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We discuss predictions of the relativistic constituent-quark model (RCQM) for
the structure of πNN as well as πN∆ strong interaction vertices. The results are
put into perspective with strongmeson-baryon form factors from lattice quantum
chromodynamics (QCD) and phenomenological models.

Notions on the structure of meson-baryon interaction vertices are important
in many areas of particle and nuclear physics. Often the corresponding strong
form factors have been parametrized phenomenologically, especially in meson-
baryon and baryon-baryon interaction models. Certainly, it is desirable to under-
stand the structure of the hadronic interaction vertices on a microscopic level.

(a) (b)

Fig. 1. Graphical representation of the meson-baryon vertex (a) and the corresponding

amplitude in the RCQM (b).

We have recently performed a covariant study of the πNN and πN∆ interac-
tion vertices within a relativistic constituent-quark model (RCQM) by consider-
ing the process of Fig. 1(a) resolved in the way as shown in Fig. 1(b) [1]. Predic-
tions of the form factor dependences on the relativistic four-momentum transfer
Q2 have been obtained directly from the RCQM without introducing any fit pa-
rameters. The transition amplitudes from initial |i〉 to final 〈f| states

Fi→f = (2π)
4 〈f|LI (0) |i〉 (1)
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with the πNN and πN∆ interaction Lagrangian densities

LN
I = −

fπNN

mπ

Ψ̄ (x)γ5γ
µTΨ (x)∂µΦ (x) , (2)

L∆
I = −

fπN∆

mπ

Ψ̄ (x) TΨµ (x)∂µΦ (x) + h.c. , (3)

where in obvious notation T represents the transition operator for the emission
of the pion Φ from a nucleon Ψ or a delta Ψµ with couplings fπNN and fπN∆,
respectively, are thus identified with the matrix elements

F
RCQM
i→f = 〈V ′,M ′, J ′, Σ ′| D̂π

rd |V,M, J, Σ〉 , (4)

where the baryon states |V,M, J, Σ〉 are eigenstates of the RCQM invariant mass
operator characterized by the four-velocity V , the invariant-mass eigenvalueM,
and the intrinsic spin J with z-component Σ, and analogously for 〈V ′,M ′, J ′, Σ ′|.
These matrix elements are calculated within point-form (PF) relativistic quantum
mechanics

〈V ′,M ′, J ′, Σ ′|D̂m
rd|V,M, J, Σ〉 =

2

MM ′

∑

σiσ ′
i

∑

µiµ ′
i

∫
d3k2d

3k3d
3k ′

2d
3k ′

3

×
√

(
∑

iω
′
i)

3

∏
i 2ω

′
i

Ψ⋆

M ′J ′MJ ′T ′MT ′

(
k ′

1,k
′
2,k

′
3;µ ′

1, µ
′
2, µ

′
3

)∏

σ ′
i

D
⋆

1
2

σ ′
i
µ ′

i
{RW [k ′

i;B (V ′)]}

×〈p ′
1, p

′
2, p

′
3;σ ′

1, σ
′
2, σ

′
3| D̂m

rd |p1, p2, p3;σ1, σ2, σ3〉

×
∏

σi

D
1
2
σiµi

{RW [ki;B (V)]}

√
(
∑

iωi)
3

∏
i 2ωi

ΨMJMJTMT
(k1,k2,k3;µ1, µ2, µ3) , (5)

where the matrix element of the reduced transition operator D̂π
rd between free

three-quark states |p1, p2, p3;σ1, σ2, σ3〉 is taken according to the point-form spec-
tator model (PFSM) [2]

〈p ′
1, p

′
2, p

′
3;σ ′

1, σ
′
2, σ

′
3| D̂π

rd |p1, p2, p3;σ1, σ2, σ3〉 =

3NS
igqqm

2m1 (2π)
3
2

ū (p ′
1, σ

′
1)γ5γµλmu (p1, σ1) q̃µ

× 2p20δ (p2 − p ′
2) 2p30δ (p3 − p ′

3) δσ2σ ′
2
δσ3σ ′

3
. (6)

