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Abstract

We show that ifG is a nontrivial, finite group of odd order, whose commutator subgroup
[G,G] is cyclic of order pµqν , where p and q are prime, then every connected Cayley graph
on G has a hamiltonian cycle.
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1 Introduction
It has been conjectured that there is a hamiltonian cycle in every connected Cayley graph on
any finite group, but all known results on this problem have very restrictive hypotheses (see
[2, 13, 15] for surveys). One approach is to assume that the group is close to being abelian,
in the sense that its commutator subgroup is small. This is illustrated by the following
theorem that was proved in a series of papers by Marušič [12], Durnberger [3, 4], and
Keating-Witte [10]:

Theorem 1.1 (D. Marušič, E. Durnberger, K. Keating, and D. Witte, 1985). If G is a
nontrivial, finite group, whose commutator subgroup [G,G] is cyclic of order pµ, where
p prime and µ ∈ N, then every connected Cayley graph on G has a hamiltonian cycle.

Under the additional assumption that G has odd order, we extend this theorem, by
allowing the order of [G,G] to be the product of two prime-powers:

Theorem 1.2. If G is a nontrivial, finite group of odd order, whose commutator subgroup
[G,G] is cyclic of order pµqν , where p and q are prime, and µ, ν ∈ N, then every connected
Cayley graph on G has a hamiltonian cycle.
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Remark 1.3. Of course, we would like to prove the conclusion of Theorem 1.2 without
the assumption that |G| is odd, or with a weaker assumption on the order of [G,G].

If µ, ν ≤ 1, then there is no need to assume that [G,G] is cyclic:

Corollary 1.4. If G is a nontrivial, finite group of odd order, whose commutator subgroup
[G,G] has order pq, where p and q are distinct primes, then every connected Cayley graph
on G has a hamiltonian cycle.

This yields the following contribution to the ongoing search [11] for hamiltonian cycles
in Cayley graphs on groups whose order has few prime factors:

Corollary 1.5. If p and q are distinct primes, then every connected Cayley graph of order
9pq has a hamiltonian cycle.

Here is an outline of the paper. Miscellaneous definitions and preliminary results are
collected in Section 2. (Also, Corollaries 1.4 and 1.5 are derived from Theorem 1.2 in §2E.)
The paper’s main tool is a technique known as “Marušič’s Method.” A straightforward ap-
plication of this method is given in Section 3, and some other consequences are in Section 4.
The proof of Theorem 1.2 is in Section 5, except that one troublesome case is postponed to
Section 6.

Acknowledgments. I thank D. Marušič for suggesting this research problem. I also thank
him, K. Kutnar, and other members of the Faculty of Mathematics, Natural Sciences, and
Information Technologies of the University of Primorska (Koper, Slovenia), for their ex-
cellent hospitality that supported the early stages of this work. Furthermore, I am grateful
to an anonymous referee for helpful comments on an earlier version of this manuscript.

2 Preliminaries
2A Assumptions, definitions, and notation

Assumption 2.1.
(1) G is always a finite group.

(2) S is a generating set for G.

Definition 2.2. The Cayley graph Cay(G;S) is the graph whose vertex set is G, with an
edge from g to gs and an edge from g to gs−1, for every g ∈ G and s ∈ S.

Notation 2.3.

• We let G′ = [G,G] and G = G/G′. Also, for g ∈ G, we let g = gG′ be the image
of g in G.

• For g, h ∈ G, we let gh = h−1gh and [g, h] = g−1h−1gh.

• If H is an abelian subgroup of G and k ∈ Z, we let

Hk = {hk | h ∈ H }.

This is a subgroup of H (because H is abelian).
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Notation 2.4. For g ∈ G and s1, . . . , sn ∈ S ∪ S−1, we use [g](s1, . . . , sn) to denote the
walk in Cay(G;S) that visits (in order), the vertices

g, gs1, gs1s2, gs1s2s3, . . . , gs1s2 · · · sn.

We often write (s1, . . . , sn) for [e](s1, . . . , sn).

Definition 2.5. Suppose

• N is a normal subgroup of G, and

• C = (si)
n
i=1 is a hamiltonian cycle in Cay(G/N ;S).

The voltage of C is
∏n
i=1 si. This is an element of N , and it may be denoted ΠC.

Remark 2.6. If C = [g](s1, . . . , sn), and N is abelian, then
∏n
i=1 si = (ΠC)g .

Proof. There is some ` with (s1s2 · · · s`)g ∈ N . Then

C = (s`+1, s`+2, . . . , sn, s1, s2, . . . , s`),

so

(ΠC)g = g−1(s`+1s`+2 · · · sn s1s2 · · · s`)g
=
[
(s1s2 · · · s`)g

]−1
(s1s2 · · · s`)(s`+1s`+2 · · · sn)

[
(s1s2 · · · s`)g

]
= (s1s2 · · · sn)(s1s2···s`)g

= s1s2 · · · sn.

2B Factor Group Lemma and Marušič’s Method

Lemma 2.7 (“Factor Group Lemma” [15, §2.2]). Suppose

• N is a cyclic, normal subgroup of G,

• (si)
m
i=1 is a hamiltonian cycle in Cay(G/N ;S), and

• the product s1s2 · · · sm generates N .

Then (s1, s2, . . . , sm)|N | is a hamiltonian cycle in Cay(G;S).

The following simple observation allows us to assume |N | is square-free whenever we
apply the Factor Group Lemma (2.7).

Lemma 2.8 ([10, Lem. 3.2]). Suppose

• N is a cyclic, normal subgroup of G,

• N = N/Φ is the maximal quotient of N that has square-free order,

• G = G/Φ,

• (s1, s2, . . . , sm) is a hamiltonian cycle in Cay(G/N ;S), and

• the product s1 s2 · · · sm generates N .

Then s1s2 · · · sm generates N , so (s1, s2, . . . , sm)|N | is a hamiltonian cycle in Cay(G;S).
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Remark 2.9 (cf. [7, Thm. 5.1.1]). When applying Lemma 2.8, it is sometimes helpful to
know that if

• N , N = N/Φ, and G = G/Φ are as in Lemma 2.8, and

• S is a minimal generating set of G.

Then S is a minimal generating set of G.

Lemma 2.10 (“Marušič’s Method” [12], cf. [10, Lem. 3.1]). Suppose

• S0 ⊆ S,

• 〈S0〉 contains G′,

• there are hamiltonian cycles C1, . . . , Cr in Cay(〈S0〉/G′;S0) that all have an ori-
ented edge in common, and

∗ for every γ ∈ G′, there is some i, such that
〈
γ ·ΠCi

〉
= G′.

Then there is a hamiltonian cycle in Cay(G/G′;S) whose voltage generates G′. Hence,
the Factor Group Lemma (2.7) provides a hamiltonian cycle in Cay(G;S).

Corollary 2.11. Assume G′ = Zp × Zq , where p and q are distinct primes. Then, in the
situation of Marušič’s Method (2.10), the final condition (∗) can be replaced with either of
the following:

(1) r = 3, and
〈
(ΠCi)

−1(ΠCj)
〉

= G′ whenever 1 ≤ i < j ≤ 3.

(2) r = 4, and

•
〈
(ΠC1)−1(ΠC2)

〉
contains Zp, and

•
〈
(ΠC1)−1(ΠC3)

〉
=
〈
(ΠC2)−1(ΠC4)

〉
= Zq .

Proof. Let γ ∈ G′.
(1) Consider the three elements γ ·ΠC1, γ ·ΠC2, and γ ·ΠC3 of Zp×Zq . By assumption,

no two have the same projection to Zp, so only one of them can have trivial projection.
Similarly for the projection to Zq . Therefore, there is some i, such that γ · ΠCi projects
nontrivially to both Zp and Zq . Therefore 〈γ ·ΠCi〉 = G′.

(2) There is some i ∈ {1, 2}, such that γ · ΠCi projects nontrivially to Zp. We may
assume the projection of γ · ΠCi to Zq is trivial (otherwise, we have 〈γ · ΠCi〉 = G′, as
desired). Then γ · ΠCi+2 has the same (nontrivial) projection to Zp, but has a different
(hence, nontrivial) projection to Zq . So 〈γ ·ΠCi+2〉 = G′.

2C Some known results

We recall a few results that provide hamiltonian cycles in Cay(G;S) under certain assump-
tions.

Theorem 2.12 (Witte [14]). If |G| = pµ, where p is prime and µ > 0, then every connected
Cayley digraph on G has a directed hamiltonian cycle.

Theorem 2.13 (Ghaderpour-Morris [6]). If G is a nontrivial, nilpotent, finite group, and
the commutator subgroup of G is cyclic, then every connected Cayley graph on G has a
hamiltonian cycle.
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Theorem 2.14 (Ghaderpour-Morris [5]). If |G| = 27p, where p is prime, then every con-
nected Cayley graph on G has a hamiltonian cycle.

The proof of the preceding theorem has the following consequence.

