Bournonia excavata (D'Orbigny) from the Campanian-Maastrichtian of Stranice (north-east of Slovenia)

Bournonia excavata (D'Orbigny) iz kampanija in maastrichtija pri Stranicah (severovzhodna Slovenija)

Mauro CAFFAU

Dipartimento di Scienze Geologiche, Ambientali e Marine. Università di Trieste. Via E. Weiss 2. E-mail: caffau@univ.trieste.it

Key words: Campanian-Maastrichtian, carbonate platform, rudists, Bournonia excavata, Slovenia

Ključne besede: campanij-maastrichtij, karbonatna platforma, rudisti, *Bournonia excavata*, Slovenija

Abstract

The rudist fauna of Stranice, in the north-east of Slovenia, has been studied for a long time thanks to the good preservation-state of the specimens found in the calcareous breccias from Campanian-Maastrichtian. The presence of *Bournonia excavata* (d'Orbigny) at Stranice is reported for the first time in this work. The specimen described in this paper is compared with other specimens from other carbonate platform deposits, previously described by different authors. In addition, a complete individual with both valves of *Radiolites angeiodes* (Lapeirouse) is described.

Kratka vsebina

Rudistno favno pri Stranicah v severovzhodni Sloveniji so raziskovali že dolgo časa zaradi dobre ohranjenosti primerkov, ki so bili najdeni v campanijsko-maastrichtijskih apnenčevih brečah. Prisotnost vrste *Bournonia excavata* (d'Orbigny) pri Stranicah je v tej razpravi prvič omenjena. Primerek, omenjen v tem članku, je primerjan z drugimi primerki z drugih nahajališč na karbonatni platformi, ki so jih že prej opisali različni avtorji. Razen tega je opisan popoln primerek z obema loputama vrste *Radiolites angeiodes* (Lapeirouse).

Introduction

The rudist fauna of Stranice, in the northeast of Slovenia (fig. 1) has been studied by different authors (Pleničar, 1971; Pleničar & Šribar, 1992; Pleničar, 1993, 1994 and Caffau, 2000). The rudist association includes the following species: *Hippurites conicus* (Kühn), *H. (Batolites) organisans* de Monfort, *Hippuritella castroi* (Vidal), *H. colliciatus* (Woodward), *H. variabilis* (Munier-Chalmas), *H. lapeirousei* (Goldfuss), *H. he-* ritschi (Kühn), Vaccinites sulcatus (Defrance), Radiolites angeiodes (Lapeirouse), R. cf. aurigerensis Muniers-Chalmas, Biradiolites leychertensis Toucas, B. radix Astre, Sauvagesia meneghiniana (Pirona), Praelapeirouseia bjelusensis Slišković, P. kossmati Wiontzek, P. wiontzeki Slišković, P. pajtleri Pleničar, Lapeirouseia jouanneti (Des Moulins), L. laskarevi Milovanović, L. plana Milovanovic, L. pervinquieri (Toucas) and L. zitteli Douvillč.

This fauna is mostly composed of wellpreserved individuals, which allowed to de-

Black

Fig.1. Location map of the rudist deposits of Stranice. Sl.1. Lega nahajališč rudistov pri Stranicah.

scribe in detail their taxonomic characters (Caffau, 2000). The association of benthonic foraminifers allowed to assign the rudistcontaining breccia to Campanian-Maastrichtian (Pleničar & Šribar, 1992).

Pleničar (pers. comm., 2001) and Caffau (2000) consider that the rudist association of Stranice has been subjected to a certain degree of reworking.

The presence of *Bournonia excavata* (d'Orbigny) at Stranice is reported for the first time in this work. Besides, a complete individual with both valves of *R. angeiodes* is described.

Systematic palaentology

The morphological characters of *B. excavata* are described on the basis of a right valve of a limestone-embedded specimen and therefore, the morphology of the outer ornamentations can only be partially described. For *R. angeiodes*, we are able to describe all the outer morphological characters of both valves. All specimens found at Stranice that were used for this study are deposesited at the University of Ljubljana.

Bournonia Fischer, 1887 Bournonia excavata (d'Orbigny, 1847) Fig. 2 in text.

