Scientific paper Green Synthesis of Silver Nanoparticles Using Nelumbo nucifera Seed Extract and its Antibacterial Activity Nguyen Thi Mai Tho,1 Tran Nguyen Minh An,1,2 Mai Dinh Tri,3 Thupakula Venkata Madhukar Sreekanth,2 Jae-Soon Lee,4 Patnamsetty Chidanandha Nagajyothi2 and Kap Duk Lee2 * 1 Department of Chemical Engineering, Industrial University of Ho Chi Minh, Ho Chi Minh City, Viet Nam 2 Department of Nanomaterial Chemistry, Dongguk University, Gyeongju, South Korea 3 Institute of Chemical Technology, Viet Nam Academy of Science and Technology, Ho Chi Minh City, Viet Nam 4 Beauty Science Research Center, Kyongbuk Science College, Gisan-myeon, Chilgok-gun, Gyeongbuk, South Korea * Corresponding author: E-mail: Corresponding author: kdlee@dongguk.ac.kr; Tel: +82-54-770-2221, Fax: +82-54-770-2386 Received: 19-04-2013 Abstract Silver nanoparticles (AgNPs) were synthesized using a Nelumbo nucifera dry seed extract, which is a simple, non-toxic, eco-friendly "green material". The synthesized nanoparticles were confirmed by the color changes and characterized by UV-visible spectroscopy. The AgNPs were stable at room temperature for 2 months. Scanning electron microscopy (SEM) revealed the formation of well-dispersed and spherical shapes. Transmission electron microscopy (TEM) of the synthesized AgNPs showed the formation of spherical nanoparticles, 5.03-16.62 nm in size. Fourier transform infrared spectroscopy (FTIR) indicated the involvement of amine, aromatic and alkynes groups in the synthetic process. X-ray diffraction (XRD) confirmed the crystalline nature of AgNPs. These AgNPs were highly toxic to found to Gram negative bacteria. Keywords: Nelumbo nucifera seeds, TEM, FTIR, XRD, antibacterial activity 1. Introduction The application of nanoscale materials and structures, which by definition should fall in the range between 1 to 100 nanometers (nm) is an emerging area of nanoscience and nanotechnology. Nanomaterials often show unique and considerably different physical, chemical and biological properties compared to their bulk counterparts.1 Recently, microorganisms such as bacteria,2-4 fungi,5-7 yeast,8 acti-nomycetes9 and plant extracts,10-12 have been used as nano-particles. Although the above biological methods aer rapid, simple, inexpensive, single step, sustainable and eco-friendly process, the culturing of microbes is a time- consuming and complicated process. The biosynthesis of AgNPs using lotus seeds can potentially eliminate these problems. Silver in colloidal state exhibits distinctive properties, such as good conductivity, chemical stability, catalytic and antimicrobial activity. The synthesis of AgNPs us- ing a plant system is a useful technology, which have many practical applications in the drug delivery, electronics, optics, diagnosis, tissue engineering, catalysis, antimicrobial activities, environment and biotechnology.13-15 Nelumbo nucifera Gaertn. (Nymphaeaceae) also known as sacred lotus is a large aquatic herb with stout, creeping rhizome. The seeds are of great importance to East Asian cuisine and have been used extensively in Chinese medicine and in Chinese desserts. Nelumbo nucifera was reported to posses' antidiarrhoeal,16 psychop-harmacological,17 