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Abstract. The spin-charge-family theory [1–12,14], in which spinors carry besides the Dirac
spin also the second kind of the Clifford object, no charges, is a kind of the Kaluza-
Klein theories [13]. The Dirac spinors of one Weyl representation in d = (13 + 1) mani-
fest [1,4,3,10,14,15] in d = (3+ 1) at low energies all the properties of quarks and leptons
assumed by the standard model. The second kind of spins explains the origin of families.
Spinors interact with the vielbeins and the two kinds of the spin connection fields, the gauge
fields of the two kinds of the Clifford objects, which manifest in d = (3 + 1) besides the
gravity and the known gauge vector fields also several scalar gauge fields. Scalars with the
space index s ∈ (7, 8) carry the weak charge and the hyper charge (∓ 1

2
,± 1

2
, respectively),

explaining the origin of the Higgs and the Yukawa couplings. It is demonstrated in this
paper that the scalar fields with the space index t ∈ (9, 10, . . . , 14) carry the triplet colour
charges, causing transitions of antileptons and antiquarks into quarks and back, enabling
the appearance and the decay of baryons. These scalar fields are offering in the presence of
the right handed neutrino condensate, which breaks the CP symmetry, the answer to the
question about the matter-antimatter asymmetry.

Povzetek. V teoriji spinov-nabojev-družin [1–12,14] nosijo spinorji dve vrsti kvantnih števil,
ki jih določata dve vrsti operatorjev γa: Diracovi operatorji γa in avtoričini γ̃a, obe sta
povezani z množenjem Cliffordovih objektov, ena vrsta z leve, druga z desne. Obe vrsti
spina sta neodvisni in tvorita druga drugi ekvivalentne upodobitve. Analiza Lorentzove
grupe SO(13, 1) s podgrupami te grupe pokaže, da vsebuje ena Weylova upodobitev Dira-
covih spinorjev v d = (13 + 1) vse kvarke in leptone (ter antikvarke in antileptone) s
kvantnimi števili kot jih predpiše standardni model pred elektrošibko zlomitvijo, le da so
desnoročni nevtrini enakopravni partnerji elektronom [1,4,3,10,14,15]. Druga vrsta spina
pojasni izvor družin. Spinorji interagirajo s tetradami in s polji dveh vrst spinskih povezav,
ki so umeritvena polja obeh vrst operatorjev gamma. Po zlomitvi simetrij, tedaj pri opa-
zljivih nizkih energijah, določajo ta polja, skupaj z vektorskimi svežnji, gravitacijo in vsa
znana umeritvena vektorska polja. Določajo pa tudi skalarna polja. Skalarna polja s pros-
torskim indexom s = (7, 8) so šibki dubleti (τ13 = ∓ 1

2
, Y = ± 1

2
), kar pojasni izvor Higg-

sovega skalarnega polja in Yukawinih sklopitev. Skalarna polja s prostorskim indeksom
t ∈ (9, 10, . . . , 14) pa so barvni tripleti, ki povzročajo prehode antileptonov in antikvarkov
v kvarke in obratno, kar omogoči nastanek in razpad barionov. Vsa skalarna polja nosijo
glede na kvantna števila, ki jih določajo Diracovi γa in družinski γ̃a, tudi družinska in
Diracova kvantna števila v adjungirani upodobitvi grup. Lepota te teorije je, da en sam kon-
denzat iz dveh desnoročnih nevtrinov z družinskimi kvantnimi števili, ki niso družinska
kvantna števila spodnjih štirih družin, zlomi diskretno simetrijo CP in poskrbi za maso
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vseh skalarnih polj, ter še neopaženega vektorskega polja. Ta skalarna polja ponujajo v
prisotnosti kondenzata desnoročnih nevtrinov, ki zlomi simetrijo CP , odgovor na vprašanje
kako je v našem vesolju nastala opazljiva asimetrija med snovjo in antisnovjo. Skalarna polja
s prostorskim indexom s = (7, 8) zlomijo z neničelno vakuumsko pričakovano vrednostjo
še šibki in hipernaboj, in spremenijo tudi lastno maso, ter tako pojasnijo vse privzetke
standardnega modela. Ker teorija napoveduje dve ločeni gruči po štiri družine kvarkov in
leptonov, pojasni stabilna od zgornjih širih družin izvor temne snovi. Teorija pa napoveduje
tudi, da bodo na LHC izmerili četrto k trem že opaženim družinam, izmerili pa bodo tudi
več skalarnih polj.

9.1 Introduction

The spin-charge-family [1–12,14] theory is offering, as a kind of the Kaluza-Klein
like theories, the explanation for the charges of quarks and leptons (right handed
neutrinos are in this theory the regular members of a family) and antiquarks and
antileptons [15,16], and for the existence of the corresponding gauge vector fields.
The theory explains, by using besides the Dirac kind of the Clifford algebra objects
also the second kind of the Clifford algebra objects (there are only two kinds [5–
7,3,17,18,20,19], associated with the left and the right multiplication of any Clifford
object), the origin of families of quarks and leptons and correspondingly the origin
of the scalar gauge fields causing the electroweak break. These scalar fields are
responsible, after gaining nonzero vacuum expectation values, for the masses
and mixing matrices of quarks and leptons [9–11] and for the masses of the weak
vector gauge fields. They manifest, carrying the weak charge and the hyper charge
equal to (±1

2
, ∓1

2
, respectively) [14], as the Higgs field and the Yukawa couplings

of the standard model.
The spin-charge-family theory predicts two decoupled groups of four fami-

lies [3,4,9–11]: The fourth of the lower group will be measured at the LHC [10],
while the lowest of the upper four families constitutes the dark matter [12].

This theory also predicts the existence of the scalar fields which carry the
triplet colour charges. All the scalars fields carry the fractional quantum numbers
with respect to the scalar index s ≥ 5, either the ones of SU(2) or the ones of
SU(3), while they are with respect to other groups in the adjoint representations.
Neither these scalar fields nor the scalars causing the electroweak break are the
supersymmetric scalar partners of the quarks and leptons, since they do not carry
all the charges of a family member.

These scalar fields with the triplet colour charges cause transitions of antilep-
tons into quarks and antiquarks into quarks and back, offering, in the presence
of the condensate of the two right handed neutrinos with the family quantum
numbers belonging to the upper four families which breaks the CP symmetry, the
explanation for the matter-antimatter asymmetry. This is the topic of the present
paper.

Let me point out that the spin-charge-family theory overlaps in many points
with other unifying theories [26–31], since all the unifying groups can be seen
as the subgroups of the large enough orthogonal groups, with family groups
included. But there are also many differences. While the theories built on chosen
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groups must for their choice propose the Lagrange densities designed for these
groups and representations (which means that there must be a theory behind
this effective Lagrange densities), the spin-charge-family theory starts with a very
simple action, from where all the properties of spinors and the gauge vector and
scalar fields follow, provided that the breaks of symmetries occur.

Consequently this theory differs from other unifying theories in the degrees of
freedom of spinors and scalar and vector gauge fields which show up on different
levels of the break of symmetries, in the unification scheme, in the family degrees
of freedom and correspondingly also in the evolution of our universe.

It will be demonstrated in this paper that one condensate of two right handed
neutrinos makes all the scalar gauge fields and all the vector gauge fields massive
on the scale of the appearance of the condensate, except the vector gauge fields
which appear in the standard model action before the electroweak break as massless
fields. The scalar gauge fields, which cause the electroweak break while gaining
nonzero vacuum expectation values and changing their masses, then explain
masses of quarks and leptons and of the weak bosons.

It is an extremely encouraging fact, that one scalar condensate and the nonzero
vacuum expectation values of some scalar fields, those with the weak and the
hyper charge equal to by the standard model required charges for the Higgs’s scalar,
can bring the simple starting action in d = (13+1) to manifest in d = (3+1) in the
low energy regime the observed phenomena of fermions and bosons, explaining
the assumptions of the standard model and can possibly answer also the open
questions, like the ones of the appearance of family members, of families, of the
dark matter and of the matter-antimatter asymmetry.

The paper leaves, however, many a question connected with the break of
symmetries open. Although the scales of breaks of symmetries can roughly be
estimated, for the trustworthy predictions a careful study of the properties of
fermions and bosons in the expanding universe is needed. It stays to be checked
under which conditions in the expanding universe, the starting fields (fermions
with the two kinds of spins and the corresponding vielbeins and the two kind of
the spin connection fields) after the spontaneous breaks manifest in the low energy
regime the observed phenomena. This is a very demanding study, a first simple
step of which was done in the refs. [12,22]. The present paper is a step towards
understanding the matter-antimatter asymmetry within the spin-charge-family
theory.

In the subsection 9.1.1 I present the action and the assumptions of the spin-
charge-family theory, with the comments added.

In sections (9.2, 9.4, 9.5, 9.3) the properties of the scalar and vector gauge fields
and of the condensate are discussed. In appendices the discrete symmetries of the
spin-charge-family theory and the technique used for representing spinors, with
the one Weyl representation of SO(13, 1) and the families in SO(7, 1) included, is
briefly presented. The final discussions are presented in sect. 9.7.

9.1.1 The action of the spin-charge-family theory and the assumptions

In this subsection all the assumptions of the spin-charge-family theory are presented
and commented. This subsection follows to some extend a similar subsection of
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the ref. [14].
i. The space-time is d(= (13+ 1)) dimensional. Spinors carry besides the internal
degrees of freedom, determined by the Dirac γa’s operators, also the second kind
of the Clifford algebra operators [5–7,4], called γ̃a’s.
ii. In the simple action [3,1] fermions ψ carry in d = (13 + 1) only two kinds
of spins, no charges, and interact correspondingly with only the two kinds of the spin
connection gauge fields,ωabα and ω̃abα, and the vielbeins, fαa.

S =

∫
ddx E Lf +∫
ddx E (αR+ α̃ R̃) ,

Lf =
1

2
(ψ̄ γap0aψ) + h.c.,

p0a = fαap0α +
1

2E
{pα, Ef

α
a}−,

p0α = pα −
1

2
Sabωabα −

1

2
S̃abω̃abα,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c. ,

R̃ =
1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ) + h.c. . (9.1)

Here 1 fα[afβb] = fαafβb − fαbfβa. Sab and S̃ab are generators (Eqs.(9.5, 9.37,
9.37) of the groups SO(13, 1) and S̃O(13, 1), respectively, expressible by γa and
γ̃a.
iii. The manifold M(13+1) breaks first into M(7+1) times M(6) (which mani-
fests as SU(3) ×U(1)), affecting both internal degrees of freedom, SO(13+ 1) and
S̃O(13 + 1). After this break there are 2((7+1)/2−1) massless families, all the rest
families get heavy masses 2.
Both internal degrees of freedom, the ordinary SO(13 + 1) one (where γa deter-
mine spins and charges of spinors) and the S̃O(13+1) (where γ̃a determine family
quantum numbers), break simultaneously with the manifolds.
iv. There are additional breaks of symmetry: The manifoldM(7+1) breaks further

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indices from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.

2 A toy model [22,23,15] was studied in d = (5 + 1) with the same action as in Eq.‘(9.1).
For a particular choice of vielbeins and for a class of spin connection fields the manifold
M5+1 breaks into M(3+1) times an almost S2, while 2((3+1)/2−1) families stay massless
and mass protected. Equivalent assumption, although not yet proved that it really works,
is made also in the case that M(13+1) breaks first into M(7+1) ×M(6). The study is in
progress.
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intoM(3+1)×M(4).
v. There is a scalar condensate of two right handed neutrinos with the family
quantum numbers of the upper four families, bringing masses of the scale above
the unification scale, to all the vector and scalar gauge fields, which interact with
the condensate.
vi. There are nonzero vacuum expectation values of the scalar fields with the
scalar indices (7, 8), which cause the electroweak break and bring masses to the
fermions and weak gauge bosons, conserving the electromagnetic and colour
charge.

