostatic pressure on the medium of the stressed state
in the strain zone.

By substituting (10) in (2) we obtain
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It is clear from the analysis of the differential equa-
tion (11), that it turns to identity under the condition of

� x yA= ± F � y xA= ± F
This is the relation (8), which was introduced as an

assumption during the solution of the equilibrium
equations. Differentiating further, we obtain

� xx yxA= ± F � yy xyA= ± F
� xy yyA= ± F � yx xxA= ± F

The last relations convert equation (11) into identity.
The last expressions show that the indicated functions

are harmonic, i.e.

� �xx yy+ = 0 A Axx yyF F+ = 0

It is remarkable that the operators of the trigono-
metrical functions are equal to zero. This peculiarity
shows that the function (10) also fulfils the biharmonic
equation (4). Considering equation (10), the Laplace of
the equation has the form
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Let us introduce the symbolisms

L x y L A Axx x y yy y x( , ) = = +� �� � � �� �2 2 2 2F F
M x y M A A A Ax x y y xx yy( , ) = = ⋅ ⋅ + ⋅2 2� � � �F F F F

Then, with consideration of the symbolisms, the
accurate form of the Laplace equation is obtained

� � �� �� �( , ) cos( sin(x y L A M A= = ⋅ ⋅F F
If the factors in the trigonometrical functions are

equal to zero, also the operators L = M = 0. For a more
integrated analysis let us write a Laplacian for the
function �(x,y)
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It is expected that the partial derivatives from zero
functions are equal to zero, thus, ∇ ≡4 � �. Let us write
the partial derivatives of separate operators and track the
mechanism of the turning into identity of the harmonic
functions

L A Ax xxx yyx x xx y yx� �� � � �+ + − +) (2 2 F F
+ −( )2 2� �y yx x xxA AF F

Following (8), we have

� x yA= − F � y xA= F
� xx yxA= − F � yy xyA= F
� xy yyA= − F � yx xxA= F

� xxx yxxA= − F � yyy xyyA= F
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� xyy yyyA= − F � yxx xxxA= F (12)

Let us substitute (12) in the operator Lx.
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We have obtained the identity, "quod erat demon-
strandum".

The same approaches take place during the evalu-
ation of the operator Lxx. Let us write it as

L A Axx xxxx yyxx xx xx yx yx= − + − +( ) ( )� � � �2 2 F F

+ − − − −( ) ( )2 2 2 2� � � �x xxx y yxx xx xx yx yxA A A AF F F F
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Substituting (12) into the expression for Lxx and
factoring out a flexion on x from the first brackets, after
conversion the identity 0 0≡ is obtained.

Thus, the operators

L L M M L L M M L Mxx yy xx yy x y x y= = = = = = = = = = 0

demonstrate that the function (10) fulfils the biharmonic
equation (4) and it can be used for the evaluation of the
components of the stress tensor. It is necessary to ensure
that the field of stresses and the stress function are
described, as a matter of fact, with identical expressions
(9) and (10) linked analytically6 with
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Such schemes of transformations are explained with
the properties of harmonic functions where the Cauchy-
Riemann relations can be applied. The considered
variants allow us to extend the possibility of solutions
and, if necessary, to obtain suitable functions for the
development of a predetermined result.

Let us return to the expressions for the stress tensor
components and consider the equilibrium equations in
the components of the stress deviator. Let us introduce
the symbols

� � �x x f y C' ' ( )= − − −
� � �y y f x C' ' ( )= − − − (13)

with � being the mean stress.
Considering (13), the equilibrium equation (1), can

be rewritten in the form6
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By analogy with (9) and with integration and
simplifications we obtain the stress tensor components

� � ����� � ���x C A f y C= ⋅ ⋅exp cos(
� � ����� � ���y C A f x C= − ⋅ ⋅exp cos(

� � ���xy C A= ⋅ ⋅exp sin( (14)

With: � x yA= ± F , � y xA= ± F

It follows from expressions (14) that their deviator
part for the normal stresses C A� � �⋅ ⋅exp cos( F coin-
cides with the shifting part � in (10). Considering (13),
(6) is fulfilled and the boundary conditions (3) are
satisfied.

The outcome (14) can be generalized. The analytical
link of the functions with the opposite signs is obtained
in relations (8) and different signs of an index in an
exponential curve result can be obtained. Therefore, the
index of an exponential curve in a solution will be not
unique. The exponential function can be written in the
form of a sum with the use of the hyperbolic cosine or
sine in the general form

[ ]� �� �� ���� � ��� �x C ch C sh A f y C= ⋅ ± ⋅( ( cos( F

[ ]� �� �� ���� � ��� �y C ch C sh A f x C= − ⋅ ± ⋅( ( cos( F

[ ]� �� �� �� �xy C ch C sh A= + ⋅ ± ⋅( ( sin( F (15)

In these expressions it is assumed that the arguments
of the trigonometric and exponential functions can be
represented in the form of a series of harmonic functions
interlinked with the Cauchy-Riemann relations.

3 COMPARISON TO OTHER SOLUTIONS

The solutions of a plane problem with the help of a
trigonometric series are often used. For example, the
following combination of functions is often met3:

[ ]� � � � � � �� �= ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅sin( exp( exp(x C y C y (16)

Let us ascertain whether the Cauchy-Riemann
relation exists between the arguments of trigonometric
and exponential functions

A xF = ⋅� � �= ± ⋅y A xF = �
A yF = � � �y = ± � x = 0

The obtained relations take place for the functions

� �� �x yA= =� F � �� �y xA= ± = ±F

The peculiarity of these solutions is that they are
common and do not contradict known partial solutions.
The arguments AF and � are harmonic functions of the
coordinates x and y. They can be rather complicated and
cannot be determined from the linear dependences for
one coordinate.

Let us analyze the possibilities of the solution (14).
The elementary variant of a harmonic function of two
variables is A A x yF = ⋅ ⋅ . Applying the relations (8), it is
written as

� = ⋅ −�
1

2
2 2A x y( )

Thus,

� x yA A x A x= = ⋅ = ⋅� �F � y xA A y A y= ± = ± ⋅ = ⋅F

Each function fulfils the Laplace equations.
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4 CONCLUSION

A new approach to the solution of a plane problem of
the theory of elasticity based on the use of two harmonic
functions with the Cauchy-Riemann analytical link is
developed. The new method is universal and can be
effectively used when the fields of stresses and strains
are described with trigonometric expressions.
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