diuretic,18 antipyretic,19 antimicrobial,20-22 hypoglycemic.23 Nelumbo nucifera seeds are commonly used as a traditional remedy for the following: treatment of tissue inflammation, cancer, as antiemetic and children as a diuretic, as a refrigerant from a cooling medicine for skin disease and leprosy; and as an antidote to poi-sons.24,25 The seeds are reported to have hepatoprotective and free radical scavenging activity,26 antifertility activity27 and suppress cell cycle progression, cytokine genes expression, and cell proliferation in human peripheral blood mononuclear cells.28 In the present study, AgNPs were synthesized using Nelumbo nucifera seeds. The AgNPs were characterized using a range of characterization techniques. The antimicrobial activity of AgNPs was assessed against a range of pathogenic gram-positive and gram-negative bacteria. with a 1 mM AgNO3 solution, the color began to change from brown to orange and finally to a dark orange color at 70° C for 30 min, indicating the formation of AgNPs which was determined by UV-vis spectroscopy (Fig 1). t Uf- 2. Experimental 2. 1. Preparation of Seed Extract Nelumbo nucifera dry seeds were collected from a supermarket in Ho Chi Minh City, Viet Nam. 10 g of dry seeds were added to 100 ml of distilled water and boiled for 25 min. The above cooled content was filtered through Whatmann filter paper 55 mm. The filtrate was used as a reducing agent for the preparation of nanoparticles. \ 50m , lui 11" t* i K ê » - « • ' * ' .»'•i* r * t* " V 4 • > » ' t1 * m .flr/ » « . i s t ► * } t v ***y i *. * « t • . • t'1 % t ft x « v i < * ♦ * i-*' ■ * * | # • * i' i • î'» ■ t • j ■ » » V * 1 . . ' .. f * 'V ♦ * V *l ** . # i * \ l > fc • • » J •V • » i * /9 .1 1 CI VAST Sf SfU LCI i«V >30.000 JOOi Hi f t a v m »v • g v • »9 + v • f jI 1 't 1 - . 4 1 J- v J i •T ♦ ê « I It \ , ' 1 ct vasi st «u tfl CàV kioojqoo vffîiln» 100» Figure 5. SEM omages of AgNPs synthesized from Nelumbo nucifera seed extract 3. 3. Antibacterial Studies Silver has antibacterial properties and has been used in many medical applications. Green synthesized AgNPs were found to be highly toxic to gram negative bacteria Figure 6. TEM images of AgNPs synthesized by Nelumbo nucifera seed extract such as Escherichia coli (22 mm), gram positive bacteria Bacillus subtillis (20 mm), Proteus cereus (20 mm) and Bacillus pumilus (17 mm) at different concentrations (1, 0.5 and 0.25 mM) using a standard zone of inhibition microbiology assay, with a well size of 5 mm. Penicillin was used as a control antibacterial agent (Table 1). The results showed that AgNPs synthesized from the Nelumbo nucifera seed extract exhibited more effective antibacterial activity against Gram negative bacteria than against gram positive bacteria. No enhancing effect in 1mM, 0.5 mM and 0.25 mM concentration against Bacillius cereus, Salmonella typhimurium, staphylococcus epidermidis (0.5 and 0.25 mM) and Bacillus megaterium (0.25 mM). The bactericidal effect of silver and AgNPs can be attributed to the attachment of AgNPs to the surface of the cell membrane disturbing the permeability and respiration functions of the cell.31 The large surface area of smaller AgNPs results in a larger