Comments on the assumptions:
i.: There are, as already written above, two (only two) kinds of the Clifford

algebra objects. The Dirac one (Eq.(9.35)) (γa) will be used to describe spins of
spinors (fermions) in d = (13+ 1), manifesting in d = (3+ 1) the spin and all the
fermion charges, the second one (Eq.(9.35)) (γ̃a) will describe families of spinors.
The representations of γa’s and γ̃a’s are orthogonal to one another 3. There are
correspondingly two groups determining internal degrees of freedom of spinors
in d = (13+ 1): The Lorentz group SO(13, 1) and the group S̃O(13, 1).
One Weyl representation of SO(13, 1) contains, if analysed [1,3,4,15] with respect to
the standard model groups, all the family members, assumed by the standard model,
with the right handed neutrinos included (the family members are presented in ta-
ble 9.3). It contains the left handed weak (SU(2)I) charged and SU(2)II chargeless
colour triplet quarks and colourless leptons (neutrinos and electrons), the right
handed weakless and SU(2)II charged quarks and leptons, as well as the right
handed weak charged and SU(2)II chargeless colour antitriplet antiquarks and
(anti)colourless antileptons, and the left handed weakless and SU(2)II charged
antiquarks and antileptons. The reader can easily check the properties of the repre-
sentations of spinors (table 9.3), presented in the ”technique” (appendix 9.9) way,
if using Eqs. (9.5, 9.8, 9.9, 9.11, 9.14).
Each family member carries the family quantum numbers, originating in γ̃a’s
degrees of freedom. Correspondingly S̃ab changes the family quantum numbers,
leaving the family member quantum number unchanged.
ii.: This starting action enables to represent the standard model as an effective low
energy manifestation of the spin-charge-family theory, which explains all the stan-
dard model assumptions, with the families included. There are gauge vector fields,
massless before the electroweak break: gravity, colour SU(3) octet vector gauge
fields, weak SU(2) (it will be named SU(2)I) triplet vector gauge field and ”hyper”
U(1) (it will be named U(1)I) singlet vector gauge fields. All are superposition of
fαc ωabα. There are (eight rather than the observed three) families of quarks and
leptons, massless before the electroweak break.
These eight families are indeed two decoupled groups of four families, in the
fundamental representations with respect to twice S̃U(2)× S̃U(2) groups, the

3 One can learn in Eq. (9.44)of appendix (9.9) that Sab transforms one state of the represen-
tation into another state of the same representation, while S̃ab transforms the state into
the state belonging to another representation.
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subgroups of S̃O(3, 1)× S̃O(4) ∈ S̃O(7, 1). The scalar gauge fields, determining
the mass matrices of quarks and leptons, carry with respect to the scalar index
s ∈ (7, 8) the weak and the hyper charge of the scalar Higgs, while they carry if
they are the superposition of fσs ω̃abσ two kinds of the family quantum numbers
in the adjoint representations, representing two (orthogonal) groups, each of the
group contains two triplets (with respect to S̃U(2)

S̃O(3,1)
× S̃U(2)

S̃O(4)
).

The scalar fields with the quantum numbers (Q,Q ′, Y ′, which are the superposi-
tion of fσs ωabσ) are the three singlets, again carrying the weak and the hyper
charge of the scalar Higgs. One group of two triplets determine, together with the
three singlets, after gaining nonzero expectation values, the Higgs’s scalar and
the Yukawa couplings of the standard model. The starting action contains also the
additional SU(2)II (from SO(4)) vector gauge field and the scalar fields with the
space index s ∈ (5, 6) and t ∈ (9, 10, 11, 12), as well as the auxiliary vector gauge
fields expressible (Eqs. (9.56, 9.55) in the appendix 9.10) with vielbeins. They all
remain either auxiliary (if there are no spinor sources manifesting their quantum
numbers) or become massive after the appearance of the condensate.
iii., iv.: The assumed break fromM(13+1) first intoM(7+1) timesM(6) (manifest-
ing the symmetry SU(3) ×U(1)II) explains why the weak and the hyper charge
are connected with the handedness of spinors. In the spinor representation of
SO(7, 1) there are left handed weak charged quarks and leptons with the hyper
charges (1

6
, −1

2
, respectively) and the right handed weak chargeless quarks with

the hyper charge either 2
3

or −1
3

, while the right handed weak chargeless leptons
carry the hyper charge either 0 or (−1). A further break fromM(7+1) intoM(3+1)

×M4), manifesting the symmetry SO(3, 1) ×SU(2)I × SU(2)II ×U(1)II× SU(3),
explains the observed properties of the family members - the coloured quarks, left
handed weak charged and SU(2)II chargeless and right handed weak chargeless
and SU(2)II charged and colourless leptons, again left handed weak charged and
SU(2)II chargeless and right handed weak chargeless and SU(2)II charged, quarks
with the ”spinor” charge 1

6
and leptons with the ”spinor” charge −1

2
- and of the

observed vector gauge fields and the scalar fields (through Higgs’s scalar and
Yukawa couplings).
Since the left handed members distinguish from the right handed partners in the
weak and the hyper charges, the family members of all the families stay massless
and mass protected up to the electroweak break 4. Antiparticles are accessible
from particles by the CN and PN , as explained in refs. [15,16] and briefly also in
the appendix (9.8). This discrete symmetry operator does not contain γ̃a’s degrees
of freedom. To each family member there corresponds the antimember, with the
same family quantum number.
v.: It is a condensate of the two right handed neutrinos with the quantum
numbers of the upper four families (table 9.2), appearing in the energy region

4 As long as the left handed family members and their right handed partners carry different
conserved charges, they can not behave as massive particles, they are mass protected. It
is the appearance of nonzero vacuum expectation values of the scalar fields, carrying the
weak and the hyper charge, which cause non conservation of these two charges, which
makes the superposition of the left and the right handed family members possible, and
breaks the mass protection.
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above the unification scale, which makes all the scalar gauge fields (those with the
space index (5, 6, 7, 8), as well as those with the space index (9, . . . , 14)) and the
vector gauge fields, manifesting nonzero quantum numbers τ4, τ23, Q ,Y, τ̃4, τ̃23,
Q̃ ,Ỹ,Ñ3R (Eqs. (9.8, 9.9, 9.11, 9.12, 9.13, 9.14)) massive.
vi.: At the electroweak break the scalar fields with the space index s = (7, 8),
triplets with respect to the family index (originating in ω̃abs, Eq. (9.16)) and the
three singlets carrying the charges (Q,Q ′, Y ′) (originating inωts ′s, Eq. (9.15)), all
with the weak and the hyper charge equal to (∓1

2
,±1

2
, respectively), get nonzero

vacuum expectation values, changing also their masses and breaking the weak
and the hyper charge symmetry. These scalars determine mass matrices of twice
the four families, as well as the masses of the weak bosons.
All the rest scalar fields keep masses of the condensate scale and are correspond-
ingly unobservable in the low energy regime 5. The fourth family to the observed
three ones will (sooner or later) be observed at the LHC. Its properties are under
the consideration [10], while the stable of the upper four families is the candidate
for the dark matter constituents.

The above assumptions enable that the starting action (Eq. (9.1)) manifests
effectively in d = (3 + 1) in the low energy regime fermion and boson fields as
assumed by the standard model.

To see this [3,1,4–8,2,9,10,12,14], let us formally rewrite the Lagrange density
for a Weyl spinor of (Eq.(9.1)), as follows

Lf = ψ̄γm(pm −
∑
Ai

gAτAiAAim )ψ+

{
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} ,

p0s = ps −
1

2
Ss
′s"ωs ′s"s −

1

2
S̃abω̃abs ,

p0t = pt −
1

2
St
′t"ωt ′t"t −

1

2
S̃abω̃abt , (9.2)

where m ∈ (0, 1, 2, 3), s ∈ 7, 8, (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab) run
within ∈ (0, 1, 2, 3) and ∈ (5, 6, 7, 8), t ∈ (5, 6, 9, . . . , 13, 14), (t ′, t") ∈ (5, 6, 7, 8)

and ∈ (9, 10, . . . , 14). ψ represents all family members of all the families. The
generators of the charge groups τAi (expressed in Eqs. (9.3), (9.9), (9.11) in terms
of Sab) fulfil the commutation relations

τAi =
∑
a,b

cAiab S
ab ,

{τAi, τBj}− = iδABfAijkτAk . (9.3)

5 Correspondingly d = (13 + 1) manifests in d = (3 + 1) spins and charges as if there
would be d = (9+ 1), since the plane (5, 6) and the plane in which the vector τ4 lies, are
unobservable at low energies.
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The spin generators are defined in Eq. (9.8). These group generators determine
all the internal degrees of freedom of one family members as seen from the point
of view of d = (3 + 1): The colour charge (SU(3) with the generators ~τ3) and
the ”spinor charge” (U(1)II) with the generator τ4 originating in SO(6), the weak
charge SU(2)I with the generators ~τ1 and the second SU(2)II charge with the gen-
erators ~τ2 originating in SO(4) (SU(2)II breaks in the presence of the condensate
into U(1)I, defining together with τ4 the hyper charge Y (= τ23 + τ4) and the spin
determined by SO(3, 1).
The condensate of two right handed neutrinos with the family quantum numbers
of the upper four families bring masses (of the unifying scale≥ 1016 GeV or above)
to all the scalar and those vector gauge fields which are not observed at so far
measurable energies.
The scalar fields causing, when getting nonzero vacuum expectation values, the
electroweak phase transitions changing at the transition also their own masses,
bring masses to the eight families and to the weak bosons. We shall comment all
these fields in what follows.

The first line of Eq. (9.2) describes [1,3] before the electroweak break the
dynamics of eight families of massless fermions in interaction with the massless
colour ~A3m, weak ~A1m and hyper AYm (= sin ϑ2A23m + cos ϑ2A4m) gauge fields, all
are the superposition ofωabm 6.

The second line of the same equation (Eq. (9.2)) determines the mass term,
which after the electroweak break brings masses to all the family members of the
eight families and to the weak bosons. The scalar fields responsible - after getting
nonzero vacuum expectation values - for masses of the family members and of the
weak bosons are namely included in the second line of Eq. (9.2) as (−1

2
Ss
′s"ωs ′s"s−

1
2
S̃ãb̃ ω̃ãb̃s, s =∈ (7, 8) , (s ′, s") ∈ (5, 6, 7, 8), (ã, b̃) ∈ (0̃, 1̃, . . . , 8̃)) 7. The properties

of these scalar fields are discussed in sect. (9.4), where the proof is presented
that they all carry the weak charge and the hyper charge as the standard model
Higgs’s scalar, while they are either triplets with respect to the family quantum
numbers or singlets with respect to the charges Q,Q ′ and Y ′. While the two
triplets (~̃A1s , ~̃AÑLs ) interact with the lower four families, interact (~̃A2s , ~̃AÑRs ) with
the upper four families. These twice two triplets are superposition of 1

2
S̃ãb̃ ω̃ãb̃s,

s =∈ (7, 8), Eq. (9.16). The three singlets (AQs , AQ
′

s and AY
′

m ) are superposition of
ωs ′s"s, Eq.(9.15). They interact with the family members of all the families, ”seeing”
family members charges.

The third line of Eq. (9.2) represents fermions in interaction with all the rest
scalar fields. Scalar fields become massive after interacting with the condensate.
Those which do not gain nonzero vacuum expectation values, keep the heavy
masses of the order of the scale of the condensate up to low energies. The massive

6 These superposition can easily be found by using Eqs. (9.11, 9.9). They are explicitly
written in the ref. [3]. The interaction with the condensate makes the fields AY

′
m , Eq. (9.14),

A21m and A22m very massive (at the scale of the condensate).
7 To point out that Sab and S̃ab belong to two different kinds of the Clifford algebra objects

are the indices (a, b) are in S̃ab in this paragraph written as (ã, b̃). Normally only (a, b)

will be used for Sab and S̃ab.



i
i

“proc14” — 2014/12/8 — 18:22 — page 131 — #145 i
i

i
i

i
i

9 Can Spin-charge-family Theory Explain Baryon Number Non-conservation? 131

scalars with the space index t ∈ (5, 6) transform (table 9.3) uR-quarks into dL-
quarks and νR-leptons into eL-leptons and back, as well as ūR-antiquarks into
d̄L-antiquarks and back and ν̄R-antileptons into ēL-antileptons and back, breaking
in the presence of the condensate the Q global symmetry. Those scalar fields
with the space index t = (9, 10, · · · , 14) transform antileptons into quarks and
antiquarks into quarks and back. They are offering in the presence of the scalar
condensate breaking the CP symmetry the explanation for the observed matter-
antimatter asymmetry, as we shall show in sect. 9.2.

Let us write down the part of the fermion action which in the presence of the
condensate offers the explanation for the observed matter/antimatter asymmetry.

Lf ′ = ψ† γ0 γt {
∑

t=(9,10,...14)

[pt − (
1

2
Ss
′s"ωs ′s"t +

1

2
St
′t ′′ ωt ′t"t

+
1

2
S̃ab ω̃abt )]} ψ , (9.4)

where (s ′, s") ∈ (5, 6, 7, 8), (t, t ′, t") ∈ (9, 10, . . . , 14) and (a, b) ∈ (0, 1, 2, 3) and ∈
(5, 6, 7, 8), in agreement with the assumed breaks in sect. (9.1). Again operators S̃ab

determine family quantum numbers and Sab determine family members quantum
numbers. Correspondingly the superposition of the scalar fields ω̃abt and the
superposition of the scalar fields ωabt carry the quantum numbers determined
by either the superposition of S̃ab or by the superposition Sab in the adjoint
representations, while they carry the colour charge, determined by the space index
t ∈ (9, 10, . . . , 14), in the triplet representation of the SU(3) group, as we shall see.
Similarly the scalars with the space index s ∈ (7, 8) carry the weak and the hyper
charge in the doublets representations.

