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Abstract. The existence of a constant time algorithm for solving different domination
problems on the subclass of polygraphs, rotagraphs and fasciagraphs, is shown by means
of path algebras. As these graphs include products (the Cartesian, strong, direct, lexico-
graphic) of paths and cycles, we implement the algorithm to get formulas in the case of the
domination numbers, the Roman domination numbers and the independent domination
numbers of products of paths and cycles where the size of one factor is fixed, i.e. indepen-
dently of the size of the second factor. We also show that the values of the investigated
graph invariants on the fasciagraphs and the rotagraphs with the same monograph can only
differ for a constant value.
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1. Introduction

Over years, extensive work has been done concerning the domination number and
its variations, also from the algorithmic point of view [20, 21]. It is well known that
the problem of determining the domination number and different variations of the
domination number of arbitrary graphs is NP–complete [21]. It is therefore worth-
while to consider algorithms for some classes of graphs, including all four standard
products of paths and cycles. Known results on the domination, Roman domination,
total domination and independent domination of the Cartesian product of paths and
cycles are shown in Table 1 and known results on the strong and the direct product
of paths and cycles can be found in Table 2. In cases where more general results
are known, only those are listed. For the lexicographic product of graphs, exact
formulas for the domination, the total domination and the independent domination
numbers can be easily obtained and can be found, for instance, in [33]. Recently
also the Roman domination number of the lexicographic product of graphs was in-
vestigated in [31]. The domination number of the Cartesian and the strong graph
bundles were studied in [42]. Graph bundles represent a well known generalization
of graph products [36].

∗Corresponding author. Email addresses: polona.pavlic@imfm.si (Polona Pavlič),
janez.zerovnik@fs.uni-lj.si (Janez Žerovnik)
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2 Polona Pavlič and Janez Žerovnik

A general O(log n) algorithm based on path algebras, which can be used to com-
pute various graph invariants on the fasciagraphs and rotagraphs, has been proposed
in [26]. The algorithm of [26] can in most cases, including the computation of dis-
tance based invariants [25], the domination numbers [34, 40], the Roman domination
numbers [35] and others [24, 41] be turned into a constant time algorithm, i.e. the
improved algorithm can find closed formulas for arbitrary number of monographs
in a fasciagraph or a rotagraph. The existence of an algorithm that provides closed
formulas for the domination numbers on grid graphs has been observed or claimed
also in [16, 32]. Other approaches for investigating graph invariants on polygraphs
can be found in [7].

Here we generalize the algorithm of [40] to compute so–called ∗–domination num-
bers of fasciagraphs and rotagraphs. This means that for (almost) any kind of dom-
ination type (whether we look for domination number, Roman domination number,
total domination number, independent domination number, k-domination number,
etc.), we are able to find exact formulas on fasciagraph and rotagraphs, for any
number of monographs. As fasciagraphs and rotagraphs include different products
of paths and cycles, the results of the implementation of this generalized algorithm,
which can be found in Tables 3 - 10, complement previously known results of Tables
1 and 2.

In the rest of this paper we first recall the background for the main algorithm
from [26] and [40]. In Section 3, the algorithm, which generalizes and improves the
space complexity of the algorithm from [26, 40] is precisely presented. Summary of
results is given in Section 4. In particular, the properties of the new algorithm allow
us to improve best known results in several cases. A short conclusion then ends the
paper.

Table 1: Known results for the Cartesian product

Graph invariant The Cartesian product

Domination

γ(Pn2Pk) =
⌊
(n+2)(k+2)

5

⌋
− 4 for n, k ≥ 16, [17],

other results: [1, 10, 13, 16, 19, 38],
γ(Cn2Pk), for k ≤ 11 and n ∈ N; [34],
γ(Pn2Ck), γ(Cn2Ck) for k ≤ 6 and n ∈ N, [34].

Roman domination
γR(Pn2Pk), γR(Cn2Pk), for k ≤ 8 and n ∈ N, [35],
γR(Pn2Ck), γR(Cn2Ck) for k ≤ 6 and n ∈ N, [35].

Total domination
γt(Pn2Pk) for k ≤ 4 and n ∈ N [18],
γt(Pn2Pk) for k = 5, 6 and n ∈ N [29],
bounds for γt(Pn2Pk) for k, n > 16 [18].

Independent domination i(Pn2Pk) for k ≤ 14 and n ∈ N [14]
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Formulas for various domination numbers of products of paths and cycles 3

Table 2: Known results for the strong and the direct product

Graph invariant The strong product The direct product

Domination
γ(G�H) ≤ γ(G)γ(H),
γ(T �H) = γ(T )γ(H),
where T is a tree, [33].

γ(Pn × Pk) for k ≤ 6, [27, 28],
for k ≤ 9 [11],

further results for k ≤ 33
and n ≤ 40 [11].

Roman
domination

γR(G�H) ≤ 2γ(G)γ(H), [39]. –

Total
domination

γt(G�H) ≤ γt(G)γ(H), [33].
γt(T ×H) = γt(T )γt(H),

where T is a tree, [37].
γt(Cn × Ck) for n, k ∈ N [15]

Independent
domination

i(Pn � Pm), i(Cn � Cm),
i(Pn � Cm), n,m ∈ N, [30].

–

2. Preliminaries

We consider finite undirected graphs and directed graphs (digraphs). An edge be-
tween vertices u and v in an undirected graph will be denoted uv while in a di-
graph, an arc between vertices u and v will be denoted (u, v). Pn stands for a
path on n vertices and Cn for a cycle on n vertices. For u ∈ V (G), N(u) =
{v ∈ V (G) | uv ∈ E(G)} is an open neighborhood of u and N [u] = N(u) ∪ {u} a
closed neighborhood.