bactericidal effect than lager Ag-NPs.31 The damage to the cell may be caused by the high affinity interaction of the AgNPs with phosphorous and sulfur containing compounds, such as DNA.32 Silver ions strongly interact with the available thiol groups of the bio-molecule to inactivate the bacteria.33 Gram-negative bacteria have a lipopolysaccharide layer at the exterior, fol- Table 1. Mean zone of inhibition (mm) of AgNPs synthesized using seed extract of lotus and penicillin against 9different bacterial species (well diameter 5 mm). Name of the bacteria Penicillin 1mM 0.5 mM 0.25 mM Bacillus subtillis 15 ± 0.33 20 ± 0.57 15 ± 0.17 11 ± 0.31 Staphylococcus aureus 13 ± 0.11 11 ± 0.31 11 ± 0.31 9 ± 0.28 Escherichia coli 25 ± 0.05 22 ± 0.28 20 ± 0.11 16 ± 0.34 Bacillus pumilus 30 ± 0.63 17 ± 0.40 15 ± 0.23 13 ± 0.11 Bacillus megaterium 21 ± 0.17 9 ± 0.28 9 ± 0.57 Bacillus cereus 10 ± 0.28 Proteus cereus 28 ± 0.05 20 ± 0.51 15 ± 0.34 12 ± 0.17 Staphylococcus epidermidis 15 ± 0.57 10 ± 0.82 Salmonella typhimurium 11 ± 0.11 lowed underneath by a thin (7-8 nm) layer of peptidogly-can consisting of linear polysaccharide chains cross-linked by short peptides to form a three dimensional rigid structure.34 Although lipopolysaccharides are composed of covalently linked lipids and polysaccharides, they lack strength and rigidity. The negative charges on the lipo-polysaccharides are attracted towards the weak positive charges available on the AgNPs,35 thereby contributing to the sequestration of free Ag+ ions. Therefore, gram-positive bacteria may allow less Ag+ to reach the cytoplasmic membrane than the gram-negative bacteria. 4. Conclusion In this study, spherically shaped AgNPs were synthesized using a Nelumbo nucifera dry seed extract at room temperature. The AgNPs were stable without using any toxic chemicals. The spherical shaped AgNPs ranged in size from 2.76 to 16.62 nm. The AgNPs showed effective antibacterial activity against gram negative bacteria. The AgNPs prepared using a seed extract has the desired quality with a low price and convenient methodology. 5. References 1. L. S. Li, J. Hu, A. P. Alivistos, Nano. Lett., 2001, 1, 349-351. 2. N. Samadi, D. Golkaran, A. Eslamifar, H. Jamalifar, M. R. Fazeli, F. A. Moshseni, J. Biomed. Nanotechnol., 2009, J, 247-253 3. N. Saifuddin, C. W. Wong, A. A. Nur, Yasumira, E. J. Chem., 2009, 6, 61-70. 4. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, A. S. Nohi, Process. Biochem., 2007, 42, 919-923. 5. R. Varshney, A. N. Mishra, S. Bhadauria, M. S. Gaur, Dig. J. Nanomater. Biostruct., 2009, 4, 349-355. 6. N. S. Shaligram, M. Bule, R. Bhambure, R. S. Singhal, S. K. Singh, G. Szakacs, A. Pandey, Process. Biochem., 2009, 44, 939-943. 7. N. Duran, P. D. Marcato, G. I. H. De Souza, O. L. Alves, E. Esposito, J. Biomed. Nanotechnol., 2009, J, 243-247. 8. M. Kowshik, S. Ashtaputre, S. Kharraz, W. Vogel, J. Urban, S. K. Kulkarni, K. M. Paknikar, Nanotechnology., 2003, 14, 95-100. 9. T. Klaus, R. Joerger, E. Olsson, C. G. Granqvist, Proc. Natl. Acad. Sci., USA. 1999, 96, 13611-13614. 10. T. V. M. Sreekanth, K. D. Lee, Curr. Nanosci., 2011, 7, 1046-1053 11. P. C. Nagajyothi, K. D. Lee, J. Nanomat., 2011, Article ID 573429. 