The condensate of two right handed neutrinos with the family quantum
numbers of the upper four families carries (table 9.2) τ4 = 1, τ23 = −1, τ13 = 0,
Y = 0, Q = 0, and the family quantum numbers of the upper four families and
gives masses to scalar and vector gauge fields with the nonzero corresponding
quantum numbers. The only vector gauge fields which stay massless up to the
electroweak break are the hyper charge field (AYm), the weak charge field (~A1m) and
the colour charge field (~A3m).

The standard model subgroups of the SO(13 + 1) and S̃O(13 + 1) groups and
the corresponding gauge fields This section follows to large extend the refs. cite-
JMP,NscalarsweakY2014. To calculate quantum numbers of one Weyl representa-
tion presented in table 9.3 in terms of the generators of the standard model charge
groups τAi (=

∑
a,b c

Ai
ab S

ab) one must look for the coefficients cAiab (Eq. (9.3)).
Similarly also the spin and the family degrees of freedom can be expressed.

The same coefficients cAiab determine operators which apply on spinors and
on vectors. The difference among the three kinds of operators - vector and two
kinds of spinor - lies in the difference among Sab, S̃ab and Sab.

While Sab for spins of spinors is equal to

Sab =
i

4
(γa γb − γb γa) , {γa , γb}+ = 2ηab , (9.5)
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and S̃ab for families of spinors is equal to

S̃ab =
i

4
(γ̃a γ̃b − γ̃b γ̃a) , {γ̃a , γ̃b}+ = 2ηab ,

{γa , γ̃b}+ = 0 , (9.6)

one must take, when Sab apply on the spin connectionsωbde (= fαe ωbdα) and
ω̃b̃d̃e (= fαe ω̃b̃d̃α), on either the space index e or the indices (b, d, b̃, d̃), the
operator

(Sab)ceAd...e...g = i(ηacδbe − η
bcδae )A

d...e...g . (9.7)

This means that the space index (e) ofωbde transforms according to the require-
ment of Eq. (9.7), and so do b, d and b̃, d̃. Here I used again the notation b̃, d̃
to point out that Sab and S̃ab (= S̃ãb̃) are the generators of two independent
groups[14].

One finds [1,3–8,2] for the generators of the spin and the charge groups, which
are the subgroups of SO(13, 1), the expressions:

~N±(= ~N(L,R)) : =
1

2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (9.8)

where the generators ~N± determine representations of the two SU(2) invariant
subgroups of SO(3, 1), the generators ~τ1 and ~τ2,

~τ1 : =
1

2
(S58 − S67, S57 + S68, S56 − S78) , (9.9)

~τ2 : =
1

2
(S58 + S67, S57 − S68, S56 + S78) , (9.10)

determine representations of the SU(2)I× SU(2)II invariant subgroups of the
group SO(4), which is further the subgroup of SO(7, 1) (SO(4), SO(3, 1) are sub-
groups of SO(7, 1)), and the generators ~τ3, τ4 and τ̃4

~τ3 :=
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 := −
1

3
(S9 10 + S11 12 + S13 14) ,

τ̃4 := −
1

3
(S̃9 10 + S̃11 12 + S̃13 14) , (9.11)

determine representations of SU(3)×U(1), originating in SO(6), and of τ̃4 origi-
nating in S̃O(6).

One correspondingly finds the generators of the subgroups of S̃O(7, 1),

~̃NL,R : =
1

2
(S̃23 ± iS̃01, S̃31 ± iS̃02, S̃12 ± iS̃03) , (9.12)
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which determine representations of the two S̃U(2) invariant subgroups of S̃O(3, 1),
while

~̃τ1 : =
1

2
(S̃58 − S̃67, S̃57 + S̃68, S̃56 − S̃78) ,

~̃τ2 : =
1

2
(S̃58 + S̃67, S̃57 − S̃68, S̃56 + S̃78) , (9.13)

determine representations of S̃U(2)I× S̃U(2)II of S̃O(4). Both, S̃O(3, 1) and S̃O(4),
are the subgroups of S̃O(7, 1).

One further finds [3]

Y = τ4 + τ23 , Y ′ = −τ4 tan2 ϑ2 + τ23 , Q = τ13 + Y , Q ′ = −Y tan2 ϑ1 + τ13 ,

Ỹ = τ̃4 + τ̃23 , Ỹ ′ = −τ̃4 tan2 ϑ̃2 + τ̃23 , Q̃ = Ỹ + τ̃13 , Q̃ ′ = −Ỹ tan2 ϑ̃1 + τ̃13 .

(9.14)

The scalar fields, responsible [1–3] - after getting in the electroweak break
nonzero vacuum expectation values - for the masses of the family members and of
the weak bosons, and presented in the second line of Eq. (9.2), can be expressed in
terms ofωabc fields and ω̃abc fields as presented in Eq. (9.15), 9.16).

One can find the below expressions by taking into account Eqs. (9.9, 9.11, 9.12,
9.13) and Eq. (9.14).

−
1

2
Ss
′s"ωs ′s"s = −(g23 τ23A23s + g13 τ13A13s + g4 τ4A4s) ,

g13 τ13A13s + g23 τ23A23s + g4 τ4A4s = gQQAQs + gQ
′
Q ′AQ

′

s + gY
′
Y ′AY

′

s ,

A4s = −(ω9 10 s +ω11 12 s +ω13 14 s) ,

A13s = (ω56s −ω78s) , A23s = (ω56s +ω78s) ,

AQs = sin ϑ1A13s + cos ϑ1AYs ,

AQ
′

s = cos ϑ1A13s − sin ϑ1AYs ,

AYs = sin ϑ2A23s + cos ϑ2A4s ,

AY
′

s = cos ϑ2A23s − sin ϑ2A4s ,

(s ∈ (7, 8)) . (9.15)

In Eq. (9.15) the coupling constants were explicitly written to see the analogy with
the gauge fields in the standard model.

−
1

2
S̃ãb̃ ω̃ãb̃s = −(~̃τ1̃ ~̃A1̃s +

~̃NL̃
~̃A
ÑL̃
s + ~̃τ2̃ ~̃A2̃s +

~̃NR̃
~̃A
ÑR̃
s ) ,

~̃A1̃s = (ω̃5̃8̃s − ω̃6̃7̃s, ω̃5̃7̃s + ω̃6̃8̃s, ω̃5̃6̃s − ω̃7̃8̃s) ,

~̃A
ÑL̃
s = (ω̃2̃3̃s + i ω̃0̃1̃s, ω̃3̃1̃s + i ω̃0̃2̃s, ω̃1̃2̃s + i ω̃0̃3̃s) ,

~̃A2̃s = (ω̃5̃8̃s + ω̃6̃7̃s, ω̃5̃7̃s − ω̃6̃8̃s, ω̃5̃6̃s + ω̃7̃8̃s) ,

~̃A
ÑR̃
s = (ω̃2̃3̃s − i ω̃0̃1̃s, ω̃3̃1̃s − i ω̃0̃2̃s, ω̃1̃2̃s − i ω̃0̃3̃s) ,

(s ∈ (7, 8)) . (9.16)
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Scalar fields from Eq. (9.16) couple to the family quantum numbers, while those
from Eq. (9.15) distinguish among family members.

Expressions for the vector gauge fields in terms of the spin connection fields
and the vielbeins, which correspond to the colour charge (~A3m), the SU(2)II charge
(~A2m), the weak charge (SU(2)I) (~A1m) and the U(1)II charge originating in SO(6)
(~A4m), can be found by taking into account Eqs. (9.9, 9.11). Equivalently one finds
the vector gauge fields in the ”tilde” sector. One really can use just the expressions
from Eqs. (9.15, 9.16), if replacing the scalar index swith the vector indexm.

9.2 Properties of scalar and vector gauge fields, contributing to
transitions of antileptons into quarks

In this - the main - part of the present paper the properties, quantum numbers
and discrete symmetries of those scalar and vector gauge fields appearing in the
action (Eqs.(9.1, 9.2), 9.4) of the spin-charge-family theory [1–9,12] are studied, which
cause transitions of antileptons into quarks and back, and antiquarks into quarks
and back.

These scalar gauge fields carry the triplet or antitriplet colour charge (see
table 9.1) and the fractional hyper and electromagnetic charge.

The Lagrange densities from Eqs. (9.1, 9.2, 9.4) manifest CN · PN invariance
(appendix (9.8)). All the vector and the spinor gauge fields are before the appear-
ance of the condensate massless and reactions creating particles from antiparticles
and back goes in both directions equivalently. Correspondingly there is no matter-
antimatter asymmetry.

The spin-charge-family theory breaks the matter-antimatter symmetry by the
appearance of the condensate (sect. 9.3) and also by nonzero vacuum expectation
values of the scalar fields causing the electroweak phase transition (sect. 9.4). I
shall show that there is the condensate of two right handed neutrinos which breaks
this symmetry, giving masses to all the scalar gauge fields and to all those vector
gauge fields which would be in contradiction with the observations.

Let us start by analysing the Lagrange density presented in Eq. (9.4) before
the appearance of the condensate. The term γt 1

2
Ss
′s"ωs ′s"t in Eq. (9.4) can be

rewritten, if taking into account Eq. (9.42), as follows

γt
1

2
Ss
′s"ωs ′s"t =

∑
+,−

∑
(t t ′)

tt ′

(±©)
1

2
Ss
′s"ω

s"s"
tt ′
(±©)

,

ω
s"s"

tt ′
(±©)

: = ω
s"s"

tt ′
(±)

= (ωs ′s"t ∓ iωs ′s"t ′) ,

tt ′

(±©): =
tt ′

(±)= 1

2
(γt ± γt

′
) ,

(t t ′) ∈ ((9 10), (11 12), (13 14)) . (9.17)

I introduced the notations
tt ′

(±©) andω
s"s"

tt ′
(±©)

to distinguish among different super-

position of states in equations below.
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Using Eqs. (9.9, 9.11) the expression
tt ′

(±©) 1
2
Ss
′s" ω

s"s"
tt ′
(±©)

can be further

rewritten as follows

tt ′

(±©)
1

2
Ss
′s"ω

s"s"
tt ′
(±©)

=

tt ′

(±©) { τ2+A2+
tt ′
(±©)

+ τ2−A2−
tt ′
(±©)

+ τ23A23
tt ′
(±©)

+ τ1+A1+
tt ′
(±©)

+ τ1−A1−
tt ′
(±©)

+ τ13A13
tt ′
(±©)

} ,

A
2±
tt ′
(±©)

= (ω
58
tt ′
(±©)

+ω
67
tt ′
(±©)

) ∓ i(ω
57
tt ′
(±©)

−ω
68
tt ′
(±©)

) ,

A23
tt ′
(±©)

= (ω
56
tt ′
(±©)

+ω
78
tt ′
(±©)

) ,

A
1±
tt ′
(±©)

= ω
58
tt ′
(±©)

−ω
67
tt ′
(±©)

) ∓ i(ω
57
tt ′
(±©)

+ω
68
tt ′
(±©)

) ,

A13
tt ′
(±©)

= (ω
56
tt ′
(±©)

−ω
78
tt ′
(±©)

) . (9.18)

Equivalently one expresses the term γt 1
2
S̃ab ω̃abt in Eq. (9.4), by using Eqs. (9.12,

9.13), as

γt
1

2
S̃ab ω̃abt =

tt ′

(±©)
1

2
S̃ab ω̃

ab
tt ′
(±©)

=

tt ′

(±©) { τ̃2+ Ã2+
tt ′
(±©)

+ τ̃2− Ã2−
tt ′
(±©)

+ τ̃23 Ã23
tt ′
(±©)

+ τ̃1+ Ã1+
tt ′
(±©)

+ τ̃1− Ã1−
tt ′
(±©)

+ τ̃13 Ã13
tt ′
(±©)

+

Ñ+
R Ã

NR+
tt ′
(±©)

+ Ñ−
R Ã

NR−
tt ′
(±©)

+ Ñ3R Ã
NR3
tt ′
(±©)

+ Ñ+
L Ã

NL+
tt ′
(±©)

+ Ñ−
L Ã

NL−
tt ′
(±©)

+ Ñ3L Ã
NL3
tt ′
(±©)

} ,

Ã
NR±
tt ′
(±©)

= (ω̃
23
tt ′
(±©)

− i ω̃
01
tt ′
(±©)

) ∓ i(ω̃
31
tt ′
(±©)

− i ω̃
02
tt ′
(±©)

) ,

ÃNR3
tt ′
(±©)

= (ω̃
12
tt ′
(±©)

− i ω̃
03
tt ′
(±©)

) ,

Ã
NL±
tt ′
(±©)

= (ω̃
23
tt ′
(±©)

+ i ω̃
01
tt ′
(±©)

) ∓ i(ω̃
31
tt ′
(±©)

+ i ω̃
02
tt ′
(±©)

) ,

ÃNR3
tt ′
(±©)

= (ω̃
12
tt ′
(±©)

+ i ω̃
03
tt ′
(±©)

) , (9.19)

with Ã
2±
tt ′
(±©)

, Ã23
tt ′
(±©)

, Ã
1±
tt ′
(±©)

and Ã13
tt ′
(±©)

following from expressions for A
2±
tt ′
(±©)

, A23
tt ′
(±©)

, A
1±
tt ′
(±©)

and A13
tt ′
(±©)

, respectively, in (Eq.(9.18)), if replacingω
s"s"

tt ′
(±©)

by ω̃
s"s"

tt ′
(±©)

.