Here we show that different variations of the graph domination problems can
be solved in constant time on fasciagraphs and rotagraphs. Because there are so
many graph invariants, related to the domination number, many authors tried to
unite them or present them in a way. Some of the classifications can be found in
[5, 6, 8, 20, 21]. We will refer to them as defined in the sequel:

Definition 1. Let G = (V (G), E(G)) be a graph, ai ≥ 0 for i = 0, . . . , l and
f∗ : V (G) −→ {a0, a1, . . . , al} a function. Let (V0, V1, V2, . . . , Vl) be ordered partition
of V (G) induced by f∗, where Vi = {v ∈ V (G) | f∗(v) = ai} for i = 0, 1, . . . , l.
Note that there exists a 1–1 correspondence between the functions f∗ : V (G) −→
{a0, a1, . . . , al} and ordered partitions (V0, V1, . . . , Vl) of V (G). Thus, we write f∗ =
(V0, V1, . . . , Vl). The weight of f∗ is defined as:

w(f∗) =
∑

v∈V (G)

f∗(v).

A function f∗ = (V0, V1, . . . , Vl) is called a ∗–dominating function if a ”particular
statement ∗” holds for f∗. The ∗–domination number equals

γ∗(G) = inf{w(f∗) | f∗ is a ∗–dominating function of G}. (1)

We say that a function f is γ∗–function if it is a ∗–dominating function of weight
γ∗(G).
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4 Polona Pavlič and Janez Žerovnik

This general definition unites many known domination types, let us mention
some:

1. Let l = 1, ai = i for i = 0, 1 and let statement ∗ be that:

(a) every vertex of V0 has a neighbor in V1. Then Definition 1 is a definition
of the domination number, γ(G).

(b) every vertex of V (G) has a neighbor in V1. Then Definition 1 is a defini-
tion of the total domination number, γt(G) [23].

(c) every vertex of V0 has a neighbor in V1 and the set V1 is an independent
set (i.e. no edge joins two vertices of V1). Then Definition 1 is a definition
of the independent domination number, i(G) [2].

2. Let l = 2, ai = i for i = 0, 1, 2 and let statement ∗ be that every vertex
of V0 has a neighbor in V2. Then Definition 1 is a definition of the Roman
domination number, γR(G) [12].

3. Let l = k + 1, ai = i for i = 0, 1, . . . , l and let statement ∗ be that every
vertex of V0 is defended (i.e. has a neighbor in Vi for some i ≥ 1) and for
any sequence v1, . . . , vk of (not necessarily distinct) vertices, there exists a
sequence of functions f = f0, f1, . . . , fk such that for i = 1, . . . , k, (i) either
fi−1(vi) > 0, in which case fi = fi−1, or fi−1(vi) = 0, in which case fi is
obtained from fi−1 by one movement to vi, and (ii) fi has no undefended
vertex. For more detailed definition see [22]. Then Definition 1 is definition of
the k–Roman domination number, γkR(G).

In the sequel we will focus our attention to finding ∗–domination numbers of four
standard products of graphs. For graphs G and H, the vertex set of these products
is always the same, V (G)× V (H). Two vertices are adjacent in the:

1. Cartesian product, G2H, if and only if g = g′ and hh′ ∈ E(H) or gg′ ∈ E(G)
and h = h′;

2. strong (normal) product, G � H, if and only if g = g′ and hh′ ∈ E(H) or
gg′ ∈ E(G) and h = h′ or gg′ ∈ E(G) and hh′ ∈ E(H);

3. direct (also known as tensor, cardinal, categorical, Kronecker) product, G×H,
if and only if gg′ ∈ E(G) and hh′ ∈ E(H);

4. lexicographic product, G [H], if and only if gg′ ∈ E(G) or g = g′ and hh′ ∈
E(H).

Let G1, . . . , Gn be arbitrary mutually disjoint graphs and X1, . . . , Xn a sequence
of sets of edges such that an edge of Xi joins a vertex of V (Gi) with a vertex of
V (Gi+1) (Xi ⊆ V (Gi)× V (Gi+1) for i = 1, . . . , n). For convenience we set Gn+1 =
G1. A polygraph Ωn = Ωn(G1, . . . Gn;X1, . . . Xn) over monographs G1, . . . , Gn has
the vertex set V (Ωn) = V (G1) ∪ . . . ∪ V (Gn), and the edge set E(Ωn) = E(G1) ∪
X1 ∪ . . . ∪ E(Gn) ∪Xn. For a polygraph Ωn and for i = 1, . . . , n we also define

Di = {u ∈ V (Gi) | ∃v ∈ Gi+1 : uv ∈ Xi},
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Formulas for various domination numbers of products of paths and cycles 5

Ri = {u ∈ V (Gi+1) | ∃v ∈ Gi : uv ∈ Xi}.

In general, Ri ∩ Di+1 does not have to be empty. If all graphs Gi are isomorphic
to a fixed graph G (i.e. there exists an isomorphism ϕi : V (Gi) −→ V (G) for
i = 1, . . . , n + 1, and ϕn+1 = ϕ1) and all sets Xi are equal to a fixed set X ⊆
V (G) × V (G) ( (u, v) ∈ X ⇐⇒

(
ϕ−1i (u), ϕ−1i+1(v)

)
∈ Xi for all i), we call such a

graph rotagraph, ωn(G;X). A rotagraph without edges between the first and the
last copy of G is fasciagraph, ψn(G;X). More precisely, in fasciagraph, Xn = ∅ and
X1 = X, . . . ,Xn−1 = X. In rotagraph as well as in fasciagraph, all sets Di and Ri

are equal to fixed sets D and R, respectively (Di = ϕ−1i (D) and Ri = ϕ−1i+1(R)).
Of course, in a case of fasciagraphs, Dn = ∅ and Rn = ∅. Let for a moment
G ·H denote any of the graph products, 2,�,× or the lexicographic. Observe that
products of paths Pn · Pk are examples of fasciagraphs and that products of cycles
Cn · Ck are examples of rotagraphs. Products of paths and cycles can, except in
the case of non-commutative products (the lexicographic product), be treated either
as fasciagraphs or as rotagraphs. Polygraphs, which were first studied in [3], also
include a generalization of a graph product, that is graph bundles, introduced in
[36].