1907 Bournonia excavata (d'Orbigny); Toucas, p. 26, pl. 2, figs. 11-13a.

1912 Bournonia excavata (d'Orbigny); Parona, p. 285, fig. 4 in text.

1968 Bournonia excavata (d'Orbigny); Pejović, pl. 5, fig.2.

1987 Bournonia excavata (d'Orbigny); Cestari & Sirna, p.145, fig.3.

1989 Bournonia excavata (d'Orbigny); Cestari & Sirna, p. 717, fig. 11.

1995 Bournonia excavata (d'Orbigny); Caffau & Pleničar, p. 230; pl. 7, figs. 2, 2a; pl. 12, fig.3.

1995 Bournonia excavata (d'Orbigny); Cestari & Sartori, p.136.

Diagnosis

The most evident morphological characters of the attached valve are the anterior band (**ab**) and posterior band (**pb**). Although the shell, 1 to 2 mm thick, is partially embedded in the limestone, two ribs (**a** and **b**) at the dorsal side can be seen. The recrystallization of the shell doesn't allow to dis-

92

Black

tinguish the pseudo-polygonal structure that characterises the *Bournonia* genus.

Biometrical parameters

Morphometrical parameters are indicated in fig.2: Sa (Shell area), Ia (Inner area) and ab^pb (angle formed between the anterior and the posterior radial bands). These parameters were previously used in other studies of radiolitids, for example: Cestari (1992), Caffau & Pleničar (1996), Caffau & Protopsalti (1999) and Caffau (2000). Measures were done on a transversal section of the specimen of Stranice and on the photographs of the other specimens, published by the authors listed in table 1.

Ventral side. **ab** and **pb** are separated by an interband, a concave region with smooth shell surface. The angle **ab^pb** is 56° (tab. 1). **ab** and **pb** are 2.5 and 3.5 mm wide respectively at the proximal part of the shell, being **pb** wider and longer than **ab**. Both radial bands present sharp ends **ab** is perfectly straight, whereas **pb** is slightly twisted.

Dorsal side. The thickness of the shell varies from 0.3 to 1.5 mm in this side. Two longitudinal ribs \mathbf{a} and \mathbf{b} (fig. 2) encompass

this area giving a pseudo-polygonal shape to the transverse section of the shell. The shell is 1.5mm thick at the ribs, being the mayor thickness of the shell.

Comparative analysis of *B. excavata* specimens from different origins.

Some morphometric parameters such as the angle **ab^pb**, the area of the inner cavity **Ia** and the area of the shell **Sa** (fig. 3) were measured on the specimen of *B.excavata* described in this work.

Other rudist associations that include *B. excavata*, similar to that of Stranice, from the western Peritethyan Upper Cretaceous carbonate platform deposits were described or mentioned, for example, by Polšak (1979), Polšak et al. (1982), Caffau & Pleničar (1995), Cestari & Sirna (1987), Pejović (1968), Sirna & Cestari (1989). The same morphometrical parameters were measured on specimens of the same species described by the mentioned authors.

Morphometrical values, chronological distribution, localities of origin and bibliographic information are summarised on table 1.

	n ribs	Sa/la	ab^pb (degrees)	locality	age
this study	2	0,61	56	Stranice north-east Slovenia	Campanian-Maastrichtian
CAFFAU & PLENICAR (1995) pl. 7; fig. 2a	2	1,8	50	Trieste Karst north-east Italy	Santonian-Campanian
CESTARI & SIRNA (1987) pl. 145; fig. 3	2	0,96	55	Southern Salento southern Italy	Campanian-Maastrichtian
CESTARI & SARTORI (1995) p. 136	2	1,45	53	Esperia, Latium Central Italy	Coniacian-Santonian
PARONA (1912) p. 285, fig. 4	2	1,9	56	Central Apennines Italy	Santonian
PEJOVIC (1968) pl. 5: fig. 2	2	1,7	55	Jugoslavia	Maastrichtian
SIRNA & CESTARI (1989) p. 717. fig 11	2	1,1	58	Latium-Abruzzi Central Apennines	Santonian-Campanian
Toucas (1907) p.26, fig. 11a	2	0,97	60	France	early Santonian

Tab.1. Vrednosti **Sa/Ia** in **ab^pb** primerka iz Stranic in drugih primerkov z različnih nahajališč na karbonatni platformi, o katerih poročajo v literaturi.

Black

Fig.2, Bournonia excavata. The thin shell of the specimen is well visible in this figure. The small shell area Sa leads to the low rate Sa/Ia for this specimen. x3.

Sl.2. *Bournonia excavata*. Tenka lupina primerka je na tej sliki dobro vidna. Mala površina **Sa** na lupini povzroča za ta primerek nizko razmerje **Sa/Ia.** x3.

The morphometrical values Sa/Ia show a considerable difference between the specimen of Stranice (Sa/Ia = 0.61) and those from other origins (Sa/Ia = 0.96-1.9). These

Fig.3 Transverse section of a right valve of *Bournonia excavata* where the measured parameters are indicated.

