66/2 2023 | št.: 66/2 ISSN Tiskana izdaja / Print edition: 0016-7789 Spletna izdaja / Online edition: 1854-620X GEOLOGIJA 66/2 – 2023 GEOLOGIJA 2023 66/2 199-311 Ljubljana GEOLOGIJA ISSN 0016-7789 Izdajatelj: Geološki zavod Slovenije, zanj direktor dr. Miloš Bavec Publisher: Geological Survey of Slovenia, represented by Director dr. Miloš Bavec Financirata Javna agencija za raziskovalno in inovacijsko dejavnost Republike Slovenije in Geološki zavod Slovenije Financed by the Slovenian Research and Innovation Agency and the Geological Survey of Slovenia UREDNIŠTVO / EDITORIAL TEAM Glavna in odgovorna urednica / Editor-in-Chief: dr. Mateja Gosar, Geological Survey of Slovenia, Ljubljana, Slovenia Tehnicna urednica / Technical Editor: Bernarda Bole, Geological Survey of Slovenia, Ljubljana, Slovenia CLANI TEHNICNEGA UREDNIŠTVA / TECHNICAL EDITORIAL TEAM Vida Pavlica, Geological Survey of Slovenia, Ljubljana, Slovenia Maks Šinigoj, Geological Survey of Slovenia, Ljubljana, Slovenia Irena Trebušak, Geological Survey of Slovenia, Ljubljana, Slovenia Marko Zakrajšek, Marko Zakrajšek, e-Tutor s.p., Kranj, Slovenia UREDNIŠKI ODBOR / EDITORIAL BOARD Dunja Aljinovic, Faculty of Mining Geology and Petroleum Engineering, Zagreb, Croatia Maria Joăo Batista, National Laboratory of Energy and Geology, Lisbon, Portugal Giovanni Battista Carulli, University of Trieste, Department of Mathematics and Earth Sciences, Trieste, Italy Miloš Bavec, Geological Survey of Slovenia, Ljubljana, Slovenia Mihael Brencic, University of Ljubljana, Faculty of Natural Sciences and Engineering and Geological Survey of Slovenia, Ljubljana, Slovenia Katica Drobne, Research Centre of the Slovenian Academy of Sciences an Arts, Ivan Rakovec Institute of Palaeontology, Ljubljana, Slovenia Jadran Faganeli, National Institute of Biology and University of Ljubljana, Faculty of Maritime Studies and Transport Portorož, Slovenia Luka Gale, University of Ljubljana, Faculty of Natural Sciences and Engineering and Geological Survey of Slovenia, Ljubljana, Slovenia Špela Gorican, Research Centre of the Slovenian Academy of Sciences an Arts, Ivan Rakovec Institute of Palaeontology, Ljubljana, Slovenia Andrej Gosar, Slovenian Environment Agency and University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia János Haas, Etvos Lorand University, Budapest, Hungary Mitja Janža, Geological Survey of Slovenia, Ljubljana, Slovenia Mateja Jemec Auflic, Geological Survey of Slovenia, Ljubljana, Slovenia Bogdan Jurkovšek, Geological Survey of Slovenia, Ljubljana, Slovenia Roman Koch, GeoZentrum Nordbayern, Institute of Palaeontology, Erlangen, Germany Marko Komac, Marko Komac s.p., Ljubljana, Slovenia Harald Lobitzer, GeoSphere Austria, Vienna, Austria Miloš Miler, Geological Survey of Slovenia, Ljubljana, Slovenia Rinaldo Nicolich, University of Trieste, Trieste, Italy Simon Pirc, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Mihael Ribicic, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Nina Rman, Geological Survey of Slovenia, Ljubljana, Slovenia Boštjan Rožic, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Milan Sudar, Faculty of Mining and Geology, Beograd, Serbia Sašo Šturm, Institut »Jožef Stefan«, Ljubljana, Slovenia Gevorg Tepanosyan, Center for Ecological-Noosphere Studies NAS RA, Yerevan, Armenia Timotej Verbovšek, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Miran Veselic, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia Nina Zupancic, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Naslov uredništva / Editorial Office: GEOLOGIJA Geološki zavod Slovenije / Geological Survey of Slovenia Dimiceva ulica 14, SI-1000 Ljubljana, Slovenija Tel.: +386 (01) 2809-700, Fax: +386 (01) 2809-753, e-mail: urednik@geologija-revija.si URL: https://www.geologija-revija.si/ GEOLOGIJA izhaja dvakrat letno. / GEOLOGIJA is published two times a year. GEOLOGIJA je na voljo tudi preko medknjižnicne izmenjave publikacij. / GEOLOGIJA is available also on exchange basis. http://www.geologija-revija.si/userfiles/image/BY.jpg Izjava o eticnosti Izdajatelji revije Geologija se zavedamo dejstva, da so se z naglim narašcanjem števila objav v svetovni znanstveni literaturi razmahnili tudi poskusi plagiatorstva, zlorab in prevar. Menimo, da je naša naloga, da se po svojih moceh borimo proti tem pojavom, zato v celoti sledimo eticnim smernicam in standardom, ki jih je razvil odbor COPE (Committee for Publication Ethics). Publication Ethics Statement As the publisher of Geologija, we are aware of the fact that with growing number of published titles also the problem of plagiarism, fraud and misconduct is becoming more severe in scientific publishing. We have, therefore, committed to support ethical publication and have fully endorsed the guidelines and standards developed by COPE (Committee on Publication Ethics). Baze, v katerih je Geologija indeksirana / Indexation bases of Geologija: Scopus, Directory of Open Access Journals, GeoRef, Zoological Record, Geoscience e- Journals, EBSCOhost Cena / Price Posamezni izvod / Single Issue Letna narocnina / Annual Subscription Posameznik / Individual: 15 € Posameznik / Individual: 25 € Institucija / Institutional: 25 € Institucija / Institutional: 40 € Tisk / Printed by: TISKARNA JANUŠ d.o.o. Slika na naslovni strani: Plaz, ki se je sprožil v letošnji avgustovski ujmi na obmocju Laniš v obcini Kamnik (foto: Andrej Novak). Cover page: Example of a landslide triggered in August 2023 in the Laniše area, Kamnik municipality (photo: Andrej Novak). GEOLOGIJA 66/2, 199-311, Ljubljana 2023 VSEBINA – CONTENTS Clanki /Articles Scherman, B., Rožic, B., Görög, Á., Kövér, S. & Fodor, L. Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds.......205 Zgornjetriasno do spodnjekredno zaporedje Slovenskega bazena iz severnega roba Posavskih gub Brencic, M. Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja ...................................229 Letters of Johann Jacob Ferber - Geological descriptions of Slovenia from second half of 18th century Czernielewski, M. Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) ........................................................247 Celjust vrste Prospalax priscus iz najdišca Weze 2 (južna Poljska, pliocen) Souvent, P., Pavlic, U., Andjelov, M., Rman, N. & Frantar, P. Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III).........................257 Groundwater quantitative status assessment for River Basin Management Plan 2022–2027 (RBMP III) Zajc, M. & Grebenc, A. Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor ............................275 Uporaba georadarja (GPR) za zaznavo kripte pod tlakovanimi tlemi cerkve Cerar, S., Serianz, L., Vreca, P., Štrok, M. & Kanduc, T. Impact assessment of the Gajke and Brstje landfills on groundwater status using stable and radioactive isotopes.......................................................................................................................................................285 Ocena vpliva odlagališc Gajke in Brstje na stanje podzemne vode z uporabo stabilnih in radioaktivnih izotopov Porocila in ostalo - Reports and More Bracic Železnik, B.: Porocilo o aktivnostih Slovenskega geološkega društva v letu 2022..........................................301 Rman, N. & Brencic, M.: Porocilo o drugi mednarodni poletni geotermalni šoli v Ljubljani, 3.–8. julij 2023.............306 Šolc, U.: Slovesnost ob 70-letnici izhajanja revije Geologija..........................................................................................308 Pezdir, V., Polenšek, T., Loboda, J., Grum Verdinek, L., Fariselli, S., Štern, M., Dvoršcak, L. & Tesovnik, A.: European Geosciences Student Network meeting in Slovenia, August 2023, Zavrh pri Borovnici....................310 © Author(s) 2023. CC Atribution 4.0 License GEOLOGIJA 66/2, 205-228, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.009 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Zgornjetriasno do spodnjekredno zaporedje Slovenskega bazena iz severnega roba Posavskih gub Benjamin SCHERMAN1, Boštjan ROŽIC2, Ágnes GÖRÖG3, Szilvia KÖVÉR4,1 & László FODOR4,1 1Eötvös University, Institute of Geography and Earth Sciences, Department of Geology, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary; e-mail: benjaminscherman@gmail.com 2University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Aškerceva 12, SI–1000 Ljubljana, Slovenia 3Hantken Foundation, H-1022 Budapest, Detreko utca 1/b, Hungary 4HUN-REN Institute of Earth Physics and Space Science, H-9400 Sopron, Csatkai E. u. 6-8, Hungary Prejeto / Received 9. 6. 2023; Sprejeto / Accepted 12. 10. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Key words: Southern Alps, Sava Folds, Slovenian Basin, Jurassic, Ponikve Breccia, stratigraphy, foraminifera Kljucne besede: Južne Alpe, Posavske gube, Slovenski bazen, Ponikvanska breca, stratigrafija, foraminifere Abstract The evolution of the Slovenian Basin southern margin is currently interpreted based on the successions outcropping in the surroundings of Škofja Loka, on the Ponikve Plateau and in the foothills of the Julian Alps in western Slovenia, as well as from the valley of the Mirna River in south-eastern Slovenia. However, no extensive research on this paleogeographic unit has been carried out in the northern part of the Sava Folds region. Recent field observations permitted the recognition of Upper Triassic to lowermost Cretaceous successions of the Slovenian Basin, including the recently described Middle Jurassic Ponikve Breccia Member of the Tolmin Formation. Based on reambulation-type geological mapping, macroscopic facies observations supported by microfacies analysis and biostratigraphy, three stratigraphic columns were constructed showcasing Slovenian Basin formations on the northern flank of the Trojane Anticline (Sava Folds region). These newly described successions encompass Upper Triassic (Baca Dolomite Formation) and Jurassic–lowermost Cretaceous resedimented limestones and pelagic formations, while the attribution of the Pseudozilian Formation is complex. Based on facies characteristics these successions are similar to those preserved in the Podmelec Nappe (lowermost thrust unit of the Tolmin Nappe) in western Slovenia. The connection between the western and the eastern Slovenian Basin during the Late Triassic-Early Cretaceous interval could be thus recognised. Izvlecek Razvoj južnega obrobja Slovenskega bazena je trenutno poznan na podlagi zaporedij, ki izdanjajo v okolici okrog Škofje Loke, na Ponikvanski planoti in iz predgorja Julijskih Alp v zahodni Sloveniji ter iz doline reke Mirne v jugovzhodni Sloveniji. Nasprotno do sedaj še ni bilo celostne stratigrafske študije globljemorskih zaporedij iz severnega dela Posavskih gub. Tekom nedavnih terenskih raziskav smo na tem obmocju prepoznali zgornjetriasno do spodnje kredno zaporedje Slovenskega bazena, ki vsebuje tudi nedavno opisan clen Ponikvanske brece Tolminske formacije. Na podlagi reambulacijskega geološkega kartiranja, makroskopskega opazovanja faciesov, katerega smo podprli z mikroskopsko analizo in biostratigrafijo, smo izdelali tri stratigrafske stolpce, ki prikazujejo zaporedje Slovenskega bazena vzdolž severnih obronkov Posavskih gub (Trojanske antiklinale). Novo prepoznano zaporedje vkljucuje zgornjetriasni Baški dolomit in jurske do spodnjekredne presedimentirane apnence in pelagicne sedimente. Faciesne znacilnosti kažejo, da ta del Posavskih gub pripada vzhodno nadaljevanje Podmelškega pokrova (spodnje podenote Tolminskega pokrova). S tem je prepoznana povezava med zahodnimi in vzhodnimi zaporedji Slovenskega bazena. 