A semiring P = (P,⊕, ◦, e⊕, e◦) is a set P on which two binary operations, ⊕
and ◦ are defined such that (P,⊕) is a commutative monoid with e⊕ as a unit, (P, ◦)
is a monoid with e◦ as a unit, ◦ is left– and right–distributive over ⊕ and for every
x ∈ P , x ◦ e⊕ = e⊕ = e⊕ ◦ x. An idempotent semiring is called a path algebra. It is
easy to see that a semiring is a path algebra if and only if e◦ ⊕ e◦ = e◦ holds for e◦,
the unit of the monoid (P, ◦). An important example of a path algebra for our work
is P1 = (N0 ∪ {∞},min,+,∞, 0). Here N0 denotes the set of nonnegative integers
and N the set of positive integers.

Let P = (P,⊕, ◦, e⊕, e◦) be a path algebra and letMn(P) be the set of all n×n
matrices over P . Let A,B ∈ Mn(P) and define operations ⊕ and ◦ in the usual
way:

(A⊕B)ij = Aij ⊕Bij ,

(A ◦B)ij =
n⊕

k=1

Aik ◦Bkj .

Mn(P) equipped with above operations is a path algebra with the zero and the
unit matrix as units of semiring. In our example P1 = (N0 ∪ {∞},min,+,∞, 0), all
elements of the zero matrix are ∞, the unit of the monoid (P,min), and the unit
matrix is a diagonal matrix with diagonal elements equal to e◦ = 0 and all other
elements equal to e⊕ =∞. Sometimes, we will also need ordinary matrix summation
in R (i.e. (A+B)ij = Aij +Bij). We denote it with ordinary +.

Let P be a path algebra and let G be a labeled digraph, that is a digraph
together with a labeling function ` which assigns to every arc of G an element of P .
Let V (G) = {v1, v2, . . . , vn}. The labeling ` of G can be extended to walks in the
following way: For a walk Q = (vi0 , vi1)(vi1 , vi2) . . . (vik−1

, vik) of G let

`(Q) = ` (vi0 , vi1) ◦ ` (vi1 , vi2) ◦ . . . ◦ `
(
vik−1

, vik
)
.
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6 Polona Pavlič and Janez Žerovnik

Let Sk
ij be the set of all walks of order k from vi to vj in G and let A(G) be the

matrix defined by:

(A(G))ij =

{
` (vi, vj) ; if (vi, vj) is an arc of G

e⊕; otherwise
(2)

It is well-known [9] that (
A(G)k

)
ij

=
⊕

Q∈Sk
ij

`(Q).

3. Algorithm for determining ∗–domination numbers of fasci-
agraphs and rotagraphs

Let us now present a constant time algorithm for determining ∗–domination numbers
of fasciagraphs and rotagraphs. As mentioned before, the algorithm which computes
different graph invariants on fasciagraphs and rotagraphs in O(log n) time was pro-
posed in [26] and then improved to run in O(C) time for the domination number
[40] and also for some other graph invariants in [25, 35, 41]. We now generalize this
algorithm in the following way:

Let ωn(G;X) be a rotagraph and ψn(G;X) a fasciagraph as defined above. Set
U = D t R. (Keep in mind that Di ⊆ Gi and Ri ⊆ Gi+1, but since Ri = R and
Di = D for i = 1, . . . , n in case of rotagraphs and for i = 1, . . . , n − 1 in case of
fasciagraphs, we can write U = Di ∪ Ri = D t R). A labeled digraph G = G(G;X)
is a graph with a vertex set:

V (G) =
{
vi =

(
V i
0 , V

i
1 , . . . , V

i
l

)
| V i

j ⊆ U and V i
j ∩ V i

h = ∅ for 0 ≤ j, h ≤ l, j 6= h
}
.

In particular, v0 =
(
V 0
0 , V

0
1 , . . . , V

0
l

)
stands for (∅, ∅, . . . , ∅).

Let vi, vj ∈ V (G) and consider for a moment ψ3(G;X). Let V i
0 ∪ V i

1 ∪ . . . ∪
V i
l ⊆ D1 ∪ R1 and V j

0 ∪ V
j
1 ∪ . . . ∪ V

j
l ⊆ D2 ∪ R2. (Note that we use the no-

tation D1 ∪ R1 and D2 ∪ R2 instead of D t R here only to be clear about the
general idea.) Let γ∗i,j(G;X) be the weight of a γ∗– function of a graph G2 \((
R1 ∩

(
V i
0 ∪ V i

1 ∪ . . . ∪ V i
l

))
∪
((
V j
0 ∪ V

j
1 ∪ . . . ∪ V

j
l

)
∩D2

))
, such that V i

h∪V
j
h ⊆

Vh for h = 0, . . . , l where (V0, V1, . . . Vl) is a ∗–dominating function of a graph G2.
For consistency, we introduce an arc between vertices vi and vj only if V i

h1
∩V j

h2
= ∅

for all 0 ≤ h1, h2 ≤ l, h1 6= h2. Set

`(vi, vj) =
l∑

h=0

ah
∣∣V i

h ∩R
∣∣+ γ∗i,j(G;X) +

l∑
h=0

ah

∣∣∣V j
h ∩D

∣∣∣− l∑
h=0

ah

∣∣∣V i
h ∩D ∩R ∩ V

j
h

∣∣∣ .
(3)