Sl.3. Prečni presek desne lopute vrste Bournonia excavata, na katerem so prikazani merjeni parametri. data strongly suggest that the shell of the specimen under study was subjected to erosion due to transportation, giving a lower rate **Sa/Ia** than the other specimens of the same species. The values of the angle **ab^pb**, that do not depend on erosion due to transportation, are in the same range for all the specimens, between 50 and 60 degrees.

Stratigraphic distribution. This species is found in France, Italy (Central Apennins, Karst of Trieste, Puglia), Croatia and Spain.

Radiolites Lamark, 1801 Radiolites angeiodes (Lapeirouse, 1781) Figs. 4,5,6 in text.

1908 Radiolites angeiodes (Lapeirouse); Toucas, p.77, pl.15, figs. 10-15.

1912 Radiolites angeiodes (Lapeirouse); Parona, p. 13, fig.9.

Black

1984 *Radiolites angeiodes* (Lapeirouse); Pejović, p.106, fig. 1 in text; pl.2, figs. 1-5; pl. 3, figs. 1,4; pl. 1,3; pl. 5, figs. 1-3.

1993 Radiolites angeiodes (Lapeirouse); Pleničar, p. 50, pl.1, figs. 1-5; pl. 2, figs. 1-3.

Diagnosis. The attached right valve of R.angeiodes is cone-shaped and has longitudinal robust ribs. Radial bands are wellmarked in the shell. The inner structure is constituted by polygonal cells. At the radial bands, a lamellar structure encompass a mesh of small polygonal cells. The free left valve is slightly convex, with radial tiny ribs and two larger ribs at the radial bands **ab** and **pb**. The ligamental ridge is present.

Attached right valve. This valve is conic in shape (fig. 4, 6), 30mm long and its diameter is 25mm at the commisure. In the ventral area, the anterior radial band **ab** is well visible along all the shell and is 5mm wide at the commisure. The **ab** profile is concave and the surface is transversally crossed by tiny lamellae. **pb** is slightly concave, presents a smooth surface and is less marked than **ab**. This band is 3mm wide at the commisure. Radial bands are separated by pronounced ribs, the interband ribs **ib**. These interband ribs present a triangular profile and are usually more pronounced than the other ribs in the shell.

Ornamentations consists of robust, protruding and longitudinal ribs, with a triangular profile. The width of the ribs varies from 1 to 0.5mm at the bases, the larger ribs

Fig.4. *Radiolites angeiodes*. Attached right valve. View of the anterior radial band **ab** and posterior radial band **pb**. x2.

Sl..4. *Radiolites angeiodes*. Pritrjena desna loputa. Pogled na prednjo radialno brazdo **ab** in zadnjo radialno brazdo **pb**. x2.

Fig.5. Radiolites angeiodes. View of the free left valve with both radial bands. x2.
Sl.5. Radiolites angeiodes. Pogled na prosto levo loputo z obema radialnima brazdama. x2.

Fig.6. Radiolites angeiodes. Attached right valve. View of the morphology of the anterior radial band and the pronounced interband ribs **ib**, with triangular profile. x2.

Sl.6. *Radiolites angeiodes*. Pritrjena desna loputa. Pogled na morfologijo prednje radialne brazde **ab** in štrleča medsifonalna rebra **ib** s trikotnim profilom.x2.

are located at the dorsal area. The thickness of the shell at the commisure varies from 3-4mm at the dorsal area, 2-3mm at the postero-dorsal and postero-ventral side, to 1-2mm at the ventral side. The inner structure is characterised by the presence of pseudopillars at the radial bands **ab** and **pb**. The **ab** pillar is oval and the **pb** pillar, although similar in shape, is smaller tha the former

Black

one. The morphology of the ligamental ridge varies from the most ancient to the most recent part of the shell. It shows a triangular profile at the lower part of the shell and ends with a rectangular profile.

Free left valve. This valve (fig. 5) is slightly convex and is ornamented by thin concentric growth lines and tiny radial costulae originating from the cardinal area. The radial costulae present a triangular profile, except those at the radial bands that show a rectangular profile. The width of the radial bands increase from the centre of the shell towards the outer side, 2 to 5mm for **ab** and 1 to 3mm for **pb** The angle between both radial bands **ab^pb** is 61°.

Geographic and stratigraphic distribution. This species was found in Algeria, Austria, Bulgaria, France, Italy (Karst of Trieste, central Apennins, Puglia), Romania, Slovenia, Spain, Tunisia, Turkey and Yugoslavia.

Final considerations

The low frequence of *B.excavata* at Stranice, testified by the finding of only one specimen and rare small fragments of other individuals, together with the observations on the preservation state of the shell, allow to conclude that the described individual was subjected to reworking, more than other individuals of other species that constitute the rudist assemblage of Stranice. Moreover, the lower rate **Sa/Ia** confirms that this specimen was subjected to reworking when compared with other individuals of the same species from different origins.