There is the additional term in Eq. (9.4): γt 1
2
St
′t"ωt ′t"t. This term can be

written with respect to the generators St
′t" as one colour octet scalar field and one

U(1)II scalar field (Eq. 9.11)

γt
1

2
St"t

′"ωt"t ′"t =
∑
+,−

∑
(t t ′)

tt ′

(±©) { ~τ3 · ~A3
tt ′
(±©)

+ τ4 ·A4
tt ′
(±©)

} ,

(t t ′) ∈ ((9 10), 11 12), 13 14)) . (9.20)
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Taking all above equations (9.17, 9.18, 9.19, 9.20) into account Eq. (9.4) can be
rewritten, if we leave out p tt ′

(±©)

since in the low energy limit the momentum does

not play any role, as follows

Lf" = ψ† γ0(−) {
∑
+,−

∑
(t t ′)

tt ′

(±©) ·

[ τ2+A2+
tt ′
(±©)

+ τ2−A2−
tt ′
(±©)

+ τ23A23
tt ′
(±©)

+ τ1+A1+
tt ′
(±©)

+ τ1−A1−
tt ′
(±©)

+ τ13A13
tt ′
(±©)

+ τ̃2+ Ã2+
tt ′
(±©)

+ τ̃2− Ã2−
tt ′
(±©)

+ τ̃23 Ã23
tt ′
(±©)

+ τ̃1+ Ã1+
tt ′
(±©)

+ τ̃1− Ã1−
tt ′
(±©)

+ τ̃13 Ã13
tt ′
(±©)

+ Ñ+
R Ã

NR+
tt ′
(±©)

+ Ñ−
R Ã

NR−
tt ′
(±©)

+ Ñ3R Ã
NR3
tt ′
(±©)

+ Ñ+
L Ã

NL+
tt ′
(±©)

+ Ñ−
L Ã

NL−
tt ′
(±©)

+ Ñ3L Ã
NL3
tt ′
(±©)

+ τ3iA3i
tt ′
(±©)

+ τ4A4
tt ′
(±©)

] }ψ , (9.21)

where (t, t ′) run in pairs over [(9, 10), . . . (13, 14)] and the summation must go
over + and − of tt ′

(±©)

.

Let us calculate now quantum numbers of the scalar and vector gauge fields
appearing in Eq. (9.21) by taking into account that the spin of gauge fields is
determined according to Eq. (9.7) ((Sab)cdAd...e...g = i(ηacδbd − ηbcδad)A

d...e...g,
for each index (∈ (d . . . g)) of a bosonic field Ad...g separately). We must take into
account also the relation among Sab and the charges (the relations are, of course,
the same for bosons and fermions) (Eqs. (9.8, 9.9, 9.11)).

On table 9.1 properties of the scalar gauge fields appearing in Eq. (9.21) are
presented.

The scalar fields with the scalar index s = (9, 10, · · · , 14), presented in ta-
ble 9.1, carry one of the triplet colour charges and the ”spinor” charge equal to
twice the quark ”spinor” charge, or the antitriplet colour charges and the anti
”spinor” charge. They carry in addition the quantum numbers of the adjoint rep-
resentations originating in Sab or in S̃ab. Although carrying the colour charge
in one of the triplet or antitriplet states, these fields can not be interpreted as
superpartners of the quarks as required by, let say, the N = 1 supersymmetry. The
hyper charges and the electromagnetic charges are namely not those required by
the supersymmetric partners to the family members.

Let us have a look what do the scalar fields, appearing in Eq. (9.21) and in
table 9.1, do when being applied on the left handed members of the Weyl repre-
sentation presented on table 9.3, containing quarks and leptons and antiquarks
and antileptons [4,21,15]. Let us choose the 57th line of table 9.3, which represents
in the spinor technique the left handed positron, ē+L . If we make, let say, the choice

of the term (γ0
910

(+) τ2� ) A2�9 10
(⊕)

(the scalar field A2�9 10
(⊕)

is presented in the 7th line in

table 9.1 and in the second line of Eq. (9.21)), the family quantum numbers will
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field prop. τ4 τ13 τ23 (τ33, τ38 ) Y Q τ̃4 τ̃13 τ̃23 Ñ3
L
Ñ3
R

A
1±

9 10
(±©)

scalar ∓© 1
3
± 1 0 (±© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

+ ∓ 1 0 0 0 0 0

A13
9 10
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
1±

11 12
(±©)

scalar ∓© 1
3
∓ 1 0 (∓© 1

2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

+ ∓ 1 0 0 0 0 0

A13
11 12
(±©)

scalar ∓© 1
3

0 0 (∓© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
1±

13 14
(±©)

scalar ∓© 1
3
∓ 1 0 (0, ∓© 1√

3
) ∓© 1

3
∓© 1
3

+ ∓ 1 0 0 0 0 0

A13
13 14
(±©)

scalar ∓© 1
3

0 0 (0, ∓© 1√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

A
2±

9 10
(±©)

scalar ∓© 1
3

0 ± 1 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

+ ∓ 1 ∓© 1
3

+ ∓ 1 0 0 0 0 0

A23
9 10
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
1±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 ± 1 0 0 0

Ã13
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
2±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 ± 1 0 0

Ã23
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NL±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 ± 1 0

Ã
NL3

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

Ã
NR±

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 ± 1

Ã
NR3

910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·

A3i
9 10
(±©)

scalar ∓© 1
3

0 0 (± 1+ ±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
A4
910
(±©)

scalar ∓© 1
3

0 0 (±© 1
2
, ±© 1

2
√
3

) ∓© 1
3

∓© 1
3

0 0 0 0 0

· · ·
~A3m vector 0 0 0 octet 0 0 0 0 0 0 0

A4m vector 0 0 0 0 0 0 0 0 0 0 0

Table 9.1. Quantum numbers of the scalar gauge fields carrying the space index t =

(9, 10, · · · , 14), appearing in Eq. (9.21), are presented. To the colour charge of all these scalar
fields the space degrees of freedom contribute one of the triplets values. These scalars are
with respect to the two SU(2) charges, (~τ1 and ~τ2), and the two S̃U(2) charges, (~̃τ1 and
~̃τ2), triplets (that is in the adjoint representations of the corresponding groups), and they
all carry twice the ”spinor” number (τ4) of the quarks. The quantum numbers of the two
vector gauge fields, the colour and the U(1)II ones, are added.
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not be affected and they can be any. The state carries the ”spinor” (lepton) number
τ4 = 1

2
, the weak charge τ13 = 0, the second SU(2)II charge τ23 = 1

2
and the

colour charge (τ33, τ38) = (0, 0). Correspondingly, its hyper charge (Y(= τ4+τ23))
is 1 and the electromagnetic charge Q(= Y + τ13) is 1.

So, what does the term γ0
910

(+) τ2� A2�9 10
(⊕)

make on this spinor? Making use

of Eqs. (9.44, 9.46, 9.54) of appendix 9.9 one easily finds that operator γ0
910

(+) τ2−

transforms the left handed positron into
03

(+i)
12

(+) |
56

[−]
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) , which

is dc1R , presented on line 3 of table 9.3. Namely, γ0 transforms
03

[−i] into
03

(+i),
910

(+)

transforms
9 10

[−] into
9 10

(+), while τ2− (= −
56

(−)
78

(−)) transforms
56

(+)
78

(+) into
56

[−]
78

[−].
The state dc1R carries the ”spinor” (quark) number τ4 = 1

6
, the weak charge τ13 = 0,

the second SU(2)II charge τ23 = −1
2

and the colour charge (τ33, τ38) = (1
2
, 1

2
√
3
).

Correspondingly its hyper charge is (Y = τ4 + τ23 =) −1
3

and the electromagnetic
charge (Q = Y + τ13 =) −1

3
. The scalar field A2�9 10

(⊕)

carries just the needed quantum

numbers as we can see in the 7th line of table 9.1.
If the antiquark ūc̄2L , from the line 43 (it is not presented, but one can very

easily construct it) in table 9.3, with the ”spinor” charge τ4 = −1
6

, the weak charge
τ13 = 0, the second SU(2)II charge τ23 = −1

2
, the colour charge (τ33, τ38) =

(1
2
,− 1

2
√
3
), the hyper charge Y(= τ4 + τ23 =) −2

3
and the electromagnetic charge

Q(= Y + τ13 =) −2
3

submits the A2�9 10
(⊕)

scalar field, it transforms into uc3R from

the line 17 of table 9.3, carrying the quantum numbers τ4 = 1
6

, τ13 = 0, τ23 = 1
2

,
(τ33, τ38) = (0,− 1√

3
), Y = 2

3
and Q = 2

3
. These two quarks, dc1R and uc3R can

bind together with uc2R from the 9th line of the same table (at low enough energy,
after the electroweak transition, and if they belong in a superposition with the left
handed partners to the first family) into the colour chargeless baryon - a proton.
This transition is presented in figure 9.1.

The opposite transition at low energies would make the proton decay.
Let us look at one more example. The 63th line of table 9.3 represents in the

spinor technique the right handed positron, ē+R . Since we shall again not have a
look on a transition, in which scalar fields with the nonzero family quantum num-
bers are involved, the family quantum number of this positron is not important.
The state carries the ”spinor” (lepton) number τ4 = 1

2
, the weak charge τ13 = 1

2
,

the second SU(2)II charge τ23 = 0 and the colour charge (τ33, τ38) = (0, 0). Corre-
spondingly, its hyper charge (Y = τ4 + τ23) is 1

2
and the electromagnetic charge

Q = Y + τ13 is 1.

What does, let say, the term γ0
910

(+) τ1� A1�9 10
(⊕)

(the scalar field A1�9 10
(⊕)

is pre-

sented in the first line of table 9.1) make on ē+R ? Making use of Eqs. (9.44, 9.46,
9.54) of appendix 9.9 one easily finds that the right handed positron transforms

under the application of γ0 τ1−
910

(+) into
03

[−i]
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) , which

is dc1L presented on line 5 of table 9.3. Namely, γ0 transforms
03

(+i) into
03

[−i],
910

(+)
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uc2R
τ4= 1

6
,τ13=0,τ23= 1

2

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 2
3
,Q= 2

3

uc2R

ūc̄2L
τ4=− 1

6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 2
3
,Q=− 2

3

uc3R
τ4= 1

6
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,− 1√
3

)

Y= 1
6
,Q= 2

3

ē+
L

τ4= 1
2
,τ13=0,τ23= 1

2

(τ33,τ38)=(0,0)
Y=1,Q=1

dc1R

τ4= 1
6
,τ13=0,τ23=− 1

2

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 1
3
,Q=− 1

3

•

A2�
9 10
(+)

,
τ4=2×(− 1

6
),τ13=0,τ23=−1

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y=− 4
3
,Q=− 4

3

•

Fig. 9.1. The birth of a proton out of an positron ē+L , antiquark ūc̄2L and quark (spectator)
uc2R . The family quantum number can be any.

transforms
9 10

[−] into
9 10

(+), while τ1� (=
56

(−)
78

(+)) transforms
56

(+)
56

[−] into
56

[−]
56

(+). The
state dc1L carries the ”spinor” (quark) number τ4 = 1

6
, the weak charge τ13 = −1

2
,

the second SU(2)II charge τ23 = 0 and the colour charge (τ33, τ38) = (1
2
, 1

2
√
3
).

Correspondingly its hyper charge is (Y = τ4 + τ23 =) 1
6

and the electromagnetic
charge (Q = Y + τ13 =) −1

3
. The scalar field A1�9 10

(⊕)

carries all the needed quantum

numbers, as one can see in figure 9.1.
If the antiquark ūc̄2R , from the line 47 in table 9.3 (the reader can easily find

the expression
03

(+i)
12

(+) |
56

[−]
78

(+) ||
9 10

(+)
11 12

(−)
13 14

[+] ), with the ”spinor” charge
τ4 = −1

6
, the weak charge τ13 = −1

2
, the second SU(2)II charge τ23 = 0, the

colour charge (τ33, τ38) = (1
2
,− 1

2
√
3
), the hypercharge (Y = τ4 + τ23 =) −1

6
and

the electromagnetic charge (Q = Y + τ13 =) −2
3

, submits the A1�9 10
(⊕)

scalar field,

it transforms into uc3L from the line 23 of table 9.3 (
03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

[−]
11 12

(−)
13 14

[+] ), carrying the quantum numbers τ4 = 1
6

, τ13 = 1
2

, τ23 = 0, (τ33, τ38) =

(0,− 1√
3
), Y = 1

6
and Q = 2

3
. These two quarks, dc1L and uc3L , can bind (at low

enough energy, when making after the electroweak transition the superposition
with the right handed partners) together with uc2L from the 15th line of the same
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table, into the colour chargeless baryon - a proton. This transition is presented in
figure 9.2.