206 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Introduction The transitional zone between the Dinarides and the Southern Alps is characterized by a deep marine succession of the Slovenian Basin (SB) (Placer, 1998a, 2008). It was a large-scale inter- platform basin between the Dinaric (Adriatic, Friuli) and Julian Carbonate Platforms that opened during the Middle Triassic and lasted until the end of the Cretaceous (e.g., Buser, 1989, 1996; Rožic, 2006). SB is well-studied in western Slovenia and this part is also known as the Tolmin Basin (Cousin, 1981; Rožic, 2009). Today the SB successions compose the Tolmin Nappe between variable Dinaric nappe units and the Julian Nappes (Buser, 1989; Placer, 1998a; Gorican et al., 2012a, 2018). Despite the long research history of the classic occurrences of the SB in the West, very little research has been done in eastern Slovenia within the Posavje Hills, which is the Sava Folds region in structural term. On the Basic Geological Map of Yugoslavia, Jurassic formations were recognised only in the east but were not subdivided in detail (Buser, 1978). With reambulation of these maps, (Buser, 2010) assigned this succession to the Biancone Limestone Formation. He also recognized the Baca Dolomite Formation in the northern part of the Sava Folds east of Ljubljana. The possibility of evidence for other SB lithostratigraphic units rose when, recently, within the Middle Jurassic Tolmin Formation of the SB succession a new member, known as the Ponikve Breccia Member, has been described (Rožic et al., 2022). This member is typical for the southernmost SB outcrops characterized by stratigraphic gap in successions. The Ponikve Breccia is up to 90 m thick, coarse limestone breccia that documents evidence of Jurassic platform back-stepping and erosion (Rožic et al., 2019, 2022). The Ponikve Breccia was investigated in western Slovenia between Tolmin and Škofja Loka, whereas in the east it was logged solely in the Mirna Valley (Rožic et al., 2019, 2022). The northern part of the Sava Folds represents another potential area for the existence of the SB successions, which would represent the much-needed connection between the eastern and the western outcrops of the SB. Our work aims to fill in these missing gaps by providing new data and successions of SB from three different parts of the northern Sava Folds; from outcrops in the Tuhinj Valley, the Flinskovo Ridge with the eastern slope of the Cemšeniška Planina, and the Mt. Mrzlica northern and northeastern ridges. In this paper, we introduce in detail those locations where the SB succession, including the Krikov Formation and the Ponikve Breccia Member of the Tolmin Formation, has been identified. Geological setting The Trojane Anticline in the central Sava Folds is a stratigraphically and structurally complex area. According to Placer (1998b), it consists of three thrust sheets, these were later folded from the Late Miocene to Pliocene. The folding took place as a result of N-S compression between the Idrija and the Mid-Hungarian tectonic zones creating the Sava compressional wedge (Vrabec & Fodor 2006). The research areas (Fig. 1a, b, c/logs 10, 11, 12) are on the southern edge of the Alpine nappe system, which thrust over the Dinarides probably in the Miocene. Locally only klippen contain the SB sediments (Placer, 1998a, 2008). Basic geological maps of Yugoslavia 1:100,000 (Premru, 1983) have marked only the Triassic and Cretaceous formations in the Tuhinj and Cemšeniška Planina areas. Buser (1978) marked merged Jurassic rocks at Mt. Mrzlica within the studied area. Part of the Upper Triassic and Cretaceous rocks were later re-evaluated by Buser (2010) as the Baca Dolomite Formation, Biancone Limestone and Aptian-Cenomanian flysch, i.e. the Lower Flyschoid Formation of Cousin (1981) and Rožic (2005). These formations could be part of the southernmost SB sedimentary succession, which is the most complete at Ponikve Klippe near Tolmin and Škofja Loka (Rožic et al., 2019). Methods Classic field mapping was executed in detail with the aid of the digital mapping software of Field Move (Petroleum Experts Ltd.) implemented on iPad. High-resolution pictures were taken by Panasonic DMC-FZ200. Measured data were processed in MOVE (Structural Geology Modelling Software of Petroleum Experts Ltd.) in which cross-sections were also prepared. The basis of the recognition of the formations was the field observation of the rocks involving their tectonic position, structure, composition, texture, and fossil content, their comparison to the explanatory notes of the existing 1:100,000 maps of Yugoslavia and previously described lithostratigraphic units from the SB (e.g., Gale, 2010; Rožic et al., 2019, 2022). Digital terrain data were derived using the dataset of the Ministry of the Environment and Spatial Planning, Slovenian Environment Agency. Altogether 76 rock