Corollary 2.15. If G is a finite group, such that |G/G′| = 9 and G′ is cyclic of order
pµ · 3ν , where p ≥ 5 is prime, then every connected Cayley graph on G has a hamiltonian
cycle.

Proof. Let G = G/(G′)3p. Then |G| = 27p and |G′| = 3p, so the proof of [5, Props. 3.4
and 3.6] provides a hamiltonian cycle in Cay

(
G/G′;S

)
whose voltage generates G′. Then

Lemma 2.8 provides a hamiltonian cycle in Cay(G;S).

Theorem 2.16 (Alspach [1, Thm. 3.7]). Suppose
• s ∈ S,

• 〈s〉 / G,

• |G/〈s〉| is odd, and

• there is a hamiltonian cycle in Cay
(
G/〈s〉;S

)
.

Then there is a hamiltonian cycle in Cay(G;S).

This has the following immediate consequence, since every subgroup of a cyclic, nor-
mal subgroup is normal:

Corollary 2.17. Suppose
• G′ is cyclic,

• s ∈ S ∩G′,
• |G/〈s〉| is odd, and

• there is a hamiltonian cycle in Cay(G/〈s〉;S).

Then there is a hamiltonian cycle in Cay(G;S).

2D Group theoretic preliminaries

We recall a few elementary facts about finite groups.

Lemma 2.18 ([6, Lem. 3.4]). Suppose
• 〈a, b〉 = G,

• G′ is cyclic of square-free order, and

• G′ ⊆ Z(G).

Then |[a, b]| is a divisor of both 〈a〉 and |G/〈a〉|.

Lemma 2.19 ([6, Lem. 3.5]). If G = 〈a, b〉, and G′ is cyclic, then G′ = 〈[a, b]〉.

Corollary 2.20. Suppose
• 〈a,G′〉 = G, and

• G′ is cyclic of square-free order.
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Then a does not centralize any nontrivial subgroup of G′.

Proof. Let γ be a generator of the cyclic groupG′, and letG = G/〈[a, γ]〉, so a centralizes
γ. Then G′ = 〈γ〉 ⊆ Z(G), so Lemma 2.18 tells us that |G′| = |[a, γ]| is a divisor of
|G/〈a〉| = 1. This means G is abelian, so 〈[a, γ]〉 = G′ = 〈γ〉. This implies that a does
not centralize any nontrivial power of γ. In other words, a does not centralize any nontrivial
subgroup of G′.

Lemma 2.21. Suppose

• G′ = Z3µ is cyclic of order 3µ, for some µ ∈ N, and

• G/(G′)3 is a nonabelian group of order 27.

Then

(1) µ = 1 (so |G| = 27),

(2) (ab)3 = a3b3 for all a, b ∈ G, and

(3) the elements of order 3 (together with e) form a subgroup of G.

Proof. Note that |G| = 3µ+2, so G is a 3-group. Since G′ is cyclic (and 3 is odd), it is not
difficult to show

(ab)3 ∈ a3b3(G′)3, for all a, b ∈ G. (2.21A)

(This is a special case of [9, Satz III.10.2(c), p. 322].)
(1) Since G/G′ ∼= Z3 × Z3, there is a 2-element generating set {a, b} of G. (In fact,

every minimal generating set has exactly two elements [9, 3.15, p. 273].) Since a3, b3 ∈ G′,
we see from (2.21A) that we may assume b3 ∈ (G′)3 (by replacing b with ba or ba−1, if
necessary). Furthermore, by modding out (G′)9, there is no harm in assuming µ ≤ 2, so
(G′)3 ⊆ Z(G). Therefore [a, b3] = e, so [9, Satz 10.6(b), p. 326] tells us that [a, b]3 = e.
Since 〈[a, b]〉 = G′ (see Lemma 2.19), this implies µ = 1.

(2) Since µ = 1, we have (G′)3 = {e}, so this is immediate from (2.21A).
(3) This is immediate from (2). (Also, it is a special case of [9, Satz III.10.6(a), p. 326].)

2E Proofs of Corollaries 1.4 and 1.5

Proof of Corollary 1.4. Assume, without loss of generality, that p < q. Then Sylow’s
Theorem implies that G′ has a unique Sylow q-subgroup Q, so Q / G. Therefore G acts
on Q by conjugation. Since Q ∼= Zq , we know that the automorphism group of Q is
abelian (more precisely, it is cyclic of order q − 1), so this implies that G′ centralizes Q.
So Q ⊆ Z(G′). Since G′/Q is cyclic (indeed, it is of prime order, namely, p), this implies
that G′ is abelian. Since p 6= q, we know that every abelian group of order pq is cyclic, so
we conclude that G′ is cyclic. Therefore Theorem 1.2 applies.

Proof of Corollary 1.5. Assume |G| = 9pq. We may assume p and q are odd, for other-
wise |G| is of the form 18p, so [11, Prop. 9.1] applies. Therefore |G| is odd, so it suffices
to show |G′| is a divisor of pq, for then Corollary 1.4 (or Theorem 1.1) applies.

Note that we may assume 3 /∈ {p, q}, for otherwise |G| is of the form 27p, so Theo-
rem 2.14 applies. Therefore, neither |Aut(Z9)| = 6 nor |Aut(Z3 × Z3)| = 48 is divisible
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by either p or q, so Burnside’s Transfer Theorem [7, Thm. 7.4.3, p. 252] implies that G has
a normal subgroup N of order pq. Since |G/N | = 9, and every group of order 9 is abelian,
we know that G′ ⊆ N , so |G′| is a divisor of |N | = pq, as desired.

Let us also record the fact that almost all cases of Theorem 1.2 will be proved by using
Marušič’s Method (2.10):

Theorem 2.22. Assume

• S is a minimal generating set for a nontrivial, finite group G of odd order,

• G′ is cyclic of order pµqν , where p and q are prime, and µ, ν ∈ N,

• for all s ∈ S, we have s /∈ G′ and G′ 6⊆ 〈s〉,
• G/(G′)3 is not the nonabelian group of order 27 and exponent 3, and

• either G/G′ 6∼= Z3 × Z3, or #S 6= 2.

Then, for every γ ∈ G′, there exists a hamiltonian cycle C in Cay
(
G/G′;S

)
, such that

γΠC generates G′.

3 The usual application of Marušič’s Method
Applying Marušič’s Method (2.10) requires the existence of more than one hamiltonian
cycle in a quotient of Cay(G;S). In practice, one usually starts with a single hamiltonian
cycle and modifies it in various ways to obtain the others that are needed. The following
result describes a modification that will be used repeatedly in the proof of Theorem 1.2.

Lemma 3.1 (cf. Durnberger [3] and Marušič [12]). Assume:

• C0 is an oriented hamiltonian cycle in Cay(G;S),

• a, b ∈ S±1, g ∈ G, and m ∈ Z+,

• C0 contains:

◦ the oriented path [ga−(m+1)](am, b, a−m), and
◦ either the oriented edge [g](b) or the oriented edge [gb](b−1).

Then there are hamiltonian cycles C0, C1, . . . , Cm in Cay(G;S), such that

((
ΠC0

)−1(
ΠCk

))g
=

{
[ak, b−1] [ak, b−1]a if C0 contains [g](b),

[b−1, ak] [ak, b−1]a if C0 contains [gb](b−1).

Proof. Note that [ga−(m+1)](am, b, a−m) contains the subpath [ga−(k+1)](ak, b, a−k) for
0 ≤ k ≤ m.

Case 1. Assume that C0 contains [g](b). Construct Ck by:

• replacing the oriented edge [g](b) with the oriented path [g](a−k, b, ak), and

• replacing the oriented path [ga−(k+1)](ak, b, a−k) with the oriented edge
[ga−(k+1)](b)
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g

g b

g a−(m+1)

g b a−1

g a−1

g

g b

g a−(m+1)

g b a−k

g a−k

Figure 1: A portion of the hamiltonian cycles C0 (top) and Ck (bottom).

(see Figure 1).
To calculate the voltage of Ck, write C0 = [g](s1, . . . , sn). There is some ` with

s1 · · · s` = a−1, so

Ck = [g]
(
a−k, b, ak, (si)

`−k
i=2 , b, (si)

n
i=`+k+2

)
.

For convenience, let

h =

n∏
i=`+1

si ≡
(∏̀
i=1

si

)−1
≡ a (modG′).

Then, from Remark 2.6 (and the fact that G′ is commutative), we have

(
ΠCk

)g
= (a−kbak)

(
`−k∏
i=2

si

)
b

(
n∏

i=`+k+2

si

)

= (a−kbakb−1)

(∏̀
i=1

si

)
a−kbakb−1

(
n∏

i=`+1

si

)

= [ak, b−1] ·
(∏̀
i=1

si

)(
n∏

i=`+1

si

)
· [ak, b−1]h

= [ak, b−1] ·
(
ΠC0

)g · [ak, b−1]a

=
(
ΠC0

)g · [ak, b−1] [ak, b−1]a.