The opposite transition would make the proton decay.

uc2L
τ4= 1

6
,τ13= 1

2
,τ23=0

(τ33,τ38)=(− 1
2
, 1
2
√

3
)

Y= 1
6
,Q= 2

3

uc2L

ūc̄2R
τ4=− 1

6
,τ13=− 1

2
,τ23=0

(τ33,τ38)=( 1
2
,− 1

2
√

3
)

Y=− 1
6
,Q=− 2

3

uc3L
τ4= 1

6
,τ13= 1

2
,τ23=0

(τ33,τ38)=(0,− 1√
3

)

Y= 1
6
,Q= 2

3

ē+
R

τ4= 1
2
,τ13= 1

2
,τ23=0

(τ33,τ38)=(0,0)

Y= 1
2
,Q=1

dc1L

τ4= 1
6
,τ13=− 1

2
,τ23=0

(τ33,τ38)=( 1
2
, 1
2
√

3
)

Y= 1
6
,Q=− 1

3

•

A1�
9 10
(+)

,
τ4=2×(− 1

6
),τ13=−1,τ23=0

(τ33,τ38)=( 1
2
, 1
2
√
3

)

Y=− 1
3
,Q=− 4

3

•

Fig. 9.2. The birth of a proton out of a positron ē+R , antiquark ūc̄2R and quark (spectator) uc2L .
The family quantum number can be any.

Similar transitions go also with other scalars from Eq. (9.21) and table 9.1. The
~̃A1
t ′ t"
(+)

, ~̃A2
t ′ t"
(+)

, ~̃ANL
t ′ t"
(+)

and ~̃ANL
t ′ t"
(+)

fields cause transitions among the family members,

changing a particular member into the antimember of another colour and of

another family. The term γ0
910

(+) Ñ−
R A

ÑR−
9 10
(⊕)

transforms ē+R into uc1L , changing the

family quantum numbers.
The action from Eqs. (9.1, 9.2, 9.4) manifests CN ·PN invariance. All the vector

and the spinor gauge fields are massless.
Since no one of the scalar fields from table 9.1 have been observed and also

no vector gauge fields like ~A2m, A4m and other scalar and vector fields, we shall
discuss this topic in sect. 9.5, it must exist a mechanism, which makes the non
observed scalar and vector gauge fields massive enough.

Scalar fields from table 9.1 carry the colour and the electromagnetic charge.
Therefore their nonzero vacuum expectation values would not be in agreement
with the observed phenomena. One, however, notices that all the scalar gauge
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fields from table 9.1 and several other scalar and vector gauge fields (see sect. 9.5)
couple to the condensate with the nonzero quantum number τ4 and τ23 and
nonzero family quantum numbers.

It is not difficult to recognize that the desired condensate must have spin zero,
Y = τ4+ τ23 = 0,Q = Y + τ13 = 0 and ~τ1 = 0 in order that in the low energy limit
the spin-charge-family theory would manifest effectively as the standard model.

I make a choice of the two right handed neutrinos of the VIIIth family coupled
into a scalar, with τ4 = −1, τ23 = 1, correspondingly Y = 0, Q = 0 and ~τ1 = 0,
and with family quantum numbers (Eqs. (9.13, 9.12)) τ̃4 = −1, τ̃23 = 1, Ñ3R = 1,
and correspondingly with Ỹ = τ̃4 + τ̃23 = 0, Q̃ = Ỹ + τ̃13 = 0, and ~̃τ1 = 0. The
condensate carries the family quantum numbers of the upper four families.

The condensate made out of spinors couples to spinors differently than to
antispinors - ”anticondensate” would namely carry τ4 = 1, and τ23 = −1 - break-
ing correspondingly the CN · PN symmetry: The reactions creating particles from
antiparticles are not any longer symmetric to those creating antiparticle from
particles.

Such a condensate leaves the hyper field AYm (= sin ϑ2A23m + cos ϑ2A4m) (for
the choice that sin ϑ2 = cos ϑ2 and g4 = g2, there is no justification for such a
choice, AYm = 1√

2
(A23m + A4m)) massless, while it gives masses to A2±m and AY

′

m

(= 1√
2
(A4m − A23m ) for sin ϑ2 = cos ϑ2) and it gives masses also to all the scalar

gauge fields from table 9.1, since they all couple to the condensate through τ4.
The weak vector gauge fields, ~A1m, the hyper charge vector gauge fields, AYm,

and the colour vector gauge fields, ~A1m, stay massless.
The scalar fields with the scalar space index s = (7, 8) - those which couple to

all eight families, those which couple only to the upper and those which couple
only to the lower four families - carrying the weak and the hyper charges of the
Higgs’s scalar - wait for getting nonzero vacuum expectation values to change
their masses while causing the electroweak break.

The condensate does what is needed so that in the low energy regime the spin-
charge-family manifests as an effective theory which agrees with the standard model
to the extend that it is in agreement with the observed phenomena, explaining the
standard model assumptions and predicting new fermion and boson fields.

It also may hopefully explain also the observed matter-antimatter asymmetry
if the conditions in the expanding universe would be appropriate (9.6). The work
needed to check these conditions in the expanding universe within the spin-charge-
family theory is very demanding. Although we do have some experience with
following the history of the expanding universe [12], this study needs much more
efforts, not only in the calculations, but also in understanding the mechanism
of appearing the condensate, relations among the velocity of the expansion, the
temperature and the dimension of space-time in the period of the appearance of
the condensate. This study has not yet been really started.

9.3 Properties of the condensate

In table 9.2 the properties of the condensate of the two right handed neutrinos
(|νVIIIR >1 |ν

VIII
R >2 ), one with spin up and another with spin down (table 9.3, line
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25 and 26), carrying the family quantum numbers of the VIIIth family (table 9.4 ),
are presented. The condensate carries the quantum numbers of SU(2)II, τ23 = 1
(Eq. (9.9)), of U(1)II originating in SO(6), τ4 = −1 (Eq.9.11), correspondingly
Y = 0, Q = 0, and the family quantum numbers (table 9.4) τ̃4 = −1 (Eq. (9.11)),
τ̃23 = 1 (Eq. (9.13)), and Ñ3R = 1 (Eq. (9.12)). Each of the two neutrinos could
belong to a different family of the upper four families. In this case the family
quantum numbers of the condensate change.

The condensate is presented in the first line of table 9.2 as a member of a triplet
of the group SU(2)II with the generators τ2i. Correspondingly the condensate
couples to all the vector gauge fields which carry nonzero τ2i, τ4, τ̃2i, ÑiR and τ̃4.
The fields AYm, ~A3m and ~A1m stay massless. The condensate couples also to all the
scalar gauge fields with the scalar indices s ∈ (5, 6, 7, 8, 9, . . . , 14), since they all
carry nonzero either τ4 or τ23.

state S03 S12 τ13 τ23 τ4 Y Q τ̃13 τ̃23 τ̃4 Ỹ Q̃ Ñ3L Ñ
3
R

(|νVIII
1R >1 |νVIII

2R >2) 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1

(|νVIII1R >1 |e
VIII
2R >2) 0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1

(|eVIII1R >1 |e
VIII
2R >2) 0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1

Table 9.2. The condensate of the two right handed neutrinos νR, with the VIIIth family
quantum number, coupled to spin zero and belonging to a triplet with respect to the
generators τ2i, is presented, together with its two partners. The condensate carries ~τ1 = 0,
τ23 = 1, τ4 = −1 and Q = 0 = Y. The triplet carries τ̃4 = −1, τ̃23 = 1 and Ñ3R = 1, Ñ3L = 0,
Ỹ = 0, Q̃ = 0. The family quantum numbers are presented in table 9.4.

Coupling of the scalar gauge fields to the condensate is proportional to

(< νVIII1R |1 < ν
VIII
2R |) (γ0

tt ′

(±©) τAiAAi
tt ′
(±©)

)†(γ0
tt ′

(±©) τAiAAi
tt ′
(±©)

)(|νVIII1R >1 |νVIII2R >)

∝ (AAi
tt ′
(±©)

)† (AAi
tt ′
(±©)

) ,

(tt ′) ∈ [(56), (78), (9 10), . . . , (13 14)] . (9.22)

The condensate does break the CN · PN symmetry. (The ”anticondensate”
would namely carry τ23 = −1 and τ4 = 1).

The condensate gives masses to all the scalars from table 9.1, either because
they couple to the condensate due to τ4 or due to τ4 and τ23 quantum numbers. It
gives masses also to all the scalar fields with s ∈ (5, 6, 7, 8), since they couple to the
condensate due to the nonzero τ23. The scalar fields with the quantum numbers of
the upper four families couple in addition through their family quantum numbers.

The condensate couples also to all the vector gauge fields except to the gauge
colour octet field ~A3m, the hyper charge vector fields AYm and the weak charge
vector triplet fields ~A1m, since they carry zero τ23, τ4 and Y quantum numbers.

The spin connection fields, of either ”tilde” (S̃ab) or ”nontilde” (Sab) origin,
which do not couple to the spinor condensate, are auxiliary fields, expressible with
vielbeins fields (abstract (9.10)).
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Below the scalar and vector gauge fields are presented, which get masses
through the interaction with the condensate.

A
2±
tt ′
(±©)

, A23
tt ′
(±©)

, A
1±
tt ′
(±©)

, A13
tt ′
(±©)

, ~A3
tt ′
(±©)

,

Ã
2±
tt ′
(±©)

, Ã23
tt ′
(±©)

, Ã
1±
tt ′
(±©)

, Ã13
tt ′
(±©)

,

Ã
NL±
tt ′
(±©)

, ÃNL3
tt ′
(±©)

, Ã
NR±
tt ′
(±©)

, ÃNR3
tt ′
(±©)

,

(tt ′) ∈ [(9 10), (11 12), (13 14)] ,

A
2±
ss ′
(±©)

, AY
′

ss ′
(±©)

=
1√
2
(A23

ss ′
(±©)

−A4
ss ′
(±©)

) ,

(ss ′) ∈ [(56), (78)] ,

A
2±
m , AY

′

m =
1√
2
(A23m −A4m) ,

~̃A2m , Ã
4
m ,

~̃ANRm ,

m ∈ (0, 1, 2, 3) . (9.23)

In expression for AY
′

m,s ϑ2 =
π
4

is chosen, just for simplicity, with no justification
so far.

It stays as an open question what does make the right handed neutrinos to
form such a condensate in the history of the universe.

Since AAis , s ∈ (5, 6) couple to the condensate and get masses, while (by
assumption) they do not get nonzero vacuum expectation values during the
electroweak break (what changes the masses of the scalar fields AAis , s ∈ (7, 8))
the restriction in the sum in Eq. (9.2) is justified.

The scalar fields, causing the birth of baryons, have the triplet colour charges.
They resemble the supersymmetric partners of the quarks, but since they do not
carry all the quantum numbers of the quarks, they are not.

9.4 Properties of scalar fields which determine mass matrices of
fermions

This section is a short overview of the ref. [14].
There are two kinds of the scalar gauge fields, which gain at the electroweak

break nonzero vacuum expectation values and determine correspondingly the
masses of the families of quarks and leptons and to the masses of gauge weak
bosons: The kind originating in ω̃ãb̃s and the kind originating in ωtt ′s, ω56s
and ω78s, both kinds have the space index s = (7, 8) and both carry the weak
and the hyper charge as the Higgs’s scalar. These scalar fields are presented in
the Lagrange density for fermions (Eq. (9.2)) in the second line. The ”tilde” kind
influences the family quantum numbers of fermions, the ”Dirac” kind influences
the family members quantum numbers.
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The two triplets ( ~̃A1s , ~̃ANLs ) influence the lower four families (the lowest three
already observed), while ( ~̃A2s , ~̃ANRs ) influence the upper four families, the stable
of which constitute the dark matter. Recognizing that ~̃τ1 ~̃A1s + ~̃NL

~̃ANLs +~̃τ2 ~̃A2s

+ ~̃NR
~̃ANRs = 1

2
S̃ab ω̃abs, s = (7, 8), one easily finds, taking into account Eqs. (9.12,

9.13), the expressions

~̃A1s = (ω̃58s − ω̃67s, ω̃57s + ω̃68s, ω̃56s − ω̃78s) ,

~̃ANLs = (ω̃23s + i ω̃01s, ω̃31s + i ω̃02s, ω̃12s + i ω̃03s) ,

~̃A2s = (ω̃58s + ω̃67s, ω̃57s − ω̃68s, ω̃56s + ω̃78s) ,

~̃ANRs = (ω̃23s − i ω̃01s, ω̃31s − i ω̃02s, ω̃12s − i ω̃03s) ,

s = (7, 8) , (9.24)

presented already in Eq. (9.16). Similarly one finds, taking into account Eqs. (9.8,
9.9, 9.11, 9.14), the expressions for AQs , AYs and AY

′

s , presented in Eqs. (9.15).
The scalar fields AQs , AYs and AY

′

s distinguish among the family members,
coupling to the family members quantum numbers through Q (= τ13 + Y) , Y
(= τ23 + τ4) and Y ′ = τ23 − tan ϑ2 τ4, τ4 = −1

3
(S9 10 + S11 12 + S13 14). The

scalars originating in ω̃abs and distinguishing among families, couple the family
quantum numbers through (~̃τ1 and ~̃NL), or through (~̃τ2 and ~̃NR), all in the adjoint
representations of the corresponding groups.