Acknowledgements

I would like to thank prof. Mario Plenicar from the Palaeontological Chair of the University of Ljubljana who made possible this research, for the cordial and important moments of discussion during the phases that preceded this work. Financial support for this research was provided by a M.I.U.R. 40% grant to G. Tunis.

References

 $C\,a\,ff\,a\,u\,,\,M.$ 2000: Biometrical analysis of three species of the genus Lapeirouseia from the Cam-

panian-Maastrichtian of Stranice (North-East Slovenia). – Geologija, 43/2, 223-234

Caffau, M. & Pleničar, M. 1995: Santonian-Campanian rudist fauna from the area of Basovizza /Basovica (North-eastern Trieste Karst): systematic and paleoecological aspect. – Razprave IV. Razreda SAZU, *36*, 223-275, Ljubljana

Caffau, M. & Pleničar, M. 1996: Biometrical analysis on *Biradiolites angulosus* d'Orbigny in the stratigraphic sequence of the Bay of Sistiana (Trieste Karst-Italy). – Razprave IV. Razreda SA-ZU, 37, 99-117, Ljubljana

Caffau, M. & Protopsalti, I. 1999: A study of the morphological variability of *Radiolites marinii* Caffau & Pleničar (Radiolitidae), Late Cenomanian, Karst of Gorizia, Italy. – Annales. Ser. Hist. Nat. 17 (9), 281-295, Koper Cestari, R. 1992: Biometrical analysis on

Cestari, R. 1992: Biometrical analysis on gorjanovicias and other radiolitids (Radiolitidae, Hippuritoida). – Geologica Romana, 28, 1-25, Roma

Čestari, R. & Sirna, M. 1987: Rudist fauna in the Maastrichtian deposits of southern Salento (Southern Italy). – Mem. Soc. Geol. It. 40, 133-147, Roma

 ${\tt Cestari,\,R.}$ & Sartorio, D. 1995: Rudists and facies of the Periadriatic Domain. – AGIP. 210 pp., Milano

Parona, C. F. 1912: Nuovi studi sulle Rudiste dell'Appennino (Radiolitidi). – Memorie R. Accademia delle Scienze di Torino, 62, 273-293, Torino

Parona, C. F. 1912: Fossili neocretacei della conca anticolana. – Boll. R. Comit. Geol., 43, 19 pp., Torino

pp., Torino Pejović, D. 1968: Some Rudists from Montenegro. – Vesnik Zavoda za Geoloska i Geofizicka Istrazivanja, 26, 167-176, Beograd Pejović, D. 1984: On the upper valve of Ru-

Pejović, D. 1984: On the upper valve of Rudists with revision and amendation of some genera. – Bull. Acad. Serbe Sci. Arts, classe sc. Nat. Math., 25, 93-110, Beograd

Pleničar, M. 1971: Hippuritna fauna iz Stranic pri Konjicah. – Razprave IV. Razreda SAZU, 14, 241-262, Ljubljana

Pleničar, M. 1993: Radiolites from the Cretaceous beds of Stranice near Slovenske Konjice (Slovenia). Razprave IV. Razreda. SAZU, 34, 45-103, Ljubljana

Pleničar, M. 1994: Hippuritids from the Upper Cretaceous rudistid reefs near Stranice an Lipa (NE Slovenia). Razprave IV. Razreda. SAZU, 35, 43-63, Ljubljana Pleničar, M. & Šribar, L. 1992: Le récif de

Pleničar, M. & Šribar, L. 1992: Le récif de Rudistes prés de Stranice (NO de la Yougoslavie). – Geologica Romana, 28, 305-317, Roma

Polšak, A. 1979: Stratigraphy and paleogeography of the Senonian biolithic complex at Donje Oresje (Mt. Medvednica, North Croatia). – Acta Geologica, *30*, (6), 195-230, Zagreb

Polšak, A., Baŭer, E. & Slišković, T. 1982: Stratigraphie du Crétacé Supérieur de la Plateforme Carbonatée dans le Dinarides Externes. – Cret. Res. 3, 125-133, London Sirna, M. & Cestari, R. 1989: Il Senoniano

Sirna, M. & Cestari, R. 1989: Il Senoniano a rudiste (Hippuritacea) del settore sudoccidentale della piattaforma carbonatica Laziale-Abruzzese (Appennino Centrale). – Boll. Soc. Geol. It. 108, 711–719, Roma

Toucas, A. 1907-1909: Etudes sur la classification et l'évolution des radiolitidés. – Mémoire de la Société géologique de France, *36*, 132 pp, Paris

Black