Case 2. Assume that C0 contains [gb](b−1). This is similar. Construct Ck by:
• replacing the oriented edge [gb](b−1) with the oriented path [gb](a−k, b−1, ak), and
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• replacing the oriented path [ga−(k+1)](ak, b, a−k) with the oriented edge
[ga−(k+1)](b).

(See Figure 1, but reverse the orientation of the paths in the right half of the figure.)
To calculate the voltage of Ck, write C0 = [gb](s1, . . . , sn). There is some ` with

s1 · · · s` = ab
−1

, so

Ck = [gb]
(
a−k, b−1, ak, (si)

`−k
i=2 , b, (si)

n
i=`+k+2

)
.

For convenience, let

h =

n∏
i=`+1

si ≡
(∏̀
i=1

si

)−1
≡ ab (modG′).

Then

(
ΠCk

)gb
= (a−kb−1ak)

(
`−k∏
i=2

si

)
b

(
n∏

i=`+k+2

si

)

= (a−kb−1akb)

(∏̀
i=1

si

)
a−kbakb−1

(
n∏

i=`+1

si

)

= b−1(ba−kb−1ak)b ·
(∏̀
i=1

si

)(
n∏

i=`+1

si

)
· [ak, b−1]h

= [b−1, ak]b ·
(
ΠC0

)gb · [ak, b−1]ab

=
(
ΠC0

)gb · [b−1, ak]b [ak, b−1]ab.

Remark 3.2. In the situation of Lemma 3.1, we have
〈(

ΠC0

)−1(
ΠCk

)〉
= 〈[ak, b−1]〉 if

either

(1) C0 contains [g](b) and a does not invert any nontrivial element of 〈[ak, b−1]〉, or

(2) C0 contains [gb](b−1) and a does not centralize any nontrivial element of 〈[ak, b−1]〉.
Note that if |G| is odd, then the hypothesis on a in (1) is automatically satisfied (because
no element of odd order can ever invert a nontrivial element).

Corollary 3.3 (cf. [4, Case iv] and [10, Case 4.3]). Assume
• a ∈ S with 〈a〉 6= G,

• (si)
d
i=1 is a hamiltonian cycle in Cay

(
G/〈a〉;S

)
,

• ar∏d
i=1 si ∈ G′, with 0 ≤ r ≤ |a| − 2, and

• 0 ≤ k ≤ |a| − 3.

Then the walk

Ck =
(
ak, s1,a

−(k+1), (s2i, a
|a|−2, s2i+1, a

−(|a|−2))(d−3)/2i=1 ,

sd−1, a
r, sd, a

−(|a|−k−2), s1, a
|a|−k−3, (si)

d−1
i=2 , a

−(|a|−r−2), sd
)
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is a hamiltonian cycle in Cay(G;S) (see Figure 2), and we have

ΠCk = (ΠC0)[a−k, s−11 ][a−k, s−11 ]a
−1

.

Proof. C0 contains the oriented edge (s1) and the oriented path [a|a|−2](a−(|a|−3), s1,
a|a|−3), so we may apply Lemma 3.1 with g = e, b = s1, and a−1 in the role of a.

ea−1 ak ak+1 a−2

a−1g1

a−1g2

a−1gd−2

a−1gd−1

argd−1

Figure 2: A hamiltonian cycle Ck in Cay
(
G;S

)
, where gj =

∏j
i=1 si.

4 Other applications of Marušič’s Method
Here are some other situations in which we can apply Marušič’s Method (2.10).

Theorem 4.1 ([10, §4 and §5]). Suppose
• |G| is odd,

• G′ = Zpµ is cyclic of prime-power order,

• S is a generating set of G,

• S ∩G′ = ∅, and

• G is not the nonabelian group of order 27 with exponent 3.

Then there exist hamiltonian cyclesC1 andC2 in Cay(G/G′;S) that have an oriented edge
in common, such that (ΠC1)−1(ΠC2) generates G′.

Proof. Lemma 2.8 allows us to assume |G′| = p. Then the desired conclusion is implicit
in [10, §4 and §5] unless |G/G′| ∼= Z3 × Z3 and p = 3.

Therefore G/(G′)3 is a nonabelian group of order 27, so Lemma 2.21(1) tells us
|G| = 27. By assumption, the exponent of G is greater than 3, so we conclude from
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Lemma 2.21(3) that S contains an element b with |b| ≥ 9. We may assume S is minimal,
so #S = 2; write S = {a, b}. Then we have the following two hamiltonian cycles in
Cay(G;S):

C1 = (a2, b)3 and C2 = (a2, b−1)3.

Since Lemma 2.21(2) tells us (xy)3 = x3y3 for all x, y ∈ G, and we have x3 ∈ G′ = Z(G)
for all x ∈ G, we see that

(ΠC1)−1(ΠC2) =
(
(a2b)3

)−1(
a2b−1

)3
=
(
(a2)3b3

)−1(
(a2)3(b−1)3

)
= b−6 6= e,

since |b| ≥ 9.

We will use the following version of this result in Subcase ii of Case 5.12.

Proposition 4.2. Suppose
• |G| is odd,

• G′ = Zp has prime order,

• Z is a subgroup of Z(G),

• S ∩G′Z = ∅, and

• G is not nilpotent.

Then there exist hamiltonian cycles C1 and C2 in Cay
(
G/(G′Z);S

)
that have an oriented

edge in common, such that
〈
(ΠC1)−1(ΠC2)

〉
= G′.

Proof. Choose a, b ∈ S with [a, b] 6= e. Since G is not nilpotent, we may assume a does
not centralize G′. Furthermore, since we are using Marušič’s Method (2.10), there is no
harm in assuming S = {a, b}.

If b /∈ 〈a,G′, Z〉, then the proof of [10, Case 5.3] provides two hamiltonian cycles
C1 = (si)

n
i=1 and C2 = (ti)

n
i=1 in Cay

(
G/(G′Z); a, b

)
, such that ΠC1 6= ΠC2 (and the

two cycles have an oriented edge in common). From the construction, it is clear that (si)
n
i=1

is a permutation of (ti)
n
i=1, so (ΠC1)−1(ΠC2) ∈ G′.

We may now assume b ∈ 〈a,G′, Z〉. Then, letting n = |G : 〈a,G′, Z〉|, there is some i,
such that bi ∈ aiG′Z and 0 < i < n. Therefore, we have the following two hamiltonian
cycles in Cay

(
G/(G′Z);S

)
that both contain the oriented edge (b):

C1 = (b, a−(i−1), b, an−i−1),

C2 = (b, an−i−1, b, a−(i−1)) = [a−1]C1.

The sequence of edges in C2 is a permutation of the sequence of edges in C1, therefore
(ΠC1)−1(ΠC2) ∈ G′. Also, since a does not centralize G′, it is not difficult to see that
(ΠC1)−1(ΠC2) is nontrivial, and therefore generates G′.

Lemma 4.3. Assume
• G′ = Zpµ × Zqν , where p and q are prime,

• S ∩G′ = ∅,
• there exist a, b ∈ S ∪ S−1, with a 6= b, such that aG′ = bG′,
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• the generating set S is minimal, and

• |G| is odd.

Then there is a hamiltonian cycle in Cay(G;S).

Proof. Write b = aγ, with γ ∈ G′.
Case 1. Assume 〈γ〉 = G′. We apply Marušič’s Method (2.10), so Lemma 2.8 allows us to
assume G′ = Zp×Zq . Since |a| ≥ 3, it is easy to find an oriented hamiltonian cycle C0 in
Cay

(
G;S

)
that has (at least) 2 oriented edges α1 and α2 that are labeled a. We construct

two more hamiltonian cycles C1 and C2 by replacing one or both of α1 and α2 with a
b-edge. (Replace one a-edge to obtain C1; replace both to obtain C2.) Then there are
conjugates γ1 and γ2 of γ, such that

(ΠC0)−1(ΠC1) = γ1, (ΠC1)−1(ΠC2) = γ2, (ΠC0)−1(ΠC2) = γ1γ2.

By the assumption of this case, we know that γ1 and γ2 generate G′. Also, since |G| is
odd, we know that no element of G inverts any nontrivial element of G′, so γ1γ2 also
generates G′. Therefore, Marušič’s Method 2.11(1) applies.

Case 2. Assume 〈γ〉 6= G′. Since S is minimal, we know 〈γ〉 contains either Zpµ or
Zqν . By the assumption of this case, we know it does not contain both. So let us assume
〈γ〉 = N × Zqν , where N is a proper subgroup of Zpµ .