Here, the individual quark four-momenta ki (k ′
i) and pi (p ′

i) are connected through
the boost transformations of the incoming and (outgoing) states, namely, pi =

B(V)ki (and analogously p ′
i = B(V ′)k ′

i). The normalization factor NS as well as
the momentum transfer q̃µ = p

µ
1 − p

′µ
1 are specific for the PFSM and explic-

itly given in ref. [2], where also other details of the formalism/notation can be
found. While there is a freedom in the choice of the normalization factor, which
can cause minor influences on the results (cf. ref. [2]), it should be emphasized
that q̃µ is uniquely defined through the overall momentum conservation and the
two spectator conditions. The off-shell extrapolation of the transition amplitude
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is made by keeping all hadrons and quarks on their respective mass shells. Ob-
viously it implies energy non-conservation in the transition process. By virtue of
the pseudovector-pseudoscalar equivalence the above construction also guaran-
tees that the pseudovector and pseudoscalar quark-meson couplings lead to the
same transition amplitude.
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Fig. 2. Prediction of the strong form factor GπNN , normalized to 1 at Q2 = 0, by the GBE

RCQM (solid/red line) in comparison to parametrizations from the dynamical meson-

baryon models of Sato-Lee [5] and Polinder-Rijken [6,7] as well as results from three lattice

QCD calculations [8–11] (cf. the legend); the shaded area around the result by Erkol et al.

gives their theoretical error band.

The strong πNN and πN∆ form factors as dependent on the space-like mo-
mentum transferQ2 = −q2 > 0 are then given by

GπNN

(
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1

fπNN

mπ
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where the momentum transfer is taken into the z-direction. The results for the
Goldstone-boson-exhange (GBE) RCQM [3,4] are shown in Figs. 2 and 3, where
also a comparison is given to corresponding results fromdynamical meson-baryon
models and various lattice-QCD calculations. It is interesting to observe that the
Q2 dependence of both theGπNN andGπN∆ form factors resulting directly and in
a parameter-freemanner from the RCQMqualitatively agreeswith the parametriza-
tions of the meson-baryon vertices in the Sato-Lee model [5]. In the case of GπN∆

the RCQM result is also close to the Polinder-Rijken meson-baryon model [6,7].
On the other hand, the strong form factors from the lattice calculations show a
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(sometimes much) slower fall off with increasing Q2. Even for the smaller differ-
ences between our results (as well as the form factors of Sato-Lee) and the data
sets by Liu et al. and Erkol et al. it remains to be seen if dressing effects can ac-
count for these differences. Regarding all of the lattice data by Alexandrou et al.

one has also to keep in mind that they correspond to relatively large pion masses
with no extrapolations applied.
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Fig. 3. Same as Fig. 2 but for the strong form factor GπN∆ .

As the vertex form factors represent an important input into a number of ap-
plications, we have also provided parametrizations in analytical forms as a func-
tion of the three-momentum transfer q 2. It has turned out that an intermediate
form between the usual monopole and dipole forms is most appropriate

G
(
q 2
)

=
1

1+
(

q

Λ1

)2

+
(

q

Λ2

)4
. (9)

Our results in Figs. 2 and 3 are best reproduced with the parameter values given
in Table 1.

Table 1. Coupling constants and cut-off parameters of the RCQM vertex form factors as

parametrized according to the representation (9).

f2
N

4π
0.0691

f2
∆

4π
0.188

N Λ1 0.451 ∆ Λ1 0.594

Λ2 0.931 Λ2 0.998
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By this work we have obtained a parameter-free microscopic description of
the strong πNN and πN∆ vertex form factorswithin a fully relativistic constituent
quark model. Our study reveals that the structure of the πN∆ vertex is quite dif-
ferent from the πNN one, with cut-off parameters of up to 25% larger, contrary to
what is often used in phenomenological models, where the πNN and πN∆ cut-
offs are assumed of similar size [5–7] or even decreasing in the transition from
πNN to πN∆. Regarding the comparison with lattice-QCD results it will be most
interesting, if the spread among them will be reduced by future calculations and
how the final answer will turn out.
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