Remark 1. If D ∩R = ∅, then equation (3) is reduced to

`(vi, vj) =
l∑

h=0

ah
∣∣V i

h ∩R
∣∣+ γ∗i,j(G;X) +

l∑
h=0

ah

∣∣∣V j
h ∩D

∣∣∣ .
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Formulas for various domination numbers of products of paths and cycles 7

Now, considering graph G(G;X) and labeling (3), form a matrix A (G) as defined
in (2). Then, according to [26], we have an algorithm which computes ∗–domination
number of rotagraphs and fasciagraphs in O(log n) time:

Algorithm 1

1. For a path algebra select P = (N0 ∪ {∞},min,+,∞, 0).

2. Label G = G(G;X) as defined above.

3. In M(P) calculate A (G)
n
.

4. Let γ∗ (ψn(G;X)) = (A (G)
n
)00 and γ∗ (ωn(G;X)) = mini (A (G)

n
)ii.

Theorem 1. The Algorithm 1 correctly computes ∗–domination number of rota-
graphs and fasciagraphs:

γ∗ (ψn(G;X)) = (A (G)
n
)00 (4)

γ∗ (ωn(G;X)) = min
i

(A (G)
n
)ii (5)

in O(log n) time.

Proof. Let G1 and G2 be arbitrary graphs, X1 a set of edges between vertices
of G1 and G2 and let Ω2(G1, G2;X1, ∅) be a polygraph. Let also P = (N0 ∪
{∞},min,+,∞, 0) be a path algebra and let G′ be a labeled digraph for Ω2 de-
fined similarly as above. Then, by the definition of labeling, we have

γ∗ (Ω2 (G1, G2;X1, ∅)) = [A(G1) +A(G2)]00
= min

vk∈V (G)
{`(v0, vk) + `(vk, v0)}.

Let G1 = G, X1 = X and G2 = ψn−1(G;X). Then (4) follows by induction.
For (5), similarly, consider Ω2(G1, G2;X1, X2) and let G1 = G, X1 = X2 = X

and G2 = ψn−1(G;X).
It is well known that, in general, Step 3 of the algorithm can be implemented

to run in O(log n) time and other steps can be done in a constant time. Therefore
Algorithm 1 can run in O(log n) time.

This algorithm can be improved: computing the powers of A (G)
n

= An in O(C)
time is possible using special structure of the matrices, so called ”cyclicity lemma”,
which was proposed in [4] and used in a similar way in [34, 35, 40, 41].

Lemma 1. Let N = |V (G(G;X))|, K = |V (G)| and a = max {a0, . . . , al}. Then

there is an index q ≤ (2aK + 2)N
2

such that Aq = Ap +C for some index p < q and
some constant matrix C = [c]ij. Let P = q − p. Then for every r ≥ p and every
s ≥ 0 we have

Ar+sP = Ar + sC .
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8 Polona Pavlič and Janez Žerovnik

Proof. First observe that for any k ≥ 1, the difference between any pair of entries
of Ak, both different from ∞, is bounded by 2aK:

Assume (Ak)ij 6=∞. Then

(
Ak
)
ij

= γ∗

((
V (G1) \

(
l⋃

h=0

V i
h

))
∪ V (G2) ∪ . . . ∪ V (Gk−1) ∪

(
V (Gk) \

(
l⋃

h=0

V j
h

)))
≤ γ∗(ψk(G;X)).

Since V i
h1
∩V i

h2
= ∅ and V j

h1
∩V j

h2
= ∅ for h1, h2 = 0, . . . , l and because of the choice

of a it follows that

l∑
h=0

ah
∣∣V i

h ∩R
∣∣+

l∑
h=0

ah

∣∣∣V j
h ∩D

∣∣∣ ≤ 2aK.

According to (3) we have

`(vi, vj) ≤ 2aK + γ∗i,j(G;X)−
l∑

h=0

ah

∣∣∣V i
h ∩D ∩R ∩ V

j
h

∣∣∣
≤ 2aK + γ∗i,j(G;X) = 2aK +

(
Ak
)
ij(

Ak
)
ij
≥ `(vi, vj)− 2aK ≥ γ∗ (ψk(G;X))− 2aK.

Therefore
γ∗ (ψk(G;X))− 2aK ≤ (Ak)ij ≤ γ∗(ψk(G;X)).

For k ≥ 1, let Mk = min{(Ak)ij} and let
(
Ak
)′

= Ak − (Mk)J , where J is the
matrix with all entries equal to 0 (recall that we are still in the path algebra P =
(N0 ∪ {∞},min,+,∞, 0)). Since the difference between any two elements of Ak,

different from ∞, cannot be greater than 2aK, the entries of
(
Ak
)′

can have only

values 0, 1, . . . , 2aK,∞. Hence there are indices p < q ≤ (2aK + 2)N
2

such that
(Ap)

′
= (Aq)

′
. This proves the first part of the lemma.

The equality Ar+sP = Ar + sC follows from the fact that for arbitrary matrices
D, E and a constant matrix C we have (D + C) ◦ E = D ◦ E + C, where + is the
ordinary matrix addition, i.e. (A+B)ij = Aij +Bij for all i, j:

((D + C) ◦ E)ij = min
k
{((D)ik + C) + (E)kj} = min

k
{(D)ik + (E)kj}+ C

(D ◦ E + C)ij = min
k
{(D)ik + (E)kj}+ (C)ij = min

k
{(D)ik + (E)kj}+ C.