Assume, for the moment, that G/(G′)p is not the nonabelian group of order 27 and
exponent 3. We use Marušič’s Method (2.10), so Lemma 2.8 allows us to assume G′ =
Zp × Zq . Applying Theorem 4.1 to G/Zq provides us with hamiltonian cycles C1 and C2

in Cay
(
G/G′;S r {b}

)
, such that

〈
(ΠC1)−1(ΠC2)

〉
contains Zp. (Furthermore, the two

cycles have an oriented edge in common.) Since S is a minimal generating set, we know
that Ci contains an edge labelled a±1. (In fact, more than one, so we can take one that
is not the edge in common with the other cycle.) Assume, without loss of generality, that
it is labelled a. Replacing this edge with b results in a hamiltonian cycle C ′i, such that〈
(ΠCi)

−1(ΠC ′i)
〉

= 〈γ〉 = Zq . Then Marušič’s Method 2.11(2) applies.
We may now assume that G/(G′)p is the nonabelian group of order 27 and exponent 3.

Then G/〈γ〉 is a 3-group, so Theorem 2.12 tells us there is a directed hamiltonian cycle C0

in the Cayley digraph
−−→
Cay

(
G/〈γ〉;S r {b}

)
. Since S r {b} is a minimal generating set of

G/〈γ〉, there must be at least two edges α1 and α2 that are labeled a in C. Now the proof
of Case 1 applies (but with 〈γ〉 in the place of G′).

5 Proof of Theorem 1.2
Assumption 5.1. We always assume:

(1) The generating set S is minimal.

(2) S ∩G′ = ∅ (see Corollary 2.17).

(3) p and q are distinct (see Theorem 1.1).

(4) G is not nilpotent (see Theorem 2.13). This implies G/(G′)pq is not nilpotent [9,
Satz 3.5, p. 270].

(5) There do not exist a, b ∈ S ∪ S−1 with a 6= b and aG′ = bG′ (see Lemma 4.3).

(6) There does not exist s ∈ S, such that G′ ⊆ 〈s〉 (see Theorem 2.16).
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Remark 5.2. We consider several cases that are exhaustive up to permutations of the vari-
ables a, b, and c, and interchanging p and q. Here is an outline of the cases:

• There exist a, b ∈ S, such that 〈[a, b]〉 = G′.

(5.3) b ∈ 〈a〉.
(5.4) b /∈ 〈a〉 and |a| ≥ 5.
(5.5) |a| = |b| = 3 and 〈a〉 6= 〈b〉.

• There exist a, b, c ∈ S, such that Zpµ ⊆ 〈[a, b]〉 and Zqν ⊆ 〈[a, c]〉.
(5.7) b, c ∈ 〈a〉.
(5.8) 〈a〉 ( 〈a, b〉 ( 〈a, b, c〉.
(5.9) a centralizes G′/(G′)pq .

(5.10) b, c /∈ 〈a〉.
(5.11) c ∈ 〈a〉 and b /∈ 〈a〉.

• There do not exist a, b, c ∈ S, such that 〈[a, b], [a, c]〉 = G′. (5.12)

Case 5.3. Assume there exist a, b ∈ S, such that 〈[a, b]〉 = G′ and b ∈ 〈a〉.

Proof. We use Marušič’s Method (2.11), so there is no harm in assuming S = {a, b}.
Then 〈a〉 = 〈a, b〉 = G. Furthermore, Lemma 2.8 allows us to assume G′ = Zpq . Let
n = |a| = |G|, fix k with b = ak, and choose γ ∈ G′, such that b = akγ. Note that

• an = e (since Corollary 2.20 implies that a cannot centralize a nontrivial subgroup
of G′), and

• 〈γ〉 = G′ (since 〈a〉n 〈γ〉 = 〈a, b〉 = G).

We may assume 1 ≤ k < n/2, by replacing b with its inverse if necessary. We may also
assume n ≥ 5 (otherwise, we must have k = 1, contrary to Assumption 5.1(5)). Therefore
n− k − 2 > 0.

We have the following three hamiltonian cycles in Cay(G; a, b):

C1 = (an), C2 = (an−k−1, b, a−(k−1), b), C3 = (an−k−2, b, a−(k−1), b, a).

Their voltages are

ΠC1 = an = e,

ΠC2 = an−k−1ba−(k−1)b = an−k−1(akγ)a−(k−1)(akγ) = an · a−1γaγ = γaγ,

ΠC3 = an−k−2ba−(k−1)ba = a−1(an−k−1ba−(k−1)b)a = (ΠC2)a.

Since |G| is odd, we know that a does not invert Zp or Zq . Therefore ΠC2 generates G′.
Hence, the conjugate ΠC3 must also generate G′. Furthermore, as was mentioned above,
we know that a does not centralize any nontrivial element of G′, so (ΠC2)(ΠC3)−1 also
generates G′. (Also note that all three hamiltonian cycles contain the oriented edge (a).)
Hence, Marušič’s Method 2.11(1) applies.

Case 5.4. Assume there exist a, b ∈ S, such that 〈[a, b]〉 = G′ and b /∈ 〈a〉. Also assume
|a| ≥ 5.
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Proof (cf. proof of [10, Case 4.3]). We use Marušič’s Method (2.11), so there is no harm
in assuming S = {a, b}. Furthermore, Lemma 2.8 allows us to assume G′ = Zpq . Let

d = |G/〈a〉|, so there is some r with b
d
ar = e and 0 ≤ r < |a|. We may assume

r ≤ |a| − 2, by replacing b with its inverse if necessary.
Applying Corollary 3.3 to the hamiltonian cycle (b−d) yields hamiltonian cycles C0,

C1, and C2 (since 2 = 5 − 3 ≤ |a| − 3). Note that all of these contain the oriented
edge b(b−1). Furthermore, the voltage of Ck is

ΠCk = π[a−k, b] [a−k, b]a
−1

,

where π = ΠC0 is independent of k.
Since [a−1, b] generates G′, and a does not invert any nontrivial element of G′ (recall

that |G| is odd), it is easy to see that G′ is generated by the difference of any two of

e, [a−1, b], and [a−2, b] = [a−1, b][a−1, b]a
−1

.

Using again the fact that a does not invert any element of G′, this implies that G′ is gen-
erated by the difference of any two of the three voltages, so Marušič’s Method 2.11(1)
applies.

Case 5.5. Assume there exist a, b ∈ S, such that 〈[a, b]〉 = G′, |a| = |b| = 3 and 〈a〉 6= 〈b〉.
Proof. This proof is rather lengthy. It can be found in Section 6.

Assumption 5.6. Henceforth, we assume there do not exist a, b ∈ S ∪ S−1, such that
〈[a, b]〉 = G′.

Case 5.7. Assume Zpµ ⊆ 〈[a, b]〉, Zqν ⊆ 〈[a, c]〉, and 〈b, c〉 ⊆ 〈a〉.
Proof. We use Marušič’s Method (2.11), so there is no harm in assuming S = {a, b, c}.
(Furthermore, Lemma 2.8 allows us to assume G′ = Zpq , so 〈[a, b]〉 = Zp and 〈[a, c]〉 =
Zq .) Then, since b, c ∈ 〈a〉, we must have 〈a〉 = G. Therefore, Corollary 2.20 tells us that
a does not centralize any nonidentity element of G′. Fix k and ` with b = ak and c = a`.
We may write b = akγ1 and c = a`γ2, for some γ1 ∈ Zp and γ2 ∈ γq .

Since 1, k, and ` are distinct (see Assumption 5.1(5)), we may assume 1 < k < ` <
n/2, by interchanging b and c and/or replacing b and/or c with its inverse if necessary.
Therefore ` ≥ 3 and k + ` ≤ n − 2, so we have the following three hamiltonian cycles in
Cay(G; a, b, c):

C1 = (a−n)

C2 = (a−(`−1), c, b, a−(k−1), b, an−k−`−2, c)

C3 = (a−(`−2), c, b, a−(k−1), b, an−k−`−2, c, a−1).

Note that each of these contains the oriented edge (a−1).
Since a does not centralize any nonidentity element of G′, we know ΠC1 = e. A

straightforward calculation shows

ΠC2 = (γ1γ
a−1

1 )a
−k−1

(γa
−1

2 γ2),

which generates G′. Therefore, ΠC3 = (ΠC2)a
−1

and (ΠC2)−1(ΠC3) also generate G′.
(For the latter, note that a−1 does not centralize any nonidentity element of G′.) Therefore
Marušič’s Method 2.11(1) applies.
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e

Figure 3: A hamiltonian cycle X .

Case 5.8. Assume Zpµ ⊆ 〈[a, b]〉, Zqν ⊆ 〈[a, c]〉, and there exists s ∈ {a, b}, such that
〈a〉 ( 〈a, s〉 ( 〈a, b, c〉.
Proof. We use Marušič’s Method (2.11), so there is no harm in assuming S = {a, b, c}.
Furthermore, Lemma 2.8 allows us to assumeG′ = Zpq , so 〈[a, b]〉 = Zp and 〈[a, c]〉 = Zq .
Choose A,B,C ≥ 3, such that aA = e, and every element of G can be written uniquely in
the form

axb
y
cz with

0 ≤ x < A,
0 ≤ y < B,
0 ≤ z < C.