samples were collected, cut and polished. For the identification of the formation, detailed microfacies and microfossil analyses was carried out by Ágnes Görög on 15 thin sections 5 × 5 cm in size. For the microfacies analysis, we followed Dunham (1962), Folk (1962) and Lokier and Junaibi (2016). The images with small magnification were made with Zeiss Axioskop 40 micro- scope with AxioCam MRc5 (Zeiss) camera by 1 × zoom at the Department of Geology of Eötvös Loránd University, Budapest. Image composite editor was used to create large composite images. The photomicrographs of the microfacies and the microfossils were taken with a Canon EOS 2000D camera mounted on Olympus BH2 –BHS microscope, at the Hantken Foundation. An abbreviated list of the fossil taxa with their stratigraphic distribution and ecological preferences is given in the Appendix. 207 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Slovenian Basinin Southern Alpine thrust domain/ within DinaridesVipavaSocaSava BohinjkaIdrijcaPoljanska SoraSelška SoraBacaKokraKamniska BistricaSavinjaDravinjaSotlaKrkaMirnaSavaLjubljanicaIdrijaŠkofja LokaLogatecGrosupljeLJUBLJANAKrškoCeljeVelenjeCerknoBovecTolmin 1 2 3 4 56 7 8 9 121011N50kmSouthern AlpsDinarides b Zapoškar (4)Perbla (9) Mrzli vrh (1) Ponikve plateau (3) (composite) Dešna (5) Podpurflca (6) Trnje (7)Poljubinj (2) 50mMirna River (8) (composite) Tuhinj Valley (10) (composite) Flinskovo and Cemšeniška Planina (11) (composite) Mrzlica W (12) (composite) BIANCONE LIMESTONE FMTOLMIN FMdolomitemikriticlimestoneshale andmarlchertcalcarenitedolomite chertbreccialimestonebrecciaBACA DOLOMITE FMKRIKOV FMPERBLA FMLower MbUpper MbLower resedimented limestone & Ponikve brecciaUpperresedimented limestoneooidalcalcarenite c300m?10m10m100m673663,245241a240,241b592590,589338338c672662b662a337b678b678a674337a5557661336b a Fig1.b Fig. 1. Location and lithology of studied stratigraphic successions of the Slovenian Basin (SB): a – location of the research area in Europe, b – the black stars mark the sections 1–9 of SB units previously studied by Rožic et al., 2022), while red stars indicate the recently investigated sections; c) Log of the sections, sections 1–9 after (Rožic et al., 2022), sections 10-12 discussed in this work. Thickness of formations was calculated from outcrop distance, elevation differences and bedding dip. In the Tuhinj valley section the formation thicknesses are uncertain due to discontinuous outcrops. The total thickness of the starting and finishing formations could be larger and truncated, indicated by red undulating lines. Short description of the location of studied successions Within the studied area three composite geological columns were established from scattered outcrops in the Tuhinj Valley; from the Flinskovo ridge and the eastern slope of the Cemšeniška Planina and from two sections on the Mt. Mrzlica (Fig. 1c). Where the density of the outcrops allowed three detailed geological maps were constructed. The maps were compiled at the eastern side of Cemšeniška Planina, including the Flinskovo ridge (Fig. 1c/log 11, Fig. 2c), while two maps were compiled about the north-western and northeastern flanks of Mt. Mrzlica (map Fig. 2a, b and Fig. 1c/log 12) and about the north-eastern ridge. Generally, at each area, the bedding is dipping to the north. Previous maps (Premru, 1983; Buser, 1978, 2010) already showed the presence of the Baca Dolomite Formation and the Biancone Formation; however, other members of the SB were unknown. The observations from the Tuhinj area did not yield a continuous succession (Fig. 1c/log 10). The composite stratigraphic column incorporates outcrops in several north-south directed side valleys and roads near the villages Vaseno and Buc across the Tuhinj Valley. Scarce outcrops were insufficient to create a detailed map. The Baca Dolomite Formation crops out in several road cuts between Vaseno and Velika Lašna (outcrop 057: 46°12’40.0444” N; 14°41’56.3451” E), and observations were also made at a large quarry west of Špitalic (outcrop 055: 46°12’50.7312” N; 14°48’25.4728” E). The Ponikve Breccia can be seen in a road cut on the way from Buc to Vaseno (outcrop 674: 46°13’01.3121” N; 14°42’45.4706” E). The Biancone Limestone was observed at a small agricultural road near Buc twigging to north from the main road (site 672: 46°13’02.7672” N; 14°43’08.3765” E). Finally, the Lower Flyschoid Formation is exposed at the southern boundary of the Hruševka village: (site 673: 46°13’24.8869” N; 14°43’13.8492” E). The succession Flinskovo is composed from observations along the eastern slope of the Cemšeniška Planina and from the Flinskovo ridge west of Mt. Krvavica (Fig. 1c/log 11). The geological cross section and map (Fig. 2c) were first presented by Scherman et al. (2022). The succession Mrzlica is located on the northern slope of Mt. Mrzlica (Fig. 1c/log 12). It is compiled from the observations made on the north-western (Fig. 2a) and the north-eastern ridge of Mt. Mrzlica (Fig. 2b). Lithostratigraphic units oldest than latest Triassic Although this study is about the Upper Triassic to Lower Cretaceous formations partially newly discovered from the area three other formations were also mapped and are worth briefly mentioning. These are the Werfen Formation, The Schlern Formation and the Pseudozilian Formation. Werfen Formation The uppermost Permian – Lower Triassic Werfen Formation consist of limestone or dolomite beds with marl and marly or oolitic limestone intercalations. Based