12. P. C. Nagajyothi, T. V. M. Sreekanth, K. D. Lee, Synth. React. Inorg. Metal-Organic. Nano-Metal Chem., 2012, 42, 1339-1344. 13. I. Hussain, M. Brust, A. J. Papworth, A. L. Cooper, Langi-mur., 2003, 19, 4831-4835. 14. J. Kohler, L. Abahmane, J. Albert, G. Mayer, Chem. Eng. Sci. 2008, 63, 5048-5055. 15. R. B. Malabadi, G. S. Mulgund, N. T. Meti, K. Nataraja, S. Vijaya Kumar, Research in Pharmacy., 2012, 2, 10-21. 16. P. K. Mukherjee, J. Das, R. Balasubramanian, K. Saha, M. Pal, B. P. Saha, Ind. J. Pharmacol., 1995a, 27, 262-364. 17. P. K. Mukherjee, K. Saha, R. Balasubramanian, M. Pal, B. P. Saha, Rhizome extract. J. Ethnophar., 1996a, 54, 63-67. 18. P. K. Mukherjee, J. Das, K. Saha, M. Pal, B. P. Saha, Phytot-her. Res., 1996b, 10, 424-425. 19. P. K. Mukherjee, K. Saha, J. Das, S. N. Giri, M. Pal, B. P. Saha, Ind. J. Exp. Biol., 1996c, 82, 274. 20. P. K. Mukherjee, S. N. Giri, K. Saha, M. Pal, B. P. Saha, Ind. J. Microbiol., 1995b, 35, 327-330. 21. P. K. Mukherjee, R. Balasubramanian, K. Saha, M. Pal, B. P. Saha, Ind. Drugs., 1995c, 32, 274-276. 22. P. K. Mukherjee, Quality Control of Herbal Drugs-An Approach to Evaluation of Botanicals, Business Horizons, India, 2002, pp 604-608 23. P. K. Mukherjee, S. R. Pal, K. Saha, B. P. Saha, Phytother. Res., 1995d, 9, 522-524. 24. R. N. Chopra, S. L. Nayar, I. C. Chopra, Glossary of Indian Medicinal Plants, CSIR, New Delhi, 1956. 25. C. P. Liu, W. J. Tsai, Y. L. Lin, J. F. Liao, C. F. Chen, Y. C. Kuo, Life Scie, 2004, 75, 699-716. 26. D. H. Sohn, Y. C. Kim, S. H. Oh, E. J. Park, X. Li, B. H. Lee, Phytomed., 2003, 10, 165-169. 27. U. K. Mazumder, M. Gupta, G. Pramanik, R. K. Mukho-padhyay, S. Sarkar, Ind. J. Exp. Biol., 1992, 30, 533-534. 28. C. Perez, M. Paul, P. Bezique, Alta Biomed. Group Experiences. 1990, 15, 113. 29. Y. L. Yuet, W. C. Buong, N. Mitsuaki, R. Son, Int. J. Nano-med., 2012, 7, 4263-4267. 30. H. Jiale, L. Qingbiao, S. Daohua, Nanotechno., 2007, 18, 105104-105115. 31. L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, J. Phy. Chem. C, 2008, 112, 5825-5834. 32. D. W. Hatchert, S. J. Henry, J. Phy Chem., 1996, 100, 98549859. 33. A. Guptha, M. Maynes, J. Silver, Appl. Environ. Microbiol. 1998, 64, 5042-5045. 34. M. Madigan and J. Martinko, Brock Biology of Microorganisms, Englewood Cliffs, NJ: Prentice Hall, 2005. 35. Z. M. Sui, X. Chen, L. Y. Wang, L. M. Xu, W. C. Zhuang, Y. C. Chai, C. J. Yang, Physica E. 2006, 33, 308-314. Povzetek Srebrove nanodelce smo sintetizirali z uporabo ekstrakta suhih semen rastline Nelumbo nucifera. Metoda je preprosta in okolju prijazna. Pri sintezi nanodelcev smo opazili značilno spremembo barve in jih nadalje karakterizirali z UV-VIS spektroskopijo. Srebrovi nanodelci so stabilni pri sobni temperaturi dva meseca. Z vrstično elektronsko spektroskopijo (SEM) smo prikazali nastanek dobro razpršenih delcev sferične oblike. S transmisijsko elektronsko spektroskopijo (TEM) pa smo ocenili velikost delcev, ki se je gibala med 5,03-16,62 nm. Infrardeči spektri (FTIR) kažejo na vključenost amino, aromatskih in alkilnih skupin v sintezni proces. Z rentgensko praškovno analizo smo potrdili krista-liničnost nanodelcev. Antibakterijska aktivnost srebrovih nanodelcev je velika v primeru Gram negativnih bakterij.