More precisely, we may let{
A = |a|, B = |〈a, b〉 : 〈a〉|, C = |G : 〈a, b〉| if s = b,

A = |a|, C = |〈a, c〉 : 〈a〉|, B = |G : 〈a, c〉| if s = c.

Then we have the following hamiltonian cycle X in Cay(G; a, b, c) (see Figure 3):

X =

(
a,
(
aA−2, (b, a−(A−1), b, aA−1)(B−1)/2, c,

(a−(A−1), b−1, aA−1, b−1)(B−1)/2, a−(A−2), c
)(C−1)/2

,

b, a−1, bB−2, a, (aA−2, b−1, a−(A−2), b−1)(B−3)/2,

aA−2, b−1, a−(A−3), b−1, aA−2, c−(C−1)
)
.

We obtain a new hamiltonian cycle Xp by replacing a subpath of the form [g]
(
aA−1, b,

a−(A−1)
)

with [g]
(
a−(A−1), b, aA−1

)
. Then (ΠX)−1(ΠXp) is a conjugate of(

aA−1ba−(A−1)
)−1(

a−(A−1)baA−1
)

= [b, aA−1]a[b, aA−1].

Similarly, replacing a subpath of the form [g]
(
aA−1, c, a−(A−1)

)
with [g]

(
a−(A−1), c,

aA−1
)

results in a hamiltonian cycle Xq , such that (ΠX)−1(ΠXq) is a conjugate of
[c, aA−1]a[c, aA−1]. Furthermore, doing both replacements results in a hamiltonian cy-
cle Xp

q , such that (ΠXp)−1(ΠXp
q ) is also a conjugate of [c, aA−1]a[c, aA−1]. Note that all

four of these hamiltonian cycles contain the oriented edge c(c−1).
Since G′ 6⊆ 〈a〉 (see Assumption 5.1(6)), we may assume aA ∈ Zp (by interchanging

p and q if necessary). Since [c, a] ∈ Zq , this implies that c centralizes aA, so [c, aA−1] =
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e

Figure 4: A hamiltonian cycle Y1.

[c, a−1] generates Zq . Since a does not invert any nontrivial element of Z (recall that G has
odd order), this implies that [c, aA−1]a[c, aA−1] generates Zq .

Assume, for the moment, that [b, aA−1] generates Zp. Since a does not invert any
nontrivial element of Zp, this implies that [b, aA−1]a[b, aA−1] generates Zp. Therefore,
Marušič’s Method 2.11(2) applies.

We may now assume [b, aA−1] does not generate Zp. This means [b, aA−1] = e. Since
[b, a−1] 6= e, we conclude that [b, aA] 6= e, so

b does not centralize Zp.

We have the following hamiltonian cycle Y1 in Cay(G; a, b, c) (see Figure 4):

Y1 =

(
b,
(
bB−3, (a, b−(B−2), a, bB−2)(A−1)/2, b, a−(A−1), c,

aA−1, b−1, (b−(B−2), a−1, bB−2, a−1)(A−1)/2, b−(B−3), c
)(C−1)/2

,

bB−2, a, (aA−2, b−1, a−(A−2), b−1)(B−1)/2, aA−1, c−(C−1)
)
.

We create a new hamiltonian cycle Y2 by replacing a subpath of the form [g]
(
a−(A−1),

c, aA−1
)

with [g]
(
aA−1, c, a−(A−1)

)
. This is the same as the construction of Xq from X ,

but with a and a−1 interchanged, so the same calculation shows

(ΠY1)−1(ΠY2) is a conjugate of [c, a−(A−1)]a
−1

[c, a−(A−1)], which generates Zq .

Furthermore, since Y1 and Y2 both contain the oriented path [bB−3](b, a, b−1), and ei-
ther the oriented edge [bB−2](a) or the oriented edge [bB−2a](a−1), Remark 3.2 provides
hamiltonian cycles Y ′1 and Y ′2 , such that (ΠYi)

−1(ΠY ′i ) generates Zp. Since all four hamil-
tonian cycles contain the oriented edge [c](c−1), Marušič’s Method 2.11(2) applies.

Case 5.9. Assume Zpµ ⊆ 〈[a, b]〉, Zqν ⊆ 〈[a, c]〉, and a centralizes G′/(G′)pq .

Proof. We use Marušič’s Method (2.11), so there is no harm in assuming S = {a, b, c}.
Furthermore, Lemma 2.8 allows us to assumeG′ = Zpq , so 〈[a, b]〉 = Zp and 〈[a, c]〉 = Zq .

Note that [a, b−1, c] ∈ Zp, [c, a−1, b] ∈ Zq , and [b, c−1, a] = e (because a central-
izes G′). Since Zp ∩ Zq = {e}, and the Three-Subgroup Lemma [7, Thm. 2.3, p. 19] tells
us

[a, b−1, c]b[b, c−1, a]c[c, a−1, b]a = e,
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we conclude that [a, b−1, c] = [c, a−1, b] = e, so

c centralizes Zp and b centralizes Zq.

We know G′ 6⊆ Z(G), because G is not nilpotent (see Assumption 5.1(4)). Since
a centralizes G′, this implies we may assume c does not centralize G′ (by interchanging b
and c if necessary). So c does not centralize Zq . Since a, b, and G′ all centralize Zq , this
implies c /∈ 〈a, b,G′〉. In other words, c /∈ 〈a, b〉. Furthermore, applying Corollary 2.20 to
the group 〈a, b〉 tells us that 〈a〉 6= 〈a, b〉. Therefore 〈a〉 ( 〈a, b〉 ( 〈a, b, c〉, so Case 5.8
applies.

Case 5.10. Assume Zpµ ⊆ 〈[a, b]〉, Zqν ⊆ 〈[a, c]〉, and b, c /∈ 〈a〉.

Proof. We use Marušič’s Method (2.11), so there is no harm in assuming S = {a, b, c}.
Furthermore, Lemma 2.8 allows us to assumeG′ = Zpq , so 〈[a, b]〉 = Zp and 〈[a, c]〉 = Zq .
We may assume 〈a, b〉 = 〈a, c〉 = G, for otherwise Case 5.8 applies.

Let us begin by showing that a does not centralize any nontrivial element of G′. Sup-
pose not. Then we may assume that a centralizes Zp. Let G = G/Zq = G/〈[a, c]〉. Since
〈a, c,G′〉 = G, we know that 〈a, c,Zp〉 = G , so a is in the center of G. This contradicts
the fact that 〈[a, b]〉 = Zp is nontrivial.

Since G is abelian (and because b, c /∈ 〈a〉), it is easy to choose a hamiltonian cy-
cle (si)

d
i=1 in Cay(G/〈a〉;S) that contains both an edge labeled b (or b−1) and an edge

labeled c (or c−1). Note that

C0 =
(
(si)

d−1
i=1 , a

|a|−1, (s−1d−2i+1, a
−(|a|−2), s−1d−2i, a

|a|−2)
(d−1)/2
i=1 , a

)
is a hamiltonian cycle in Cay(G;S).

Subcase i. Assume |a| > 3. We may assume s1 = b−1 and s2 = c−1. Then C0

contains the four subpaths

(b−1), [b−1a2](a−1, b, a), [b−1](c−1), [b−1c−1a−2](a, c, a−1).

Therefore, we may let g be either b−1 or b−1c−1 in Lemma 3.1, so Remark 3.2(2) tells us
we have hamiltonian cycles Cb and Cc, such that (ΠC0)−1(ΠCb) is a generator of Zp, and
(ΠC0)−1(ΠCc) is a generator of Zq . Since |a| > 3, we see that

Cb, like C0, contains [b−1](c−1) and [b−1c−1a−2](a, c, a−1),

so Remark 3.2(2) provides a hamiltonian cycleCbc , such that (ΠCb)−1(ΠCbc) is a generator
of Zq . Therefore, Marušič’s Method 2.11(2) applies (since each of these four hamiltonian
cycles contains the oriented edge [a−1](a)).

Subcase ii. Assume d > 3. We may assume s1 = b−1 and s3 = c−1. Then C0 contains
the four subpaths

(b−1), [b−1a2](a−1, b, a), [s1s2](c−1), [s1s2c
−1a2](a−1, c, a).

Therefore, we may let g be either b−1 or s1s2c−1 in Lemma 3.1, so Remark 3.2(2) tells
us we have hamiltonian cycles Cb and Cc, such that (ΠC0)−1(ΠCb) is a generator of Zp,
and (ΠC0)−1(ΠCc) is a generator of Zq . It is clear that Cb, like C0, contains [s1s2](c−1)
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and [s1s2c
−1a2](a−1, c, a), so Remark 3.2(2) provides a hamiltonian cycle Cbc , such that

(ΠCb)−1(ΠCbc) is a generator of Zq . Therefore, Marušič’s Method 2.11(2) applies (since
each of these four hamiltonian cycles contains the oriented edge [a−1](a)).