on its relatively rich fossil content it was deposited in a shallow (subtidal – supratidal) marine environment. It is known from the Southern Alps in Italy, the Karavanke Mountains in Austria, the Julian Alps, Kamnik Alps and the Sava Folds in Slovenia (e.g., Broglio Loriga et al., 1983; Ramovš et al., 2001; Krainer & Vachard, 2011; Celarc et al., 2012). Schlern Formation The Schlern formation is a Ladinian platform carbonate described from the Southern Alps in Italy. Carbonate platform progradation is characteristic of this formation (Fois, 1982). It is described from the Julian and Kamnik Alps in Slovenia (e.g., Celarc et al., 2012). Pseudozilian Formation The Pseudozilian Formation is a Ladinian sedimentary formation. It consists of shale, greywackes, sandstones and resedimented volcanilastics, first described by Teller (1898) from the central Slovenia. According to Dozet and Buser (2009), it marks the opening of the Slovenian Basin during the Ladinian. Studied lithostratigraphic units of the Slovenian Basin successions Based on our research, field observation and review of the literature four formations of the SB have been identified with certainty. These are the following the Baca Dolomite Formation, the Krikov Formation, the Ponikve Breccia Member of the Tolmin Formation and the Biancone Formation. In addition to these two other formations are possibly present, namely the Upper Member of the Tolmin Formation and the Lower Flischoid Formation. However, further elaborative research is needed to confirm them for sure. 208 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR 209 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds 600 m500 m600 m800 m1000 m900 m700 m 550 m 650 m 600 m 840 m 800 m 600 m 900 m 700 m 950 m 850 m 1000 m 1000 m 950 m 1000 m500 m600 m500 m 586245246241a241b240655661662b662a663592590589336a336b337a337b338338c681359333678a678b457760515755524951545349544972322118192145395640263041463744542754343155525444555242536060KrvavicaStari gradKukenbergSuhi potokSuharjev gricCemšeniška PlaninaFlinskovoMrzlicaMrzlica500mNN500m1:60001:150001:15000250 mNSchlern Fm T2-3Pseudozilian Fm T2Sandstone OligoceneWerfen Limestone T1Thrust Fault I. (T. F. I.) Thrust Fault I. supposedBiancone Limestone J3-K1 Normal faultBaca Dolomite Fm T3Krikov Limestone J1Ponikve Breccia mbr. Tolmin J2 46°11'43.55" 15°07'28.48” 46°11'19.76" 15°05'28.60” 46°11'43.07" 14°58'29.57” acbT. F. II.aT. F. II.bT. F. II. T. F. I. T. F. II. T. F. I. supposedThrust Fault II./(T. F. II. a & b) Sedimentary. contact concordant or discordnantBia. Bia. Bia. Pon. Kri. Bac. Schl. Pse. Wer. Bia. Pon. Pon. Pon. Kri. Kri. Kri. Bac. Bac. Bac. Bac. Schl. Schl. Schl. Pse. Pse. Pse. Pse. Pse. Wer. Wer. Fig. 2. Detailed new geological maps of the studied sections: a – Mt. Mrzlica NW, b – Mt. Mrzlica NE, c – eastern slope of the Cemšeniška Planina, Flinskovo ridge and Krvavica Mt. Note outcrop numbers that also appear in the stratigraphic logs (Fig. 1c) and on photographs (Figs. 3–7). DEM was produced using the dataset of Ministry of the Environment and Spatial Planning, Slovenian Environment Agency. Outcrops are indicated with opaque colours while postulated extension of formation are marked with transparent colour, note abbreviations for the formations. Thrust Fault I. orange, dashed orange. Thrust Fault II. red continuous line. Baca Dolomite Formation Similarly to the classical western development of the SB (e.g., Buser, 1986; Rožic, 2006; Gale, 2010; Gorican et al., 2012b), the Baca Dolomite Formation in the study area mainly consists of black or dark grey dolomite in 20–50 cm thick beds, with chert nodules and even layers. The formation has an estimated thickness of 150–250 m in the Tuhinj Valley area and at the Cemšeniška Planina area (Fig. 1c/log 10; 11) and is approximately 50–150 m thick in the Mrzlica area (Fig. 1c/log 12) but the lower contact is not exposed or truncated. In cases where the bedding is hard to see, chert nodules or layers indicate the bedding as seen in the Tuhinj valley (outcrop 55, Fig. 1c/log 10, Fig. 3d). However, the bedding is mostly clear, for example on the eastern slope of Cemšeniška Planina (outcrop 661, Fig. 4e), where the thick beds alternate with much thinner ones. In some places, such as on the northwest flank of Mt. Mrzlica (outcrop 336b on Fig. 1c/log 12; Fig. 2a, Fig. 3h), the formation contains up to 3–4 m thick breccia layers with a massive appearance. In these, dolomite and chert clasts alternate chaotically. These breccia megabeds were interpreted by Gale (2010) and Oprckal et al. (2012) as large- scale debris flow deposits related to the middle Norian tectonically-induced subsidence. Since the Baca Dolomite Formation has a distinctive appearance and is therefore easily recognizable in the field, microfacies analysis was not carried out but focused on the overlying limestone layers. Krikov Formation The Krikov Formation starts as cherty limestone with a bed thickness of ca. 35 cm. The thickness of the formation is approximately 30 m at the Cemšeniška Planina area (Fig. 1c/log 11) and 70 m at the Mrzlica area (Fig. 1c/log 12). A major part of the formation is composed of a grey to dark grey limestone with chert layers or nodules (e.g., at outcrop 662a on Fig. 2a, Fig. 4d). The limestone is well-bedded (10–30 cm), micritic, with sporadic calcarenite beds. In the Cemšeniška Planina section, calcarenite layers are more common near the top (outcrop 662a, Fig. 1c/log 11; Fig. 2c). However, in the Mt. Mrzlica West