Let us now prove that all the scalar fields with the space (scalar with respect
to d = (3+ 1)) index s = (7, 8) carry the weak and the hyper charge (τ13, Y) equal
to either (−1

2
, 1
2

) or to (1
2
,−1

2
). Let us first simplify the notation, using a common

name AAis for all the scalar fields with the scalar index s = (7, 8)

AAis = (AQs , A
Q ′

s , A
Y ′

s , Ã
4
s ,

~̃A2s ,
~̃A1s ,

~̃ANRs , ~̃ANLs ) , (9.25)

and let us rewrite the term
∑
s=7,8 ψ̄ γ

s p0sψ in Eq. (9.2) as follows∑
s=7,8

ψ̄ γs p0sψ ,

= ψ̄{
78

(+) p0++
78

(−) p0−}ψ ,

p0± = (p07 ∓ ip08) ,
(p07 ∓ ip08) = (p7 ∓ ip8) − τAi (AAi7 ∓ iAAi8 )
78

(±)= 1

2
(γ7 ± iγ8) . (9.26)

Let us now apply the operators Y,Q, Eq. (9.14), and τ13 = 1
2
(S56 − S78), Eq. (9.9),

on the fields AAi78
(±)

= (AAi7 ∓ iAAi8 ). One finds

τ13 (AAi7 ∓ iAAi8 ) = ± 1
2
(AAi7 ∓ iAAi8 ) ,

Y (AAi7 ∓ iAAi8 ) = ∓ 1
2
(AAi7 ∓ iAAi8 ) ,

Q (AAi7 ∓ iAAi8 ) = 0 , (9.27)
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This is, with respect to the weak, the hyper and the electromagnetic charge, just what the
standard model assumes for the Higgs’ scalars. The proof is complete.

One can check also, using Eq. (9.44), that γ0
78

(−) transforms the uc1R from the
first line of table 9.3 into uc1L from the seventh line of the same table, or νR from
the 25th line into the νL from the 31th line of the same table.

The scalars AAi78
(−)

obviously bring the weak charge 1
2

and the hyper charge −1
2

to the right handed family members (uR, νR), and the scalars AAi78
(+)

bring the weak

charge −1
2

and the hyper charge 1
2

to (dR, eR).
Let us now prove that the scalar fields of Eq. (9.25) are either triplets with re-

spect to the family quantum numbers ( ~̃NR, ~̃NL, ~̃τ2, ~̃τ1; Eqs. (9.12, 9.13)) or singlets
as the gauge fields ofQ = τ13+Y, Q ′ = τ13−Y tan2 ϑ1 and Y ′ = τ23− tan2 ϑ2 τ4.
One can prove this by applying ~̃τ2, ~̃τ1, ~̃NR, ~̃NL and Q,Q ′, Y ′ on their eigenstates.
Let us calculate, as an example, Ñ3L and Q on ÃNL378

(±)

and on AQ78
(±)

, taking into

account Eqs. (9.12, 9.11,9.9, 9.7)

Ñ3L Ã
NL±
78
(±)

= ± Ã
NL±
78
(±)

, Ñ3L Ã
NL3
78
(±)

= 0 ,

QAQ78
(±)

= 0 ,

Ã
NL±
78
(±)

= {(ω̃
23
78
(±)

+ i ω̃
01
78
(±)

) ∓ i (ω̃
31
78
(±)

+ iω̃
02
78
(±)

)} ,

ÃNL378
(±)

= (ω̃
12
78
(±)

+ iω̃
03
78
(±)

)

AQ78
(±)

= sin ϑ1A1378
(±)

+ sin ϑ1(−)(ω
9 10

78
(±)

+ω
11 12

78
(±)

+ω
13 14

78
(±)

) , (9.28)

with Q = S56 + τ4 = S56 − 1
3
(S9 10 + S11 12 + S13 14), and with τ4 defined in

Eq. (9.11)).
Nonzero vacuum expectation values of the scalar fields (Eq. (9.25)), which

carry the scalar index s = (7, 8), and correspondingly the weak and the hyper
charges, break the mass protection mechanism of quarks and leptons of the lower
and the upper four families. In the loop corrections contribute to all the matrix
elements of mass matrices of any family members besides ÃAis and the scalar fields
which are the gauge fields of Q,Q ′, Y ′ also the vector gauge fields.

The gauge fields of ~̃NR and ~̃τ2 contribute only to masses of the upper four
families, while the gauge fields of ~̃NL and ~̃τ1 contribute only to masses of the
lower four families. The triplet scalar fields with the scalar index s = (7, 8) and the
family charges ~̃NR and ~̃τ2 transform any family member belonging to the group of
the upper four families into the same family member belonging to another family
of the same group of four families, changing the right handed member into the left
handed partner, while those triplets with the family charges ~̃NL and ~̃τ1 transform
any family member of particular handedness and belonging to the lower four
families into its partner of opposite handedness, belonging to another family of
the lower four families.
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The scalars AQ78
(±)

(Eq. (9.28)), AQ
′

78
(±)

(= cos ϑ1A1378
(±)

− sin ϑ1A478
(±)

) and AY
′

78
(±)

(Eq. (9.23)) contribute to all eight families, distinguishing among the family mem-
bers and not among the families.

The mass matrix of any family member, belonging to any of the two groups
of the four families, manifests - due to the S̃U(2)(R,L) × S̃U(2)(II,I) (either (R, II)

or (L, I)) structure of the scalar fields, which are the gauge fields of the ~̃NR,L and
~̃τ2,1 - the symmetry presented in Eq. (9.29)

Mα =


−a1 − a e d b

e −a2 − a b d

d b a2 − a e

b d e a1 − a


α

. (9.29)

In the ref. gn2014 the mass matrices for quarks, which are in the agreement with
the experimental data, are presented and predictions made.

9.5 Condensate and nonzero vacuum expectation values of
scalar fields make spinors and most of scalar and vector
gauge fields massive

Let us shortly overview properties of the scalar and the vector gauge fields after a.
two right handed neutrinos (coupled to spin zero and with the family quantum
numbers (table 9.4) of the upper four families) make a condensate (table 9.2) at the
scale ≥ 1016 GeV and after b. the electroweak break, when the scalar fields with
the space index s = (7, 8) get nonzero vacuum expectation values.

All the scalar gauge fields AAit , t ∈ (5, 6, 7, 8, 9, . . . , 14) (Eqs. (9.2, 9.21, 9.23),
table 9.1) interact with the condensate through the quantum numbers τ4 and τ23,
those with the family quantum numbers of the upper four families interact also
through the family quantum numbers ~̃τ2 or ~̃NR, getting masses of the order of the
condensate scale (Eq.(9.23)).

At the electroweak break the scalar fields AAis , s ∈ (7, 8), from Eqs. (9.25, 9.25)
get nonzero vacuum expectation values, changing correspondingly their own
masses and determining masses of quarks and leptons, as well as of the weak
vector gauge fields.

The vector gauge fields A
2±
m , A

Y ′

m , ~̃A
2±
m , ÃY

′

m and ~̃ANRm (Eq. (9.23)) get masses
due to the interaction with the condensate through τ23 and τ4, the first two, and/or
also due to the family quantum numbers of the upper four families, the last three,
respectively.

The vector gauge fields ~A3m,
~A1m, and AYm stay massless up to the electroweak

break when the scalar gauge fields, which are weak doublets with the hypercharge
making electromagnetic charge Q equal to zero, give masses to the weak bosons

(A
1±
m = 1√

2
(A11m ∓ iA11m ) andAQ

′

m = cos ϑ1A13m − sin ϑ1A4m), while the electromag-

netic vector field (AQm = sin ϑ1A13m + cos ϑ1A4m) and the colour vector gauge field
stay massless.
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At the electroweak break, when the nonzero vacuum expectation values of
the scalar fields break the weak and the hypercharge global symmetry, also all the
eight families of quarks and leptons get masses. Until the electroweak break the
families were mass protected, since the right handed partners distinguished from
the left handed ones in the weak and hyper charges, what disabled them to make
the superposition manifesting masses.

9.6 Sakharov conditions as seen in view of the spin-charge-family
theory

The condensate of the right handed neutrinos, as well as the nonzero vacuum
expectation values of the scalar fields AAi78

(±)

- if leading to the complex matrix

elements of the mixing matrices - cause the CN PN violation terms, which generate
the matter-antimatter asymmetry.

It is the question whether both generators of the matter-antimatter asymmetry
- the condensate and the complex phases of the mixing matrices of quarks and
leptons (this last alone can not with one complex phase and also very probably
not with the three complex phases of the lower four families) - can explain at all
the observed matter-antimatter asymmetry of the ”ordinary” matter, that is the
matter of mostly the first family of quarks and leptons.

The lowest of the upper four families determine the dark matter. For the dark
matter any relation among matter and antimatter is so far experimentally allowed.

Both origins of the matter-antimatter asymmetry - the condensate and the
nonzero vacuum expectation values of the scalar fields carrying the weak and the
hyper charge - (are assumed to) appear spontaneously.

Sakharov [24] states that for the matter-antimatter asymmetry three conditions
must be fulfilled:
a. (CN and) CN PN must not be conserved.
b. Baryon number non conserving processes must take place.
c. Thermal non equilibrium must be present not to equilibrate the number of
baryons and antibaryons.

Sakharov uses for c. the requirement that CPT must be conserved and that
{CPT,H}− = 0. In a thermal equilibrium the average number of baryons < nB >=
Tr(e−βHnB) = Tr(e−βHCPTnB(CPT)

−1) = < n̄B >. Therefore < nB > − <

n̄B >= 0 at the thermal equilibrium and there is no excess of baryons with respect
to antibaryons. In the expanding universe, however, the temperature is changing
with time. It is needed that the discrete symmetry CN PN is broken to break the
symmetry between matter and antimatter, if the universe starts with no matter-
antimatter asymmetry.

The spin-charge-family theory starting action (Eq.(9.1)) is invariant under the
CN PN symmetry. The scalar fields (Eq.(9.21)) of this theory cause transitions, in
which a quark is born out of a positron (figures (9.1, 9.2)) and a quark is born
out of antiquark, and back. These reactions go in both directions with the same
probability, until the spontaneous break of the CN PN symmetry is caused by the
appearance of the condensate of the two right handed neutrinos (table 9.2).



i
i

“proc14” — 2014/12/8 — 18:22 — page 148 — #162 i
i

i
i

i
i

148 N.S. Mankoč Borštnik

But after the appearance of the condensate (and in addition of the appearance
of the non zero vacuum expectation values of the scalar fields with the space index
s ∈ (7, 8)), family members ”see” the vacuum differently than the antimembers.
And this might explain the matter-antimatter asymmetry. It is also predicting the
proton decay.

It is, of course, the question whether both phenomena can at all explain the
observed matter-antimatter asymmetry. I agree completely with the referee of this
paper that before answering the question whether or not the spin-charge-family
theory explains this observed phenomena, one must do a lot of additional work to
find out: i. Which is the order of phase transition, which leads to the appearance
of the condensate. ii. How strong is the thermal nonequilibrium, which leads to
the matter-antimatter asymmetry during the phase transition. iii. How rapid is the
appearance of the matter-antimatter asymmetry in comparison with the expansion
of the universe. iv. Does the later history of the expanding universe enable that the
produced asymmetry survives up to today.

Although we do have some experience with solving the Boltzmann equations
for fermions and antifermions [12] to follow the history of the dark matter within
the spin-charge-family theory, the study of the history of the universe from the very
high temperature to the baryon production within the same theory in order to see
the matter-antimatter asymmetry in the present time is much more demanding
task. These is under consideration, but still at a very starting point since a lot of
things must be understood before starting with the calculations.

What I can conclude is that the spin-charge-family theory does offer the oppor-
tunity also for the explanation for the observed matter-antimatter asymmetry.