Therefore, let Aq = Ap+C for some index p < q and some constant matrix C = [c]ij .
Then

Aq+1 = (Ap + C) ◦A
= (Ap ◦A) + C

= Ap+1 + C.
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Formulas for various domination numbers of products of paths and cycles 9

Let P = q − p and r ≥ p. Then also

Ar+P = Ar+q−p = Aq ◦Ar−p

= (Ap + C) ◦Ar−p = Ap+r−p + C

= Ar + C,

and by induction on s we have

Ar+sP = Ar+P+(s−1)P = (Ar + C) ◦A(s−1)P = Ar+(s−1)P + C

= Ar + (s− 1)C + C = Ar + sC

for every s ≥ 0.

Remark 2. Assume that one looks for:

1. a domination or total domination or independent domination number of a

fasciagraph or a rotagraph. Then q < (2K + 2)
N2

. For instance, if fasciagraph

is a grid graph Pn2Pk, then q < (2k + 2)
22k

. In particular, if k = 4, q ≤ 10256.

2. a Roman domination number of a fasciagraph or a rotagraph. Then q <

(4K + 2)
N2

. For instance, if fasciagraph is a grid graph Pn2Pk, then q <

(4k + 2)
23k

. In particular, if k = 2, q ≤ 1064.

We see that already in cases of very small monographs, enormously large q are
obtained. That is why the second part of Lemma 1 is useful for practical purposes -
once a period is detected, it cannot change. When we implemented the algorithm for
various domination problems and smaller monographs, the period was always found
much sooner - at latest for q = 20.

So, if we assume that the size of a monograph G is a given constant (and n
is a variable), the algorithm will run in constant time. However, straightforward
implementation may not be practical due to obvious large space requirements of the
algorithm. Fortunately, instead of calculating whole matrices An, calculating only
those rows which are important for the result and checking the difference of the new
row against the previously stored rows until a constant difference is detected yields
a correct result because of the following lemma, first presented in [41] and recently
generalized in the following way:

Lemma 2. [35] Assume that the j–th row of An+P and An differ for a constant,
an+P
ji = anji + C for all i. Then mini a

n+P
ji = mini a

n
ji + C.

This immediately gives an improvement in the case of fasciagraphs: recall that
γ∗ (ψn(G;X)) = (A (G)

n
)00. For computing 00-th element of An we only need first

rows of matrices Ai for 2 ≤ i ≤ n− 1:

An
0i = min

k

{
An−1

0k +Aki

}
.

In the case of rotagraphs such an improvement is not crucial because γ∗ (ωn(G;X)) =
mini (A (G)

n
)ii. Therefore we prove that once we have a period for a fasciagraph
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10 Polona Pavlič and Janez Žerovnik

ψn(G;X), the same period is optimal for ωn(G;X), in other words, formulas for fas-
ciagraphs and rotagraphs with the same monograph G can only differ for a constant
value. In particular, there can be at most P different constants for which fasciagraph
and rotagraph differ:

Lemma 3. Let Aq = Ap + C and P = q − p. Then for every t ∈ 0, 1, . . . , P − 1
there is a constant Ct such that for all n ≥ p with t ≡ (n− p) (mod P ) we have

γ∗(ψn(G;X))− γ∗(ωn(G;X)) = Ct.

Proof. Let Aq = Ap + C for some q > p and a constant matrix C = [c]ij . Such
p, q, C exist because of the Lemma 1. We can write n = p+sP + t, where P = q−p,
s ≥ 0 and 0 ≤ t < P . Then An = Ap+sP+t = Ap+t + sC also by Lemma 1 and we
have:

γ∗(ψn(G;X))− γ∗(ωn(G;X)) = (An)00 −min
i
{(An)ii}

=
(
Ap+t + sC

)
00
−min

i

{(
Ap+t + sC

)
ii

}
=
(
Ap+t

)
00

+ sC −min
i

{(
Ap+t

)
ii

}
− sC

=
(
Ap+t

)
00
−min

i

{(
Ap+t

)
ii

}
= Ct.

4. Summary of results

Theorem 2. ∗–domination numbers of fasciagraphs and rotagraphs can be computed
in constant time, i.e. independently of the size of a monograph G.

Proof. Algorithm 1 implies an O(log n) algorithm for computing ∗–domination
numbers of fasciagraphs and rotagraphs. When applying Lemma 1, we get closed
expressions for ∗–domination numbers of fasciagraphs and rotagraphs.

In special cases we have:

Corollary 1. Domination numbers, Roman domination numbers and independent
domination numbers of the Cartesian, strong, direct or lexicographic products of
paths and cycles, where the size of one factor is fixed, can be in computed constant
time, i.e. independently of the size of the second factor.

A summary of results of our implementation of the algorithm is given in the next
proposition. Additional formulas, found by an earlier version of our algorithm, can
be found in [35] for the Roman domination numbers of the Cartesian products of
paths and cycles and in [34] for the domination numbers of the Cartesian products
of paths and cycles.

Proposition 1. Closed expressions for:

1. γ(Pn×Pk), γ(Pn×Ck), γ(Cn×Pk) and γ(Cn×Ck) for some fixed k are given
in Tables 3 and 4;
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Formulas for various domination numbers of products of paths and cycles 11

2. γR(Pn × Pk), γR(Pn × Ck), γR(Cn × Pk) and γR(Cn × Ck) for some fixed k
are given in Tables 5 and 6.

3. i(Pn2Pk), i(Pn2Ck), i(Cn2Pk), i(Cn2Ck) and i(Pn×Pk), i(Pn×Ck), i(Cn×
Pk), i(Cn × Ck) for some fixed k are given in Tables 7 – 10.

In the tables, previously known results are shaded gray. Note that the inde-
pendent domination number is not monotone and therefore it can happen that
i(Pn2Pk) > i(Pn2Ck) in some cases.