Subcase iii. Assume |a| = 3 and d = 3. Since d = 3, we may assume b ≡ c (mod〈a〉)
(by replacing c with its inverse if necessary). Let

C0 = (b−1, c−1, a2, c, a−1, b, a2),

so C0 is a hamiltonian cycle in Cay(G;S). Then C0 contains the four subpaths

(b−1), [b−1a2](a−1, b, a), [b−1](c−1), [b−1c−1a−2](a, c, a−1).

Therefore, we may let g be either b−1 or b−1c−1 in Lemma 3.1, so Remark 3.2(2) tells us
we have hamiltonian cycles

Cb = (a, b−1, a−1, c−1, a2, c, b, a)

and
Cc = (b−1, a−1, c−1, a2, c, b, a2),

such that (ΠC0)−1(ΠCb) is a generator of Zp, and (ΠC0)−1(ΠCc) is a generator of Zq .
Furthermore, Cc contains the oriented paths [ab−1](b) and [a−1](a, b−1, a−1), so, by let-
ting g = a in Lemma 3.1 (and replacing b with b−1), Remark 3.2(2) tells us we have a
hamiltonian cycle

Ccb = (a2, b−1, c−1, a2, c, a−1, b),

such that (ΠCc)−1(ΠCcb ) is a generator of Zp. Therefore Marušič’s Method 2.11(2) applies
(since all four of these hamiltonian cycles contain the oriented edge [b−1c−1](a)).

Case 5.11. Assume Zpµ ⊆ 〈[a, b]〉, Zqν ⊆ 〈[a, c]〉, c ∈ 〈a〉, and b /∈ 〈a〉.
Proof. We use Marušič’s Method (2.10), so there is no harm in assuming S = {a, b, c}.
Furthermore, Lemma 2.8 allows us to assumeG′ = Zpq , so 〈[a, b]〉 = Zp and 〈[a, c]〉 = Zq .
Also note that, from Assumption 5.1(5), we know c /∈ {a±1}, so we must have |a| > 3.

Let d = |G/〈a〉|. Since c ∈ 〈a〉, we have 〈a, b〉 = G, so (bd) is a hamiltonian cycle in
Cay(G/〈a〉;S). Choose r such that arbd ∈ G′ and 0 ≤ r ≤ |a| − 1. Assume r < |a|/2
(so r ≤ |a| − 3), by replacing b with its inverse if necessary. Then letting k = |a| − 3 in
Corollary 3.3 provides us with a hamiltonian cycle C0 = C|a|−3.

Choose ` with c = a`, and write c = a`γ, where Zq ⊆ 〈γ〉. We may assume 0 ≤
` < |a|/2 (by replacing c with its inverse, if necessary). Then ` ≤ |a| − 3, so we see
from Figure 2 that C|a|−3 contains the path [a`b](a−(`+1)). Replacing this with the path
[a`b](c−1, a`−1, c−1) results in a hamiltonian cycle C1, such that (ΠC0)−1(ΠC1) is a
conjugate of

c−1a`−1c−1 · a`+1 = (a`γ)−1a`−1(a`γ)−1 · a`+1 = γ−1(γ−1)a.

Since |G| is odd, we know that a does not invert any nontrivial element of G′, so this is a
generator of 〈γ〉, which contains 〈[a, c]〉 = Zq .

Furthermore, from Figure 2, we see that C|a|−3 contains both the oriented edge
[b−1a−1](b) and the oriented path [b−1a](a−1, b, a). Then, by construction, C1 also con-
tains these paths. Therefore, we may apply Lemma 3.1 with g = b−1a−1, so Remark 3.2(1)
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tells us we have hamiltonian cycles Ĉ0 and Ĉ1, such that (ΠCi)−1(ΠĈi) is a generator
of Zp. Therefore Marušič’s Method 2.11(2) applies (since there are many oriented edges,
such as [a−1](a−1), that are in all four hamiltonian cycles).

Case 5.12. Assume there do not exist a, b, c ∈ S, such that 〈[a, b], [a, c]〉 = G′.

Proof. Let G = G/(G′)pq , so G′ = Zpq . The assumption of this case implies that we may
partition S into two nonempty sets Sp and Sq , such that

• Sp centralizes Sq in G, and

• for r ∈ {p, q}, and a, b ∈ Sr, we have [a, b] ∈ Zr.

Let Gp = 〈Sp〉, Gq = 〈Sq〉, and Z = Gp ∩Gq ⊆ Z(G).
SinceG is not nilpotent (see Assumption 5.1(4)), we know thatG′ 6⊆ Z(G). Therefore,

we may assume Zq 6⊆ Z(G) (by interchanging p and q if necessary). Since Gp ∩ Gq ⊆
Z(G), this implies Zq 6⊆ Gp.

Subcase i. Assume there exist ap, bp, aq, bq ∈ S, such that 〈[ap, bp]〉 = Zp, 〈[aq, bq]〉 =

Zq , and {bp, bq} is a minimal generating set of 〈ap, bp, aq, bq〉/〈ap, aq〉. We use Marušič’s
Method (2.10) with S0 = {ap, bp, aq, bq}. Assume, for simplicity, that S = S0. Lemma 2.8
allows us to assume G′ = Zpq , so G = G.

After perhaps replacing some generators with their inverses, it is easy to find:

• a hamiltonian cycle (si)
m
i=1 in Cay

(
〈ap, aq〉; ap, aq

)
, such that sm−2 = ap and

sm−1 = aq , and

• a hamiltonian cycle (tj)
n
j=1 in Cay

(
G/〈ap, aq〉; bp, bq

)
, such that t1 = bp and t3 =

bq .

We have the following hamiltonian cycle C0 in Cay(G;S):

C0 =
((

(si)
n−2
i=1 , t2j−1, (s

−1
n−1−i)

n−2
i−1 , t2j

)(m−1)/2
j=1

, (si)
n−1
i=1 , (t

−1
m−j)

m−1
j=1 , sn

)
.

Much as in the proof of Lemma 3.1, we construct a hamiltonian cycle C1 by

• replacing the oriented edge [s−1m bp](b
−1
p ) with the path [s−1m bp](a

−1
q , b−1p , aq), and

• the oriented path [s−1m a−1q a−1p ](ap, bp, a
−1
p ) with [s−1m a−1q a−1p ](bp).

Then there exist g, h ∈ G, such that

(ΠC0)−1(ΠC1) = [b−1p , aq]
g [a−1p , bp]

h = eg · [a−1p , bp]
h = [a−1p , bp]

h,

which generates Zp.
Similarly, we may construct hamiltonian cycles C ′0 and C ′1 from C0 and C1 by

• replacing the oriented edge [s−1m t1t2bq](b
−1
q ) with the path [s−1m t1t2bq](a

−1
q , b−1q ,

aq), and

• the oriented path [s−1m a−1q a−1p t1t2](ap, bq, a
−1
p ) with [s−1m a−1q a−1p t1t2](bq).
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Then, for k ∈ {0, 1}, essentially the same calculation shows there exist g′, h′ ∈ G, such
that

(ΠCk)−1(ΠC ′k) = [b−1q , aq]
g′ [a−1p , bq]

h′ = [b−1q , aq]
g′ · eh′ = [b−1q , aq]

g′ ,

which generates Zq .
All four hamiltonian cycles contain the oriented edge (s1), so Marušič’s Method 2.11(2)

applies.

Subcase ii. Assume Gp is not the nonabelian group of order 27 and exponent 3. We
will apply Marušič’s Method (2.11), so Lemma 2.8 allows us to assume G′ = Zpq , which
means G = G.

Claim. We may assume Sq ∩ (G′Z) = ∅. Suppose aq ∈ Sq ∩ (G′Z). By the minimality
of S, we know aq /∈ Gp. Since Z and Zp are contained in Gp, this implies G′ ⊆ 〈Gp, aq〉.
Therefore, the minimality of S implies that Sq r {aq} is a minimal generating set of
G/〈Gp, aq〉. So Subcase i applies. This completes the proof of the claim.

Now, applying Proposition 4.2 to Gq tells us there exist hamiltonian cycles Cq and C ′q
in Cay

(
Gq/Z;Sq

)
, such that Cq and C ′q have an oriented edge in common, and 〈(ΠCq)−1

(ΠC ′q)〉 = Zq .
Also, Theorem 4.1 provides hamiltonian cycles Cp and C ′p in Cay

(
Gp;Sp

)
, such that

Cp and C ′p have an oriented edge in common, and 〈(ΠCp)−1(ΠC ′p)〉 = Zp.
For r ∈ {p, q}, write Cr = (sr,i)

nr
i=1 and C ′r = (tr,i)

nr
i=1. Since Cr and C ′r have an

edge in common, we may assume sr,nr = tr,nr .
Let

C =
(

(sp,i)
np−1
i=1 , (sq,i)

nq−1
i=1 ,(

s−1p,np−2i+1, (s
−1
q,nq−j)

nq−2
j=1 , s−1p,np−2i, (sq,j)

nq−1
j=2

)(np−1)/2
i=1

, sq,nq

)
. (5.12A)

Then C is a hamiltonian cycle in Cay(G;S).
For r ∈ {p, q}, a path of the form [g](sr,i)

nr−1
i=1 appears near the start of C. We obtain a

new hamiltonian cycle Cr in Cay
(
G;S

)
by replacing this with [g](tr,i)

nr−1
i=1 . We can also

construct a hamiltonian cycle Cp,q by making both replacements. Then

〈(ΠC)−1(ΠCr)〉 = 〈(ΠCr)−1(ΠC ′r)〉 = Zr,

and
〈(ΠCq)−1(ΠCp,q)〉 = 〈(ΠCp)−1(ΠC ′p)〉 = Zp,

so Marušič’s Method 2.11(2) applies (since all four hamiltonian cycles contain the oriented
edge [s−1q,nq ](sq,nq )).