sections, calcarenites are more common in the lower and the middle part of the formation (outcrop 337, Fig. 1c/ log 12, Fig. 2a). The thin marl interlayers are visible at some places, mostly highlighting the base of a successive layer (Fig. 3g, Fig. 4d). At the top of the formation, the thickness of the layers changes to approximately 15–20 cm; the chert content is much lower, but the marl component increases to almost 20 % (Fig. 3f, Fig. 4c). Different microfacies types, similar to those previously described from the SB (e.g., Rožic, 2006, 2009; Gorican et al., 2012b), were recognised from samples taken from the upper part of the formation in the Cemšeniška Planina section (Fig. 1c/log 11). In the thin section collected from the outcrop (sample 333) on the ridge of Mt. Mrzlica NE (Fig. 2b), the microfacies show dolomitized carbonate mudstone-wackestone texture with “ghosts” of benthic foraminifera (nodosarids, involutinids and textulariids) (Fig. 5a). Scattered rhomboid dolomite crystals could also be observed. The rock was subsequently silicified and the silicification front is clearly visible. In the outcrop on the NW flank of the Mt. Mrzlica section (sample 337; Fig. 1/log 12; Fig. 2a) the formation is represented by bioturbated bioclastic packstone-wackestone limestone that was later silicified and partly dolomitized. Among fossils, it contains mainly fragments of thin-shelled bivalves and sponge spicules. Additionally, a few ostracods, foraminifera and Characeae gyrogonite (Fig. 5b) also occur. The poor foraminiferal fauna consists of textulariids (Fig. 5c), spirillinids (Fig. 5b) and the involutinid Licispirella sp. (Fig. 5d). Similar agglutinated forms and spirillinids were figured by Rožic et al. (2022, fig. 14e) from this Lower Jurassic unit of the SB. The genus Licispirella appeared in the Norian, but it was common only in the Lower Jurassic (Rigaud et al., 2013). The microfacies and microfossils indicate a distal hemipelagic zone where remnants of Characeae were transported from a freshwater environment. On the eastern slope of Cemšeniška Planina (sample 662a, Fig. 1c/log 11; Fig. 2c) the characteristic calciturbidite layer of the Krikov Formation could be studied. The original texture of the rock was peloid-ooid-bioclastic wackestone-packstone, with a matrix of micrite and microsparite. Both radial and concentric ooids (sensu Flügel, 2010) occur. Due to the strong silicification, this texture has only been preserved in randomly arranged small fragments (Fig. 5e). In this sample, the majority of the fossils were also silicified and preserved as ghosts. Skeletons of echinoderms are the most frequent, but foraminifers are also common, especially the nodosarianids (Lenticulina, Marginulina (Fig. 5f), Nodosaria, Dentalina). The agglutinated forms are represented by textulariids, trochamminids, and ?Siphovavulina sp. (Fig. 5e). Specimens of the Lower Jurassic involutinids, namely Involutina farinacciae (Fig. 5g) and ?Trocholina sp. also occur. Among the miliolinids, the evolute Ophthalmidium morphogroup (mg.) kaptarenkoae (Fig. 5h) and the semiinvolute 210 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR O. mg. terquemi (Fig. 5i) could be tentatively determined. Additionally, a section of an aperture with a bifid tooth could be recognized (Fig. 5j). To our knowledge, this type of aperture is only known from the Lower Cretaceous onwards (e.g., Neagu, 1984; Clerc, 2005), and from the Jurassic only Sigmoilina moldaviense has teeth (Danitch, 1971). However, we must note that knowledge about the Jurassic miliolinids, especially the Lower Jurassic ones, is incomplete. Based on the appearance of Involutina farinacciae, the age of the rock can be late Sinemurian – early Toarcian (Fig. 8). This coincides well with the previously determined Early Jurassic, more 211 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Fig. 3. Interpreted images of the outcrops. The outcrop number is in the top left corner; the north is indicated in the top right corner; a-d) succession of Tuhinj valley area near the villages Vaseno and Buc; e-f) succession on Mt. Mrzlica. Formations: a, e) Biancone Limestone Formation; b) Lower Flyschoid Formation; c, f) Tolmin Formation/Ponikve Breccia Member; f, g) Krikov Formation (the blue line highlights the top of the Krikov Formation and the bottom of the Tolmin Formation/Ponikve Breccia Member); d) Baca Dolomite. Black line highlights the bedding and the contour of the chert. precisely Hettangian–Pliensbachian age of the Krikov Formation (e.g., Cousin, 1973, 1981; Buser, 1986; Rožic, 2006, 2009; Gorican et al., 2012b). Tolmin Formation, Ponikve Breccia Member The Ponikve Breccia member is a massive breccia. It consists of different limestone clasts originating from the erosion of older platform, slope and basinal formations, but in the matrix, contemporaneous grains, such as peloids, ooids, oncoids, intraclasts, and bioclasts are present (Rožic et al., 2022). Based on the occurrence of radiolarians and foraminifera, determined in previous studies (Rožic et al., 2019, 2022) at other localities, the age of the breccia is Middle Jurassic (probably Bajocian – Bathonian), while the age of the clasts ranges from the Late Triassic to Early Jurassic (Rožic et al., 2019, 2022). Based on the macroscopic and microscopic studies, the Ponikve Breccia appears in each of the investigated areas (Fig. 1c, Fig. 2). The thickness of the formation is approximately 20 m at the Tuhinj area (Fig. 1c/log 10), 25 m at