5. Conclusion

1. The aim of this paper was to generalize and improve the results of the dom-
ination number on polygraphs from [26, 35, 40]. We have shown that almost
any variation of the domination number can be solved in constant time on
polygraphs. The only restriction, which is applied in the proof of Lemma 1,
is actually that the ”labels” of the vertices must be nonnegative. If some are
negative, then Algorithm 1 still yields an O(log n) algorithm on polygraphs.

2. When one implements the improved algorithm, calculations for rotagraphs
take much more time that the ones for fasciagraphs. Lemma 3 indicates a
step forward in a sense that the results for rotagraphs can be deduced from
the results for fasciagraphs. Particularly, the values for rotagraph and for
fasciagraphs with the same monograph can only differ for a constant value.

3. The improved algorithm allows us to improve many best known results for the
domination number and others (see Tables 1, 2). The results of Tables 3 - 10
could, according to the theoretical results, be extended for larger monographs.
We implemented the improved algorithm on personal computer and later on
a small computer cluster. Therefore, due to time constraints, we did not
compute any additional formulas. But with a little help of technology we could
produce more results. Moreover, we restricted our attention to the domination,
Roman domination and independent domination number. One could go even
further and implement the algorithm for other domination types that satisfy
the definition of ∗–domination.

4. Another avenue of research was initiated recently in [7] where the properties
of invariants, allowing such an algorithm to be applied to polygraphs, were
investigated. On the other hand, here restriction to certain type of domination
problems led to improvements in speed. It may be interesting to investigate
whether and under what additional conditions Lemma 1 and Lemma 3 can be
valid for a larger class of graph invariants.
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12 Polona Pavlič and Janez Žerovnik

Table 3: Domination numbers for the direct products Pn ×Pk and Cn ×Pk, k = 3, . . . , 11 and n ≥ 3.

k γ(Pn × Pk) γ(Cn × Pk)

3 n n

4

n; if n ≡ 0 (mod 4)

n+ 1; if n ≡ 1, 3 (mod 4)

n+ 2; otherwise

n; if n ≡ 0 (mod 4)

n+ 1; if n ≡ 1, 3 (mod 4)

n+ 2; otherwise

5

5; if n = 3

6; if n = 4

11; if n = 7⌈
4n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

⌈
4n
3

⌉
+ 1; if n ≡ 2 (mod 6)⌈

4n
3

⌉
; otherwise

6

5; if n = 3⌈
8n
5

⌉
+ 1; if n ≡ 3, 4 (mod 5)⌈

8n
5

⌉
; otherwise

⌈
8n
5

⌉
+ 1; if n ≡ 4, 8 (mod 10)⌈

8n
5

⌉
; otherwise

7

14; if n = 7⌈
9n
5

⌉
; if n ≡ 4 (mod 5)⌈

9n
5

⌉
+ 1; if n ≡ 1, 3 (mod 5)⌈

9n
5

⌉
+ 2; otherwise

⌈
9n
5

⌉
+ 1; if n ≡ 1, 6, 8 (mod 10)⌈

9n
5

⌉
+ 2; if n ≡ 2 (mod 10)⌈

9n
5

⌉
; otherwise

8
2n; if n ≡ 0 (mod 4)

2n+ 2 otherwise

2n; if n ≡ 0 (mod 4)

2n+ 2 otherwise

9

10; if n = 4

17; if n = 7⌈
11n
5

⌉
+ 2; if n ≡ 0, 1, 3, 6, 7, 8

(mod 10)⌈
11n
5

⌉
+ 3; otherwise

10

16; if n = 6

24; if n = 9

26; if n = 10⌈
12n
5

⌉
+ 2; if n ≡ 3, 4, 8 (mod 10)⌈

12n
5

⌉
+ 3; if n ≡ 1, 2, 6, 7 (mod 10)⌈

12n
5

⌉
+ 4; otherwise

11

12; if n = 4⌈
13n
5

⌉
+ 3; if n = 3, 5, 9, 13, 19⌈

13n
5

⌉
+ 2; if n = 6, 7, 11, 12⌈

13n
5

⌉
+ 3; if n ≡ 1, 4, 7, 8 (mod 10)⌈

13n
5

⌉
+ 4; otherwise
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Formulas for various domination numbers of products of paths and cycles 13

Table 4: Domination numbers for the direct products Pn ×Ck and Cn ×Ck, k = 3, . . . , 11 and n ≥ 3.

k γ(Pn × Ck) γ(Cn × Ck)

3

⌈
2n
3

⌉
; if n ≡ 2 (mod 3)⌈

2n
3

⌉
+ 1; otherwise

3; if n = 3

4; if n = 4⌈
2n
3

⌉
; otherwise

4

n; if n ≡ 0 (mod 4)

n+ 1; if n ≡ 1, 3 (mod 4)

n+ 2; otherwise

n; if n ≡ 0 (mod 4)

n+ 1; if n ≡ 1, 3 (mod 4)

n+ 2; otherwise

5 n+ 2

n; if n ≡ 0 (mod 5)

n+ 1; if n ≡ 1 (mod 5)

n+ 2; otherwise

6

⌈
4n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

8; if n = 4⌈
4n
3

⌉
+ 1; if n ≡ 2 (mod 6)⌈

4n
3

⌉
; otherwise

7

⌈
3n
2

⌉
+ 3; if n ≡ 2 (mod 4)⌈

3n
2

⌉
+ 2; otherwise

8
2n; if n ≡ 0 (mod 4)

2n+ 2 otherwise
2n

9

2n+ 2; if n ≡ 0, 2, 4, 5, 8, 11

(mod 12)