Subcase iii. Assume Gp is the nonabelian group of order 27 and exponent 3. We have
p = 3, and Lemma 2.21(1) tells us µ = 1; i.e., G′ = Z3 × Zqν . Therefore G = G/(G′)q .

Let Cp = (sp,i)
27
i=1 be a hamiltonian cycle in Cay

(
Gp;Sp

)
. Also, for r = q, Theo-

rem 4.1 provides hamiltonian cycles Cq = (sq,i)
nq
i=1 and C ′q = (tq,i)

nq
i=1 in Cay(Gq;Sq),

such that sq,nq = tq,nq and (ΠCq)
−1(ΠC ′q) generates Zqν . Define the hamiltonian cycle

C as in (5.12A) (with np = 27). We obtain a new hamiltonian cycle Cq in Cay
(
G;S

)
by
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a

a2

s1 s2 s3 · · · s3ℓ−3 s3ℓ−1e

Figure 5: A hamiltonian cycle C0.

replacing an occurrence of (sq,i)
nq−1
i=1 with the path (tq,i)

nq−1
i=1 . Much as in Subcase ii, we

have
〈(ΠC)−1(ΠCq)〉 = 〈(ΠCq)−1(ΠC ′q)〉 = Zq,

so ΠC and ΠCq cannot both be trivial. Therefore, applying the Factor Group Lemma (2.7)
with N = Zq provides a hamiltonian cycle in Cay(G;S), and then Lemma 2.8 tells us
there is a hamiltonian cycle in Cay(G;S).

6 Proof of Case 5.5
In this section, we prove Case 5.5. Therefore, the following assumption is always in effect:

Assumption 6.1. Assume there exist a, b ∈ S, such that 〈[a, b]〉 = G′, |a| = |b| = 3, and
〈a〉 6= 〈b〉.

The proof will consider two cases.

Case I. Assume #S > 2.

Proof. Let c be a third element of S, and let ` = |G : 〈a, b〉|. (Since S is a minimal
generating set, and G′ = 〈[a, b]〉 ⊆ 〈a, b〉, we must have ` > 1.) We use Marušič’s
Method (2.10) with S0 = {a, b, c}; assume, for simplicity, that S = S0. Lemma 2.8 allows
us to assume G′ = Zpq . Let

(si)
3`
i=1 =

(
(b, c, b−1, c)(`−1)/2, b2, c−(`−1), b

)
,

so (si)
3`
i=1 is a hamiltonian cycle in Cay

(
G/〈a〉; b, c

)
. Note that

s1 = s5 = b.

From the definition of (si)
3`
i=1, it is easy to see that

∏3`
i=1 si = b

3
= e, so we have the

following hamiltonian cycle C0 in Cay(G; a, b, c) (see Figure 5):

C0 =
(
(sj)

3`−3
j=1 , a

−1, s3`−2, s3`−1, a
−1, s3`,

(a, s2j−1, a
−1, s2j)

3(`−1)/2
j=1 , s3`−2, a

−1, s3`−1, s3`
)
.

Since s1 = b, we see that C0 contains the oriented edge (b), and it also contains the
oriented path [a−2](a, b, a−1), so Lemma 3.1 provides a hamiltonian cycle C1, such that

(ΠC0)−1(ΠC1) is a conjugate of [a, b−1][a, b−1]a.
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Similarly, since s5 = b and s1s2s3s4 = c2, we see that C1 contains both the oriented
edge [c2](b) and the oriented path [c2a−2](a, b, a−1), so Lemma 3.1 provides a hamiltonian
cycle C2, such that

(ΠC1)−1(ΠC2) is also a conjugate of [a, b−1][a, b−1]a.

Since no element of G inverts any nontrivial element of G′ (recall that |G| is odd), this
implies that (ΠCi)

−1(ΠCj) generates G′ whenever i 6= j. So Marušič’s Method 2.11(1)
applies (since all three hamiltonian cycles contain the oriented edge [s1](s2).

Case II. Assume #S = 2.

Proof. We have S = {a, b}, so |G| = 9pµqν . We may assume p, q > 3, for otherwise
Corollary 2.15 applies (perhaps after interchanging p and q).

One very special case with a lengthy proof will be covered separately:

Assumption 6.2. Assume Proposition 6.4 below does not provide a hamiltonian cycle in
Cay(G;S).

Under this assumption, we will always use the Factor Group Lemma (2.7) with N =
G′, so Lemma 2.8 allows us to assume G′ = Zpq .

Let
C = (a−2, b−1, a, b−1, a−2, b2),

so C is a hamiltonian cycle in Cay(G; a, b). We have

ΠC = a−2b−1ab−1a−2b2 = [a, b]a[a, b][a, b]b(a−3)b
2

. (6.2A)

Let G = G/Zp, so G′ = Zq . Since p, q > 3, we know gcd
(
|G|, |G′|

)
= 1, so

G ∼= GnG′ [7, Thm. 6.2.1(i)]. Therefore G′ ∩ Z(G) is trivial, so we may

assume that a does not centralize Zq

(perhaps after interchanging a with b). Therefore a acts on Zq via a nontrivial cube root of
unity. Since the nontrivial cube roots of unity are the roots of the polynomial x2 + x + 1,
this implies that [a, b]a

2

[a, b]a[a, b] = e, so

[a, b]a[a, b] = ([a, b]a
2

)−1 = ([a, b]a
−1

)−1

(since |a| = 3). Furthermore, a−3 = e (since a has trivial centralizer in Zq). Hence,

ΠC = [a, b]
a

[a, b] [a, b]
b
(a−3)b

2

= ([a, b]
a−1

)−1 [a, b]
b
e

= ([a, b]
a−1

)−1 [a, b]
b
.

Therefore

ΠC 6= e unless yb = ya
−1

for all y ∈ Zq . (6.2B)

Hence, we may assume 〈ΠC〉 contains Zq (by replacing b with its inverse if necessary).
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Subcase i. Assume a centralizes Zp. Since G′ ∩ Z(G) is trivial, we know that b does
not centralize Zp. Also, we may assume 〈ΠC〉 6= G′, for otherwise the Factor Group
Lemma (2.7) applies. Therefore ΠC must project trivially to Zp. Fixing r, k ∈ Z with

[a, b]b = [a, b]r and a−3 = [a, b]k

(and using the fact that r2 + r + 1 ≡ 0 (mod p)), we see from (6.2A) that this means

0 ≡ 1 + 1 + r + kr2 ≡ 1− r2 + kr2 ≡ r2(r − 1 + k) (mod p),

so
k ≡ 1− r (mod p).

Therefore k 6≡ 0 (mod p) (since r is a primitive cube root of unity). Also, since a central-
izes Zp, we have

[a−1, b−1]−kr ≡
(
[a, b−1]−1

)−kr
=
(
[a, b]b

−1)−kr
= [a, b]−k

= a3 = (a−1)−3 (modZq).

Therefore, replacing a and b with their inverses replaces k with −kr (modulo p), and it
obviously replaces r with r2. Hence, we may assume that we also have

−kr ≡ 1− r2 ≡ r3 − r2 = −(1− r)r2 ≡ −kr2 (mod p),

so r ≡ 1 (mod p). This contradicts the fact that b does not centralize Zp.

Subcase ii. Assume a does not centralize Zp. We may assume that the preceding
subcase does not apply when a and b are interchanged (and perhaps p and q are also inter-
changed). Therefore, we may assume that either
• b centralizes both Zp and Zq , in which case, interchanging p and q in (6.2B) tells us

that ΠC projects nontrivially to both Zp and Zq , so the Factor Group Lemma (2.7)
applies, or

• b has trivial centralizer in G′.

Henceforth, we assume a and b both have trivial centralizer in G′.
We may assume yb = ya for y ∈ Zq , by replacing b with its inverse if necessary. We

may also assume 〈ΠC〉 6= G′ (for otherwise the Factor Group Lemma (2.7) applies). Since
〈ΠC〉 contains Zq , this means that 〈ΠC〉 does not contain Zp. By interchanging p and q
in (6.2B), we conclude that xb = xa

−1

for x ∈ Zp. We are now in the situation where a
hamiltonian cycle in Cay(G; a, b) is provided by Proposition 6.4 below.