the Cemšeniška Planina area (Fig. 1c/log 11) and 35 m thick at the Mrzlica area (Fig. 1c/log 12). The contact with the Krikov Formation is erosional while the large clasts of the massive Ponikve Breccia truncate the underlying well-bedded Krikov Limestone as seen at outcrops 337b and 662 (Figs. 3f and 4c). We studied the thin sections of the following samples: sample 338c from Mt. Mrzlica NW, sample 678 from Mt. Mrzlica NE, and samples 240, 241, 589, 590, 592, and 674 from Cemšeniška Planina (Fig. 3c, f; Fig. 4b, c). Macroscopically, many clasts are angular and their size ranges from a few mm to several meters. The clasts are densely packed, thus there is only a minor matrix even further reduced by pressure solution resulting in stylolitic seams. The matrix of the breccia is an ooid-peloid grainstone or packstone. The proportion of peloids, oncoids, and ooids varies greatly, but usually, the latter are the most common. All three major structural types of the ooids (sensu Flügel, 2010) appear. The most frequent are the concentric or tangential ooids, the less frequent are the radial-fibrous ones, and the micritic ones are rare. Fossils occur in the matrix as well as the core of the concentric ooids. In descending order of frequency, the following fossil groups appear: echinoderm fragments, benthic foraminifera, dasycladacean algae, Rivularia-type Cyanophyceae, gastropods and incertae sedis (Fig. 5k). The foraminiferal fauna is relatively poor and shows very low diversity. The characteristic 212 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Fig. 4. Images of the outcrops of the succession at Cemšeniška Planina. The number of outcrops is in the top left corner; the North is indicated in the top right corner. Formations: a) Biancone Limestone Formation; b, c) Tolmin Formation/Ponikve Breccia Member (yellow line highlights block with silicified corals); c, d) Krikov Formation (blue line highlights the contact between the Krikov Formation and the Tolmin Formation/Ponikve Breccia Member); e) Baca Dolomite. Black line highlights the bedding and the contour of the cherts. double-walled Protopeneroplis striata and low- and high-spired forms of Coscinoconus palastiniensis regularly occur as a core of the ooids or oncoids within clasts, but rarely in the matrix (Fig. 5l, m, n, o). Besides these taxa, agglutinated foraminifera, such as Glomospira sp. (Fig. 5q), ?Siphovalvulina sp. (Fig. 5p), Trochammina sp. (Fig. 5r), several textulariids (Fig. 5s) and a few miliolids, such as Ophthalmidium mg. concentricum could be recognized (Fig. 5q, t). Nodosarids, mainly Nodosaria sp. and Lenticulina sp. (Fig. 6a) are relatively frequent and large, up to 1 mm. The fragile Chlorophyta algae and algal-like bacteria are represented by dasycladales and cyanophytes, such as Selliporella mg. donzellii (Fig. 6b), Salpingoporella sp. (Fig. 6c-d), ?Megaporella (Fig. 6e), and algae indet. (Fig. 6g), Rivularia lissaviensis (Fig. 6f) and “Cayeuxia” spp. (Fig. 6h). A few specimens of the incertae sedis Crescentiella morronensis (Fig. 5u), and other microproblematicum (Fig. 5v) also occur. The co-occurrence of the early Bajocian – late Bathonian Selliporella mg. donzellii, Bajocian- Callovian Coscinoconus palastiniensis, Aalenian-Tithonian Protopeneroplis striata and indicates an early Bajocian – late Bathonian age (Fig. 8). The effects of the subsequent diagenetic processes on the matrix, such as tectonic deformation and recrystallization could be traced. Due to the pressure solution, peloids and concentric ooids are often deformed, thus becoming elliptic in shape, while the radial fibrous ooids broke (Fig. 5l, Fig. 6a). In most cases, the matrix was dolomitized to varying degrees (e.g., Fig. 5k, o, t, u). Because the micrite or microsparite ‘groundmass’ of the matrix was affected to a greater extent by late diagenetic dolomitization than for example the ooids or clasts, a rim of dolomite crystals surrounds these grains (Fig. 6h). Most lithoclasts originate from a carbonate platform. The oldest, the Upper Triassic limestone blocks were the largest and the easiest to recognize macroscopically in the field. Their appearance usually was massive limestone, in some cases, corals, megalodon bivalves or stromatolite layers could be identified in the field (Fig. 4b). A typical grey, finely laminated platform carbonate clast, showing the features of facies B of the Lofer cycles was found at northern Fliskovo Ridge (outcrop 589, Fig. 1/log 11; Fig. 2c). The laminae consist of packstone, grainstone, dark stromatolites, mudstone with spar-filled shrinkage pores, and spar-filled sheet cracks. The bioclasts occurred only in the pelmicritic packstone and grainstone laminae (Fig. 6i). The foraminifers are the most frequent and diverse, besides them dasycladacean and codiaceaen (Bryopsidales) algae, and Rivularia-type calcimicrobes could be recognized. In the foraminiferal fauna, the involutinids dominated. The following taxa could be classified as Aulotortus communis (Fig. 6j), A. sinuosus (Fig. 6k), A. tenuis (Fig. 6l), A. tumidus (Fig. 6l), Parvalamella friedli (Fig. 6m), Frentzenella crassa (Fig. 6i) and T. ultraspirata (Fig. 6n). The agglutinated forms are represented mainly by Gandinella falsofriedli (Fig. 6o) and “Trochammina” almtalensis (Fig. 6p, q), additionally a few specimens of ?Trochammina alpina (Fig. 6r), Textularia sp., and Valvulina sp. occur. The taxa of lagenids (Austrocolomia sp., Nodosaria sp. and Lenticulina sp.) and miliolinids (cf. Paraophthalmidium