9.7 Conclusions

The spin-charge-family [1,3–8,2,9,12,14,15] theory is a kind of the Kaluza-Klein theo-
ries in d = (13+ 1) but with the families introduced by the second kind of gamma
operators - the γ̃a operators in addition to the Dirac γa in d = (13+ 1). The theory
assumes a simple starting action (Eq. (9.1)) in d = (13+1). This simple action man-
ifests in the low energy regime, after the breaks of symmetries (subsection 9.1.1),
all the degrees of freedom assumed in the standard model, offering the explanation
for all the properties of quarks and leptons (right handed neutrinos are in this
theory the regular members of each family) and antiquarks and antileptons. The
theory explains the existence of the observed gauge vector fields. It explains the
origin of the scalar fields (the Higgs and the Yukawa couplings) responsible for
the quark and lepton masses and the masses of the weak bosons and carrying the
weak and the hyper charge of the standard model Higgs ([14]).

The theory is offering the explanation also for the matter-antimatter asymme-
try and for the appearance of the dark matter.

The spin-charge-family theory predicts two decoupled groups of four fami-
lies [3,4,9,12]: The fourth of the lower group of four families will be measured
at the LHC [10] and the lowest of the upper four families constitutes the dark
matter [12] and was already seen. It also predicts that there might be several scalar



i
i

“proc14” — 2014/12/8 — 18:22 — page 149 — #163 i
i

i
i

i
i

9 Can Spin-charge-family Theory Explain Baryon Number Non-conservation? 149

fields observable at the LHC. The upper four families manifest, due to their high
masses, a new ”nuclear force” among their baryons.

All these degrees of freedom are already contained in the simple starting
action. The scalar fields with the weak and the hyper charges equal to (∓1

2
,±1

2
),

respectively (section 9.4), have the space index s = (7, 8), while they carry in
addition to the weak and the hyper charges also the family quantum numbers,
originating in S̃ab (they form two groups of twice SU(2) triplets), or the family
members quantum numbers, originating in Sab (they form three singlets with the
quantum numbers (Q,Q ′, Y ′)). These scalar fields cause the transitions of the right
handed family members into the left handed partners and back. Those with the
family quantum numbers cause at the same time transitions among families within
each of the two family groups of four families. They all gain in the electroweak
break nonzero vacuum expectation values, giving masses to both groups of four
families of quarks and leptons and to weak bosons (changing also their own
masses).

There are in this theory also the scalar fields with the space index s = (5, 6);
They carry with respect to this degree of freedom they the weak charge equal to
the hyper charge (∓1

2
,∓1

2
, respectively). They carry also additional quantum num-

bers Eq.(9.23) like all the scalar fields: The family quantum numbers, originating
in S̃ab and the family members quantum numbers originating in Sab.

And there are also the scalar fields with the scalar index s = (9, 10, · · · , 14).
These scalars carry the triplet colour charge with respect to the space index and the
additional quantum numbers (table 9.1), originating in family quantum numbers
S̃ab and in family members quantum numbers Sab.

There are no additional scalar gauge fields.
There are the vector gauge fields with respect to d = (3 + 1): AAim , with Ai

staying for the groups SU(3) and U(1) (both originating in SO(6) of SO(13, 1)), for
the groups SU(2)II and SU(2)I (both originating in SO(4) of SO(7, 1)) and for the
groups SU(2)× SU(2) (∈ SO(3, 1)), in both sectors, the Sab and S̃ab ones.

The condensate of the two right handed neutrinos with the family charges
of the upper four families (table 9.2) gives masses to all the scalar and vector
gauge fields, except to the colour octet vector, the hyper singlet vector and the
weak triplet vector gauge fields, to which the condensate does not couple. It
gives masses also to all the vector gauge fields to which the condensate couples.
Those vector gauge fields of either Sab or S̃ab origin, which do not couple to the
condensate, are expressible with the corresponding vielbeins (appendices 9.55,
9.56). The condensate breaks the CN PN symmetry (sections (9.3, 9.8)).

There are no additional vector gauge fields in this theory.
Nonzero vacuum expectation values of the scalar gauge fields with the space

index s = (7, 8) and the quantum numbers as explained in the fourth paragraph
of this section change in the electroweak break their masses, while all the other
scalars or vectors either stay massless (the colour octet, the electromagnetic field),
or keep the masses of the scale of the condensate. The only before the electroweak
massless vector fields, which become at the electroweak break massive, are the
heavy bosons.
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It is extremely encouraging that the simple starting action of the spin-charge-
family offers at low energies the explanations for so many observed phenomena, although
the starting assumptions (section 9.1.1) wait to be derived from the initial and
boundary conditions of the expanding universe.

This paper is a step towards understanding the matter-antimatter asymmetry
within the spin-charge-family theory, predicting also the proton decay. The theory
obviously offers the possibility that the scalar gauge fields with the space index
s = (9, 10, · · · , 14) explain, after the appearance of the condensate, the matter-
antimatter asymmetry. To prove, however, that this indeed happen, requires the
additional study: Following the universe through the phase transitions which
breaks the CN PN symmetry at the level of the condensate and further through
the electroweak phase transition up to today, to check how much of the matter-
antimatter asymmetry is left. The experience when following the history of the
expanding universe to see whether the spin-charge-family theory can explain the
dark matter content [12] is of some help. However, answering the question to
which extend this theory can explain the observed matter-antimatter asymmetry
requires a lot of additional understanding and a lot of work.

Let me conclude with the recognition, pointed out already in the introduction,
that the spin-charge-family theory overlaps in many points with other unifying
theories [26–31], since all the unifying groups can be recognized as the subgroups
of the large enough orthogonal groups, with family groups included. But there
are also many differences: The spin-charge-family theory starts with a very simple
action, from where all the properties of spinors and the gauge vector and scalar
fields follow, provided that the breaks of symmetries occur in the desired way.
Consequently it differs from other unifying theories in the degrees of freedom
of spinors and scalar and vector gauge fields which show up on different levels
of the break of symmetries, in the unification scheme, in the family degrees of
freedom and correspondingly also in the evolution of our universe.

9.8 APPENDIX: Discrete symmetry operators [15]

I present here the discrete symmetry operators in the second quantized picture,
for the description of which the Dirac sea is used. I follow the reference [15].
The discrete symmetry operators of this reference are designed for the Kaluza-
Klein like theories, in which the total angular momentum in higher than (3+ 1)

dimensions manifest as charges in d = (3 + 1). The dimension of space-time is
even, as it is in the case of the spin-charge-family theory.

CN =

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd ,

TN =

3∏
<γm,m=1

γm Γ (3+1) K Ix0 Ix5,x7,...,xd−1 ,

PN = γ0 Γ (3+1) Γ (d) I~x3 . (9.30)
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The operator of handedness in even d dimensional spaces is defined as

Γ (d) := (i)d/2
∏
a

(
√
ηaa γa) , (9.31)

with products of γa in ascending order. We choose γ0, γ1 real, γ2 imaginary, γ3

real, γ5 imaginary, γ6 real, alternating imaginary and real up to γd real. Operators
I operate as follows:

Ix0x
0 = −x0;

Ixx
a = −xa;

Ix0x
a = (−x0,~x);

I~x~x = −~x;

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd);

Ix5,x7,...,xd−1(x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd);

Ix6,x8,...,xd(x
0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd), d = 2n.

CN transforms the state, put on the top of the Dirac sea, into the corresponding
negative energy state in the Dirac sea.

The operator, it is named [1,16,15] CN , is needed, which transforms the start-
ing single particle state on the top of the Dirac sea into the negative energy state
and then empties this negative energy state. This hole in the Dirac sea is the an-
tiparticle state put on the top of the Dirac sea. Both, a particle and its antiparticle
state (both put on the top of the Dirac sea), must solve the Weyl equations of
motion.

This CN is defined as a product of the operator [1,16] "emptying", (making
transformations into a completely different Fock space)

"emptying" =
∏
<γa

γa K = (−)
d
2
+1
∏
=γa

γa Γ (d)K , (9.32)

and CN

CN =

d∏
<γa,a=0

γa K

3∏
=γm,m=0

γm Γ (3+1) K Ix6,x8,...,xd

=

d∏
<γs,s=5

γs Ix6,x8,...,xd . (9.33)

We shall need inded only the product of operators CNPN , TN and CNPN TN ,
since either CN or PN have in even dimensional spaces with d = 2(2n+ 1) an odd
number of γa operators, transforming accordingly states from the representation



i
i

“proc14” — 2014/12/8 — 18:22 — page 152 — #166 i
i

i
i

i
i

152 N.S. Mankoč Borštnik

of one handedness in d = 2(2n+ 1) into the Weyl of another handedness.

CNPN = γ0
d∏

=γs,s=5

γs I~x3 Ix6,x8,...,xd ,

CNPNTN =

d∏
=γa,a=0

γa K Ix . (9.34)

9.9 APPENDIX: Short presentation of technique [6,18,20]

I make in this appendix a short review of the technique [18,20], initiated and
developed [5–8] when proposing the spin-charge-family theory [5,6,8,4,1,2,12,9]
assuming that all the internal degrees of freedom of spinors, with family quantum
number included, are describable in the space of d-anticommuting (Grassmann)
coordinates [6], if the dimension of ordinary space is d. There are two kinds of
operators in the Grassmann space, fulfilling the Clifford algebra, which anticom-
mute with one another. The technique was further developed in the present shape
together with H.B. Nielsen [18,20] by identifying one kind of the Clifford objects
with γs’s and another kind with γ̃a’s.

The objects γa and γ̃a have properties

{γa, γb}+ = 2ηab , {γ̃a, γ̃b}+ = 2ηab , , {γa, γ̃b}+ = 0 ,

γ̃aB := i(−)nBBγa |ψ0 >,

B = a0 + aaγ
a + aabγ

aγb + · · ·+ aa1···adγa1 . . . γad)|ψ0 > (9.35)

for any d, even or odd. I is the unit element in the Clifford algebra. The two
kinds of the Clifford algebra objects are connected with the left and the right
multiplication of any Clifford algebra objects B. In Eq. (9.35) B is expressed as a
polynomial of γa, (−)nB = +1,−1, when the object B has a Clifford even (+1) or
odd (+1) character, respectively. |ψ0 > is a vacuum state on which the operators
γa apply.

If B is a Clifford algebra object, let say a polynomial of γa, then one finds

(γ̃aB : = i(−)nB Bγa ) |ψ0 >,

B = a0 + aa0γ
a0 + aa1a2γ

a1γa2 + · · ·+ aa1···adγa1 · · ·γad , (9.36)

where |ψ0 > is a vacuum state, defined in Eq. (9.50) and (−)nB is equal to 1 for the
term in the polynomial which has an even number of γb’s, and to −1 for the term
with an odd number of γb’s.

In this last stage we constructed a spinor basis as products of nilpotents and
projections formed as odd and even objects of γa’s, respectively, and chosen to be
eigenstates of a Cartan subalgebra of the Lorentz groups defined by γa’s and γ̃a’s.

The technique can be used to construct a spinor basis for any dimension d
and any signature in an easy and transparent way. Equipped with the graphic
presentation of basic states, the technique offers an elegant way to see all the
quantum numbers of states with respect to the two Lorentz groups, as well as
transformation properties of the states under any Clifford algebra object.
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The Clifford algebra objects Sab and S̃ab close the algebra of the Lorentz
group

Sab : = (i/4)(γaγb − γbγa) ,

S̃ab : = (i/4)(γ̃aγ̃b − γ̃bγ̃a) ,

{Sab, S̃cd}− = 0 ,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) , (9.37)

We assume the “Hermiticity” property for γa’s and γ̃a’s

γa† = ηaaγa , γ̃a† = ηaaγ̃a , (9.38)

in order that γa and γ̃a are compatible with (9.35) and formally unitary, i.e.
γa † γa = I and γ̃a †γ̃a = I.

One finds from Eq.(9.38) that (Sab)† = ηaaηbbSab.
Recognizing from Eq.(9.37) that two Clifford algebra objects Sab, Scd with

all indices different commute, and equivalently for S̃ab, S̃cd, we select the Cartan
subalgebra of the algebra of the two groups, which form equivalent representations
with respect to one another

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4,
S03, S12, · · · , Sd−2 d−1, if d = (2n+ 1) > 4 ,

S̃03, S̃12, S̃56, · · · , S̃d−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, · · · , S̃d−2 d−1, if d = (2n+ 1) > 4 . (9.39)

The choice for the Cartan subalgebra in d < 4 is straightforward. It is useful to
define one of the Casimirs of the Lorentz group - the handedness Γ ({Γ, Sab}− = 0)
in any d

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa), if d = 2n,

Γ (d) : = (i)(d−1)/2
∏
a

(
√
ηaaγa), if d = 2n+ 1 . (9.40)

One proceeds equivalently for Γ̃ (d), subtituting γa’s by γ̃a’s. We understand the
product of γa’s in the ascending order with respect to the index a: γ0γ1 · · ·γd. It
follows from Eq.(9.38) for any choice of the signature ηaa that Γ † = Γ, Γ2 = I.We
also find that for d even the handedness anticommutes with the Clifford algebra
objects γa ({γa, Γ }+ = 0) , while for d odd it commutes with γa ({γa, Γ }− = 0).