2n+ 3 otherwise

10 2n+ 4

11

12; if n = 4⌈
7n
3

⌉
+ 3; if n ≡ 2 (mod 3)⌈

7n
3

⌉
+ 4; otherwise
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14 Polona Pavlič and Janez Žerovnik

Table 5: Roman domination numbers for the direct products Pn × Pk and Cn × Pk, k = 3, . . . , 9 and
n ≥ 2.

k γR(Pn × Pk) γR(Cn × Pk)

3

⌈
3n
2

⌉
+ 1; if n ≡ 2 (mod 4)⌈

3n
2

⌉
; otherwise

⌈
3n
2

⌉
+ 1; if n ≡ 2 (mod 4)⌈

3n
2

⌉
; otherwise

4

6; if n = 2

12; if n = 5

2n; otherwise

2n

5

⌈
8n
3

⌉
; if n ≡ 0 (mod 3)⌈

8n
3

⌉
+ 1; if n ≡ 1 (mod 3)⌈

8n
3

⌉
+ 2; otherwise

⌈
8n
3

⌉
; if n ≡ 0, 3, 5 (mod 6)⌈

8n
3

⌉
+ 1; if n ≡ 1, 4 (mod 6)⌈

8n
3

⌉
+ 2; otherwise

6

12; if n = 2

24; if n = 6

3n; if n ≡ 0 (mod 2)

3n+ 1; otherwise

3n

7

10; if n = 2

11; if n = 3

20; if n = 5⌈
10n
3

⌉
; if n ≡ 1 (mod 3)⌈

10n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

10n
3

⌉
+ 2; otherwise

8

12 if n = 2

24 if n = 5

4n; otherwise

4n

9

12 if n = 2

14 if n = 3⌈
13n
3

⌉
; if n ≡ 4 (mod 6)⌈

13n
3

⌉
+ 1; if n ≡ 1, 2 (mod 6)⌈

13n
3

⌉
+ 2; otherwise
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Formulas for various domination numbers of products of paths and cycles 15

Table 6: Roman domination numbers for the direct products Pn × Ck and Cn × Ck, k = 3, . . . , 9 and
n ≥ 2.

k γR(Pn × Ck) γR(Cn × Ck)

3

⌈
4n
3

⌉
; if n ≡ 1 (mod 3)⌈

4n
3

⌉
+ 1; otherwise

5; if n = 3⌈
4n
3

⌉
; if n ≡ 1, 3 (mod 3)⌈

4n
3

⌉
+ 1; otherwise

4

6; if n = 2

12; if n = 5

2n; otherwise

2n

5

2n+ 2; if n = 3, 4

2n+ 3; if n = 2, 6, 7

2n+ 4; otherwise

8; if n = 3

2n; if n ≡ 0 (mod 5)

2n+ 2; if n ≡ 1, 4 (mod 5)

2n+ 3; if n ≡ 2 (mod 5)

2n+ 4; otherwise

6

⌈
8n
3

⌉
+ 1; if n ≡ 1 (mod 3)⌈

8n
3

⌉
+ 2; otherwise

⌈
8n
3

⌉
+ 1; if n ≡ 1, 4 (mod 6)⌈

8n
3

⌉
+ 2; if n ≡ 2 (mod 6)⌈

8n
3

⌉
; otherwise

7

3n+ 2; if n = 3, 4, 5

3n+ 3; if n = 6, 7

3n+ 4; otherwise

8

12 if n = 2

24; if n = 5

4n; otherwise

4n

9

14 if n = 3

4n+ 2; if n ≡ 1 (mod 3)

4n+ 3; if n ≡ 0 (mod 3)

4n+ 4; otherwise
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16 Polona Pavlič and Janez Žerovnik

Table 7: Independent domination numbers for Pn2Pk and Cn2Pk, k = 2, . . . , 8 and n ≥ 2.

k i(Pn2Pk) i(Cn2Pk)

2

⌈
n
2

⌉
; if n ≡ 1 (mod 2)⌈

n
2

⌉
+ 1; otherwise

⌈
n
2

⌉
; if n ≡ 0, 3 (mod 4)⌈

n
2

⌉
+ 1; otherwise

3

2 if n = 2⌈
3n
4

⌉
; if n ≡ 1 (mod 2)⌈

3n
4

⌉
+ 1; otherwise

⌈
3n
4

⌉
; if n ≡ 0, 3 (mod 4)⌈

3n
4

⌉
+1; otherwise

4
n+ 1 if n = 2, 3, 5, 6, 9

n; otherwise

n if n ≡ 0 (mod 2)

n+ 1; otherwise

5

3; if n = 2

4; if n = 3⌈
6n
5

⌉
; if n ≡ 1 (mod 5)⌈

6n
5

⌉
+ 1; otherwise

⌈
6n
5

⌉
; if n ≡ 0 (mod 2)⌈

6n
5

⌉
+ 1; otherwise

6

11; if n = 7⌈
10n
7

⌉
; if n ≡ 1, 5 (mod 7)⌈

10n
7

⌉
+ 2; if n ≡ 0 (mod 7)⌈

10n
7

⌉
+ 1; otherwise

⌈
10n
7

⌉
; if n ≡ 0, 4, 5, 8, 10, 12 (mod 14)⌈

10n
7

⌉
+ 2; if n ≡ 7 (mod 14)⌈

10n
7

⌉
+ 1; otherwise

7

10; if n = 5⌈
5n
3

⌉
+ 1; if n ≡ 1, 3 (mod 6)⌈

5n
3

⌉
; otherwise

7; if n = 3⌈
5n
3

⌉
+ 1; if n ≡ 0 (mod 3)⌈

5n
3

⌉
; otherwise

8-14 see [14]
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Formulas for various domination numbers of products of paths and cycles 17

Table 8: Independent domination numbers for Pn2Ck and Cn2Ck, k = 3, . . . , 10 and n ≥ 2.