The remainder of this section proves Proposition 6.4, by applying the Factor Group
Lemma (2.7) with N = Zqν . To this end, the following lemma provides a hamiltonian
cycle in Cay

(
G/Zqν ;S

)
.

Lemma 6.3. Assume
• G = Zpµ o (Z3 × Z3) = 〈x〉o

(
〈a〉 × 〈b0〉

)
, with p > 3,

• b = xb0,

• xb = xa
−1

= xr, where r is a primitive cube root of unity in Zpµ ,
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• k ∈ Z, such that

◦ k ≡ 1 (mod 3),
◦ k ≡ r (mod pµ), and
◦ 0 ≤ k < 3pµ,

• ` is the multiplicative inverse of k, modulo 3pµ (and 0 ≤ ` < 3pµ),

• C =
(
a, b−2, (a−1, b2)k−1, a−2, b2, (a, b−2)`−k−1, a−2, (b−2, a)3p

µ−`−1 ), and

• C̃ is the walk obtained from C by interchanging a and b, and also interchanging k
and `.

Then either C or C̃ is a hamiltonian cycle in Cay(G; a, b).

Proof. Define

v2i+ε = (ba)ibε for ε ∈ {0, 1},
wj = (ba)jb−1,

and let V = {vi} and W = {wj}. Note that, since xab = x, we have |ab| = 3pµ, so
#V = 6pµ and #W = 3pµ, so G is the disjoint union of V and W . With this in mind, it
is easy to see that C1 = (b−2, a)3p

µ

is a hamiltonian cycle in Cay(G; a, b).
Removing the edges of the subpaths (b−2) and [(ba)k](b−2, a, b−2) from C1 results in

two paths:
• path P1 from b−2 = b to (ba)k, and

• path P2 from (ba)k+1b to e (since (ba)k(b−2ab−2) = (ba)k(bab) = (ba)k+1b).

The union of P1 and P2 covers all the vertices of G except the interior vertices of the
removed subpaths, namely,

all vertices except b−1, (ba)kb−1, (ba)kb, (ba)k+1, and (ba)k+1b−1.

By ignoring y in calculation (6.4A) below, we see that b−1a−1 = (a−1b−1)k, which means

ab = (ba)k.

Since b−2 = b, this implies
ab−2 = (ba)k.

Also, since a−1 = a2, we have

ba−1b2 = ba2b2 = (ba)(ab)b = (ba)
(
(ba)k

)
b = (ba)k+1b.

Therefore
Q1 = (a, b−2) is a path from the end of P2 to the end of P1,

and
Q2 = [b](a−1, b2) is a path from the start of P1 to the start of P2.

So, letting −P1 be the reverse of the walk P1, we see that

C2 = Q1 ∪ −P1 ∪Q2 ∪ P2
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is a closed walk.
Note that the interior vertices of Q1 are

a = (ab)b−1 = (ba)kb−1

and
ab−1 = (ab)b = (ba)kb,

and the interior vertices of Q2 are

ba−1 = ba2 = (ba)(ab)b−1 = (ba)(ba)kb−1 = (ba)k+1b−1

and
ba−1b =

(
(ba)k+1b−1

)
b = (ba)k+1.

These are all but one of the vertices that are not in the union of P1 and P2, so

C2 is a cycle that covers every vertex except b−1.

Notice that the only a-edge removed from C1 is [(ba)kb−2](a) = [(ba)kb](a). Since

k2 ≡ (r2)2 = r4 ≡ r 6≡ 1 (mod pµ),

and ` is the multiplicative inverse of k, modulo 3pµ, we know k 6= `, so this removed
edge is not equal to [(ba)`b](a). Therefore [(ba)`b](a) is an edge of C2. Now, we create
a walk C∗ by removing this edge from C2, and replacing it with the path [(ba)`b](a−2).
Since

(ab)` =
(
(ba)k

)`
= (ba)k` = ba,

we see that the interior vertex of this path is

[(ba)`b]a−1 = [b(ab)`]a−1 = [b(ba)]a−1 = b2 = b−1.

Therefore C∗ covers every vertex, so it is a hamiltonian cycle.
Since ab = (ba)k and ba = (ab)`, it is obvious that interchanging a and b will also

interchange k and `. Therefore, we may assume k < `, by interchanging a and b if neces-
sary. Then the edge [(ba)`b](a) is in P2, rather than being in P1. If we let P ′2 be the path
obtained by removing this edge from P2, and replacing it with [(ba)`b](a−2), then we have

C =
(

(a, b−2), (a−1, b2)k−1, a−1, (a−1, b2), (a, b−2)`−k−1, a−2, (b−2, a)3p
µ−`−1 )

= Q1 ∪ −P1 ∪ Q2 ∪ P ′2
= C∗

is a hamiltonian cycle in Cay(G; a, b).

Proposition 6.4. Assume
• G ∼= Z3 × Z3,

• G′ = Zpµ × Zqν , with p 6= q and p, q > 3,

• S = {a, b} has only two elements,

• a and b have trivial centralizer in G′, and
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• ab centralizes Zpµ and ab−1 centralizes Zqν .

Then Cay(G; a, b) has a hamiltonian cycle.

Proof. Since gcd
(
|G|, |G′|

)
= 1, we have

G ∼= G′ oG ∼= (Zpµ × Zqν ) o (Z3 × Z3).

Write Zpµ = 〈x〉 and Zqν = 〈y〉. Since a does not centralize any nontrivial element of G′,
we may assume a ∈ Z3 × Z3 (after replacing it by a conjugate). Write b = γb0, with
γ ∈ G′ and b0 ∈ Z3 × Z3. Since 〈a, b〉 = G, we must have 〈γ〉 = G′, so we may assume
γ = xy; therefore b = xyb0.

Choose r ∈ Z with xa
−1

= xr. Since |a| = 3 and a does not centralize any nontrivial
element of Zpµ , we know that r is a primitive cube root of unity, modulo pµ. Also, since
ab centralizes Zpµ , we have xb = xr.

Define k and ` as in Lemma 6.3. Then, letting G = G/Zqν (and perhaps interchanging
a with b), Lemma 6.3 tells us that

C =
(
a, b−2, (a−1, b2)k−1, a−2, b2, (a, b−2)`−k−1, a−2, (b−2, a)3p

µ−`−1)
is a hamiltonian cycle in Cay

(
G; a, b

)
.

To calculate the voltage of C, choose s ∈ Z with ya = ys, and let

y1 = ys
2−(1+s+s2+···+sk−1) = ys

2−1

(since 1 + s+ s2 ≡ 0 (mod q) and k ≡ 1 (mod 3)), and note that

(a−1b−1)k =
(
a−1(xyb0)−1

)k
(6.4A)

=
(
a−1b−10 y−1x−1

)k
= x−k

(
a−1b−10 y−1

)k
(x commutes with a−1b−10 and y)

= x−r
(
a−1b−10 )ky−(1+s+s

2+···+sk−1)

(
k ≡ r (mod pµ) and

ya
−1b−1

0 = ya
2b20 = ys

4

= ys

)
= x−rb−10 a−1y−s

2

y1

(
a and b0 commute, k ≡ 1

(mod 3), and definition of y1

)
= b−10 x−1y−1a−1y1 (xr = xb0 and ys

2

= ya
2

= ya
−1

)

= b−1a−1ys
2−1 (b = xyb0 and y1 = ys

2−1).
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Therefore

ΠC = ab−2(a−1b2)k−1a−2b2(ab−2)`−k−1a−2(b−2a)3p
µ−`−1

= ab(a−1b−1)k−1ab
(
b(ab)`−k−1a

)
(ba)3p

µ−`−1 (|a| = |b| = 3)

= ab(a−1b−1)k(a−1b−1)−1ab
(
ba
)`−k

(ba)−`−1 (|ba| = 3pµ)

= ab(a−1b−1)k(ba)ab(ba)−k(ba)−1

= ab
(
b−1a−1ys

2−1)ba2b(b−1a−1ys2−1)(a−1b−1)

(
(ba)−k = (a−1b−1)k

= b−1a−1ys
2−1

)
= ys

2−1bays
2−1a−1b−1

= ys
2−1y(s

2−1)s
(
ya
−1b−1

= ya
2b2

= ys
4

= ys

)
= y(s

2−1)(1+s).

Since s is a primitive cube root of unity modulo qν , we know s 6≡ ±1 (mod q). There-
fore, the exponent of y is not divisible by q, which means ΠC /∈ 〈yq〉, so ΠC gener-
ates Zqν . Hence, the Factor Group Lemma (2.7) provides the desired hamiltonian cycle in
Cay(G; a, b).
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graphs whose order has few prime factors, Ars Math. Contemp. 5 (2012), 27–71. MR 2853700
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