To make the technique simple we introduce the graphic presentation as fol-
lows

ab

(k): =
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) ,

+◦: = 1

2
(1+ Γ) ,

−•:= 1

2
(1− Γ), (9.41)
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where k2 = ηaaηbb. It follows then

γa =
ab

(k) +
ab

(−k) , γb = ikηaa (
ab

(k) −
ab

(−k)) ,

Sab =
k

2
(
ab

[k] −
ab

[−k]) (9.42)

One can easily check by taking into account the Clifford algebra relation (Eq.9.35)
and the definition of Sab and S̃ab (Eq.9.37) that if one multiplies from the left hand

side by Sab or S̃ab the Clifford algebra objects
ab

(k) and
ab

[k], it follows that

Sab
ab

(k)=
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k] ,

S̃ab
ab

(k)=
1

2
k
ab

(k) , S̃ab
ab

[k]= −
1

2
k
ab

[k] , (9.43)

which means that we get the same objects back multiplied by the constant 1
2
k in

the case of Sab, while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than (k). This

also means that when
ab

(k) and
ab

[k] act from the left hand side on a vacuum state
|ψ0〉 the obtained states are the eigenvectors of Sab. We further recognize that γa

transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a transform
ab

(k) into
ab

[k], never to
ab

[−k]

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(9.44)

From Eq.(9.44) it follows

Sac
ab

(k)
cd

(k) = −
i

2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)=
i

2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] =
i

2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= −
i

2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= −
i

2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)=
i

2
ηcc

ab

(k)
cd

[k] . (9.45)

From Eqs. (9.45) we conclude that S̃ab generate the equivalent representations
with respect to Sab and opposite.

Let us deduce some useful relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(9.46)
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We recognize in the first equation of the first line and the first and the second
equation of the second line the demonstration of the nilpotent and the projector

character of the Clifford algebra objects
ab

(k) and
ab

[k], respectively. Defining

ab
˜(±i)= 1

2
(γ̃a ∓ γ̃b) ,

ab
˜(±1)= 1

2
(γ̃a ± iγ̃b) , (9.47)

one recognizes that

ab
˜(k)
ab

(k) = 0 ,
ab
˜(−k)

ab

(k)= −iηaa
ab

[k] ,
ab
˜(k)
ab

[k]= i
ab

(k) ,
ab
˜(k)

ab

[−k]= 0 . (9.48)

Recognizing that

ab

(k)

†

= ηaa
ab

(−k) ,
ab

[k]

†

=
ab

[k] , (9.49)

we define a vacuum state |ψ0 > so that one finds

<
ab

(k)

†
ab

(k) >= 1 ,

<
ab

[k]

†
ab

[k] >= 1 . (9.50)

Taking into account the above equations it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd.

For d even we simply make a starting state as a product of d/2, let us say,

only nilpotents
ab

(k), one for each Sab of the Cartan subalgebra elements (Eq.(9.39)),
applying it on an (unimportant) vacuum state. For d odd the basic states are
products of (d − 1)/2 nilpotents and a factor (1 ± Γ). Then the generators Sab,
which do not belong to the Cartan subalgebra, being applied on the starting state
from the left, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) ψ0
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
...

0d

[−k0d]
12

(k12)
35

(k35) · · ·
d−1 d−2

[−kd−1 d−2] ψ0
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) ψ0
... (9.51)

All the states have the handedness Γ , since {Γ, Sab} = 0. States, belonging to
one multiplet with respect to the group SO(q, d − q), that is to one irreducible
representation of spinors (one Weyl spinor), can have any phase. We made a choice
of the simplest one, taking all phases equal to one.
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The above graphic representation demonstrate that for d even all the states
of one irreducible Weyl representation of a definite handedness follow from a

starting state, which is, for example, a product of nilpotents
ab

(kab), by transforming

all possible pairs of
ab

(kab)
mn

(kmn) into
ab

[−kab]
mn

[−kmn]. There are Sam, San, Sbm, Sbn,
which do this. The procedure gives 2(d/2−1) states. A Clifford algebra object γa

being applied from the left hand side, transforms a Weyl spinor of one handedness
into a Weyl spinor of the opposite handedness. Both Weyl spinors form a Dirac
spinor.

For d odd a Weyl spinor has besides a product of (d − 1)/2 nilpotents or

projectors also either the factor
+◦:= 1

2
(1+ Γ) or the factor

−•:= 1
2
(1− Γ). As in the

case of d even, all the states of one irreducible Weyl representation of a definite
handedness follow from a starting state, which is, for example, a product of (1+ Γ)

and (d− 1)/2 nilpotents
ab

(kab), by transforming all possible pairs of
ab

(kab)
mn

(kmn)

into
ab

[−kab]
mn

[−kmn]. But γa’s, being applied from the left hand side, do not change
the handedness of the Weyl spinor, since {Γ, γa}− = 0 for d odd. A Dirac and
a Weyl spinor are for d odd identical and a ”family” has accordingly 2(d−1)/2

members of basic states of a definite handedness.
We shall speak about left handedness when Γ = −1 and about right handed-

ness when Γ = 1 for either d even or odd.
While Sab which do not belong to the Cartan subalgebra (Eq. (9.39)) generate

all the states of one representation, generate S̃ab which do not belong to the Cartan
subalgebra(Eq. (9.39)) the states of 2d/2−1 equivalent representations.

Making a choice of the Cartan subalgebra set (Eq.(9.39)) of the algebra Sab

and S̃ab a left handed (Γ (13,1) = −1) eigen state of all the members of the Cartan
subalgebra, representing a weak chargeless uR-quark with spin up, hyper charge
(2/3) and colour (1/2 , 1/(2

√
3)), for example, can be written as

03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ〉 =
1

27
(γ0 − γ3)(γ1 + iγ2)|(γ5 + iγ6)(γ7 + iγ8)||

(γ9 + iγ10)(γ11 − iγ12)(γ13 − iγ14)|ψ〉 . (9.52)

This state is an eigen state of all Sab and S̃ab which are members of the Cartan
subalgebra (Eq. (9.39)).

The operators S̃ab, which do not belong to the Cartan subalgebra (Eq. (9.39)),
generate families from the starting uR quark, transforming uR quark from Eq. (9.52)
to the uR of another family, keeping all the properties with respect to Sab un-
changed. In particular S̃01 applied on a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3)) from

Eq. (9.52) generates a state which is again a right handed uR-quark, weak charge-
less, with spin up, hyper charge (2/3) and the colour charge (1/2 , 1/(2

√
3))

S̃01
03

(+i)
12

(+) |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−)= −
i

2

03

[ +i]
12

[ + ] |
56

(+)
78

(+) ||
910

(+)
1112

(−)
1314

(−) .

(9.53)
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Below some useful relations [4] are presented

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (9.54)

I present at the end one Weyl representation of SO(13+1) and the family quantum
numbers of the two groups of four families.

One Weyl representation of SO(13 + 1) contains left handed weak charged
and the second SU(2) chargeless coloured quarks and colourless leptons and right
handed weak chargeless and the second SU(2) charged quarks and leptons (elec-
trons and neutrinos). It carries also the family quantum numbers, not mentioned
in this table. The table is taken from the reference [15].

i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks and leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
1 0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 − 1

2
0 1

2
1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
-1 1

2
0 1

2
1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
1 0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

· · ·

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
1 0 1

2
0 − 1√

3
1
6

2
3

2
3

· · ·

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
1 0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 − 1

2
0 0 0 − 1

2
− 1
2

−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
-1 1

2
0 0 0 − 1

2
− 1
2

0

33 d̄c̄1
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] - 1 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

Continued on next page
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i |aψi > Γ(3,1) S12 Γ(4) τ13 τ23 τ33 τ38 τ4 Y Q

Octet, Γ(1,7) = 1, Γ(6) = −1,

of quarks and leptons

36 ūc̄1
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
1 0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

40 ūc̄1
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
-1 − 1

2
0 − 1

2
− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
1 0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

· · ·

49 d̄c̄3
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
1 0 1

2
0 − 1√

3
− 1
6

1
3

1
3

· · ·

57 ēL

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
1 0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
1 0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 − 1

2
0 0 0 1

2
1
2

0

62 ν̄R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 − 1

2
0 0 0 1

2
1
2

0

63 ēR

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
-1 1

2
0 0 0 1

2
1
2

1

64 ēR

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
-1 1

2
0 0 0 1

2
1
2

1

Table 9.3. The left handed (Γ (13,1) = −1) multiplet of spinors - the members of the SO(13, 1)
group, manifesting the subgroup SO(7, 1) - of the colour charged quarks and anti-quarks
and the colourless leptons and anti-leptons, is presented in the massless basis using the
technique presented in Appendix 9.9. It contains the left handed (Γ (3,1) = −1) weak charged
(τ13 = ± 1

2
) and SU(2)II chargeless (τ23 = 0) quarks and the right handed weak chargeless

and SU(2)II charged (τ23 = ± 1
2

) quarks of three colours (ci = (τ33, τ38)) with the ”spinor”
charge (τ4 = 1

6
) and the colourless left handed weak charged leptons and the right handed

weak chargeless leptons with the ”spinor” charge (τ4 = − 1
2

). S12 defines the ordinary spin
± 1
2

. The vacuum state |vac >fam, on which the nilpotents and projectors operate, is not
shown. The reader can find this Weyl representation also in the refs. [21,3]. Left handed
antiquarks and anti leptons are weak chargeless and carry opposite charges.

The eight families of the first member of the eight-plet of quarks from Table 9.3,
for example, that is of the right handed u1R quark, are presented in the left column
of Table 9.4 [3]. In the right column of the same table the equivalent eight-plet of
the right handed neutrinos ν1R are presented. All the other members of any of the
eight families of quarks or leptons follow from any member of a particular family
by the application of the operators N±R,L and τ(2,1)± on this particular member.

The eight-plets separate into two group of four families: One group contains
doublets with respect to ~̃NR and ~̃τ2, these families are singlets with respect to ~̃NL

and ~̃τ1. Another group of families contains doublets with respect to ~̃NL and ~̃τ1,
these families are singlets with respect to ~̃NR and ~̃τ2.

The scalar fields which are the gauge scalars of ~̃NR and ~̃τ2 couple only to the
four families which are doublets with respect to these two groups. The scalar fields
which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families which
are doublets with respect to these last two groups.
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9.10 APPENDIX: Expressions for the spin connection fields in
terms of vielbeins and the spinor sources [14]

The expressions for the spin connection of both kind, ωabα and ω̃abα in terms
of the vielbeins and the spinor sources of both kinds are presented, obtained by
the variation of the action Eq.(9.1). The expression for the spin connection ωabα is
taken from the ref. [32].

ωabα = −
1

2E

{
eeαebγ ∂β(Ef

γ[efβa]) + eeαeaγ ∂β(Ef
γ
[bf
βe])

− eeαe
e
γ ∂β

(
Efγ[af

β
b]

)}
−
eeα

4

{
Ψ̄

(
γe Sab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
−

1

d− 2

{
eaα

[
1

E
edγ∂β

(
Efγ[df

β
b]

)
+
1

2
Ψ̄γdSdb Ψ

]
− ebα

[
1

E
edγ∂β

(
Efγ[df

β
a]

)
+
1

2
Ψ̄γdSda Ψ

}]
. (9.55)

One notices that if there are no spinor sources, carrying the spinor quantum
numbers Sab, thenωabα is completely determined by the vielbeins.

Equivalently one obtains expressions for the spin connection fields carryin
family quantum numbers

ω̃abα = −
1

2E

{
eeαebγ ∂β(Ef

γ[efβa]) + eeαeaγ ∂β(Ef
γ
[bf
βe])

− eeαe
e
γ ∂β

(
Efγ[af

β
b]

)}
−
eeα

4

{
Ψ̄

(
γe S̃ab +

3i

2
(δebγa − δeaγb)

)
Ψ

}
−

1

d− 2

{
eaα

[
1

E
edγ∂β

(
Efγ[df

β
b]

)
+
1

2
Ψ̄γd S̃db Ψ

]
− ebα

[
1

E
edγ∂β

(
Efγ[df

β
a]

)
+
1

2
Ψ̄γd S̃da Ψ

}]
. (9.56)

Acknowledgments

The author acknowledges funding of the Slovenian Research Agency.

References
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5. N.S. Mankoč Borštnik, Phys. Lett. B 292 (1992) 25.
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H.B. Nielsen, D. Lukman, DMFA Založništvo, Ljubljana December 2013, p. 31-51,
http://arxiv.org/abs/1212.4055.
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15. N.S. Mankoč Borštnik, H.B. Nielsen, ”Discrete symmetries in the Kaluza-Klein-like
theories”, JHEP 04 (2014) 165 http://arxiv.org/abs/1212.2362v2.
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Holger Bech Nielsen, Colin Froggatt, Dragan Lukman, DMFA, Založništvo, Ljubljana,
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