k i(Pn2Ck) i(Cn2Ck)

3 n n

4 n
4; if n = 3

n; otherwise

5 n+ 2

8; if n = 5

n+ 1; if n ≡ 4 (mod 5)

n+ 2; otherwise

6

6; if n = 3⌈
4n
3

⌉
; if n ≡ 1 (mod 3)⌈

4n
3

⌉
+ 1; otherwise

6; if n = 3

12; if n = 7⌈
4n
3

⌉
; if n ≡ 0, 4 (mod 6)⌈

4n
3

⌉
+ 1; otherwise

7

4; if n = 2

6; if n = 3

8; if n = 4⌈
3n
2

⌉
+ 2; if n ≡ 1 (mod 2)⌈

3n
2

⌉
+ 3; otherwise

12; if n = 6⌈
3n
2

⌉
+ 1; if n ≡ 4, 5, 13 (mod 14)⌈

3n
2

⌉
+ 2; otherwise

8

4; if n = 2

6; if n = 3

8; if n = 4⌈
9n
5

⌉
+ 2; if n ≡ 0 (mod 5)⌈

9n
5

⌉
+ 1; otherwise

8; if n = 3⌈
9n
5

⌉
; if n ≡ 0, 4 (mod 10)⌈

9n
5

⌉
+ 2; if n ≡ 1 (mod 10)⌈

9n
5

⌉
+ 1; otherwise

9 2n+ 2

10

2n+ 2; if n = 2, 4, 5

2n+ 3; if n = 3, 6, 7, 8, 9

2n+ 4; otherwise
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18 Polona Pavlič and Janez Žerovnik

Table 9: Independent domination numbers for Pn × Pk and Cn × Pk , k = 3, . . . , 11 and n ≥ 2.

k i(Pn × Pk) i(Cn × Pk)

3 n n

4

⌈
4n
3

⌉
; if n ≡ 0 (mod 3)⌈

4n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

⌈
4n
3

⌉
; if n ≡ 0, 1, 3 (mod 6)⌈

4n
3

⌉
+ 1; if n ≡ 2, 5 (mod 6)⌈

4n
3

⌉
+ 2; otherwise

5

5; if n = 3⌈
4n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

⌈
4n
3

⌉
; if n ≡ 0, 1, 3 (mod 6)⌈

4n
3

⌉
+ 1; if n ≡ 2, 5 (mod 6)⌈

4n
3

⌉
+ 2; otherwise

6

⌈
5n
3

⌉
; if n ≡ 2 (mod 6)⌈

5n
3

⌉
+ 1; if n ≡ 3, 4, 5 (mod 6)⌈

5n
3

⌉
+ 2; otherwise

⌈
5n
3

⌉
+ 1; if n ≡ 4 (mod 6)⌈

5n
3

⌉
; otherwise

7

7; if n = 3

12; if n = 4

17; if n = 7

2n+ 2; otherwise

12; if n = 4

11; if n = 5

22; if n = 10

2n; otherwise

8
2n+ 4; if n ≡ 1 (mod 3)

2n+ 2; otherwise

9

⌈
7n
3

⌉
+ 1; if n ≡ 2 (mod 6)⌈

7n
3

⌉
+ 3; if n ≡ 1 (mod 6)⌈

7n
3

⌉
+ 2; otherwise

10

16; if n = 4⌈
8n
3

⌉
+ 2; if n ≡ 0, 2 (mod 3)⌈

8n
3

⌉
+ 3; otherwise

11

11; if n = 3⌈
8n
3

⌉
+ 2; if n ≡ 2 (mod 3)⌈

8n
3

⌉
+ 4; if n ≡ 0 (mod 3)⌈

8n
3

⌉
+ 5; otherwise
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Formulas for various domination numbers of products of paths and cycles 19

Table 10: Independent domination numbers for Pn × Ck and Cn × Ck, k = 2, . . . , 10 and n ≥ 2.

k i(Pn × Ck) i(Cn × Ck)

3

⌈
2n
3

⌉
; if n ≡ 2 (mod 3)⌈

2n
3

⌉
+ 1; otherwise

n; if n = 3, 4, 5⌈
2n
3

⌉
; if n ≡ 0 (mod 3)⌈

2n
3

⌉
+ 1; otherwise

4

⌈
4n
3

⌉
; if n ≡ 0 (mod 3)⌈

4n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

⌈
4n
3

⌉
; if n ≡ 0 (mod 3)⌈

4n
3

⌉
+ 1; if n ≡ 1 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

5

4; if n = 2

5; if n = 3

8; if n = 5

9; if n = 6

n+ 4; otherwise

5; if n = 3

8; if n = 6

n+ 2; if n ≡ 2 (mod 5)

n+ 4; if n ≡ 4 (mod 5)

n+ 3; otherwise

6

⌈
4n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

⌈
4n
3

⌉
; if n ≡ 0 (mod 3)⌈

4n
3

⌉
+ 1; if n ≡ 1 (mod 3)⌈

4n
3

⌉
+ 2; otherwise

7

10; if n = 4⌈
5n
3

⌉
+ 1; if n ≡ 2 (mod 3)⌈

5n
3

⌉
+ 2; otherwise

10; if n = 4

14; if n = 7

18; if n = 10⌈
5n
3

⌉
; if n ≡ 0 (mod 3)⌈

5n
3

⌉
+ 1; otherwise

8
12; if n = 4

2n+ 2; otherwise

9

2n+ 2; if n ≡ 2 (mod 3)

2n+ 3; if n ≡ 0 (mod 3)

2n+ 4; otherwise

10

2n+ 4; if n = 2, 3

2n+ 6; if n = 5, 6

2n+ 8; otherwise
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