spp.) were represented by one specimen (Fig. 6s, t). Among the algae the most common were the fragments of ?Petrascula sp. (Fig. 6s, u) and Rivularia lissaviensis (Fig. 6f). In addition, a few specimens of Norian Bystrickyella ottii (Fig. 6w) and Salpingoporella austriaca (Fig. 6x), Arabicodium sp. (Fig. 6l, y) and dasycladaceaen organs of ?Acicularia (Fig. 6i), Patruliuspora (Fig. 6z), and dasycladaceans (Fig. 6v) could be identified. Based on the foraminiferal and algal association the age of this clast is Norian (Fig. 8). These forms indicate a shallow well-lighted low-energy environment. In the Triassic clast of the previously mentioned sample 241, at Flinskovo Ridge east from Cemšeniška Planina, stromatoporoids, sponges, involutinids as Aulotortus sinuosus, Semiinvoluta sp. and Triasina hantkeni with an encrusting Tolypammina gregaria could be recognized (Fig. 6aa). These fossils indicate the Rhaetian age (Fig. 8) and shallow marine platform environment. On the east side of the Cemšeniška Planina, close to Flinskovo (outcrop 592, Fig. 1/log 11, Fig. 2c), in the breccia coral-bearing limestone clasts were found. The rock is a framestone, in the cavities between the cylindrical corallites of a phaceloid colony is mudstone. The tiny (up to 6 mm in diameter) corallites have an overall stylophyllid morphology, their septa are composed of isolated or sclerenchyma-embedded spines (Fig. 6bb), which is unique among the Triassic–Jurassic scleractinians (e. g., Stolarski and Russo, 2002). These forms could be classified into the Norian-Lower Jurassic genus Styllophyllopsis, which has been found in Slovenia only in the lower Norian of the Julian Carbonate Platform (Turnšek, 1997). In the matrix, there was an ammonite embryo, a fragment of stromatoporoids and only a few specimens of foraminifera, like the 213 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds 214 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Fig. 5. involutinid Coronipora etrusca (Fig. 6cc) and Semiinvoluta sp. (Fig. 6dd) additionally a few agglutinated forms. These foraminifers prefer the oxic and low-energy environment. The C. etrusca has an upper Norian—Liassic range, while the genus Semiinvoluta is known only from the Rhaetian up to the end of the Pliensbachian (Rigaud et al., 2013). Based on these fossils and the facies, the age of the rock is Rhaetian, but the Early Jurassic (until the end of the Pliensbachian) has not been ruled out (Fig. 8). A silicified clast with recrystallised radiolarians and sponge spicules occurred in the breccia at the northern Flinskovo Ridge, Cemšeniška Planina (sample 590c). A few specimens of textulariid, involutinid? and nodosariid? foraminifera also could be recognized (Fig. 7a) This rock most probably originated from the Lower Jurassic Krikov Formation. Close to the previous outcrops (sample 241, Fig. 1/11, Fig. 2c) as clasts of the breccia microfacies types of basinal facies, peloid mudstone-wackestone with thin-shelled bivalves, echinoderm fragments and foraminifers (e.g., Lenticulina sp.) occur (Fig. 7b, c). Based on the microfacies (e.g., see Gorican et al., 2012a, fig. 22a) it could be identified as the Lower Jurassic Krikov Formation. In the same breccia sample, in another strongly dolomitized lithoclast (Fig. 7b) a larger agglutinated foraminifera Everticyclammina praevirguliana is preserved as a “tiny island” (Fig. 7d). The stratigraphic range of this form is upper Sinemurian— lower Bajocian. The microfacies and the fossils indicate a shallow marine, inner platform environment. Thus, this lithoclast may come also from the calcarenite layers of the Krikov Formation as rip-up clast. Based on the occurrence of the Hettangian- Sinemurian index fossil, Palaeodasycladus mediterraneaus a definitely Lower Jurassic clast was found in sample 240, Flinskovo Ridge, Cemšeniška Planina (Fig. 5k, Fig. 7e). At the NE ridge of Mt. Mrzlica (sample 338c, Fig. 1c/log 12, Fig. 2a), few types of clasts of the breccia appear that previously were neither described in the literature nor in the Ponikve Breccia Member in the western SB. The silicified rock is ocher in color with dark-purple chert nodules. Its microfacies is bioclastic mudstone-wackestone. The bioclasts are almost exclusively fragments of echinoderms, most probably crinoids. Very few ostracods, filled with sparry calcite also occur (Fig. 7f). The appearance of this strange assemblage can be explained by the fact that the skeleton of echinoderms and ostracods is more resistant to dissolution than that of other shells. Since no age-diagnostic fossils were found, the stratigraphic position of this rock type is uncertain. In some clasts (thin sections) one or more parallel or slightly undulating sets of surfaces or very thin veinlets occur (Fig. 7/g-i). The surfaces surround the fragments and give a nodular-bounding appearance (Fig. 7g). They can represent sedimentary lamination, stylolitic seams or incipient layer-parallel foliation planes, partly filled with late calcite. Dolomite crystals are scattered or arranged along the fissures. Cherty nodules of uncertain origin with few dolomite crystals are also present. This microfacies also occurs in the NW flank of Mt. Mrzlica (sample 678a Fig. 2b). Here other microfacies could be identified in thin sections, like mudstone with dissolved radiolarian skeletons; ooid packstone with strongly elongated (deformed) micritic ooids (Fig. 7i); mudstone with bird’s-eye structures of irregularly formed and distributed fenestrae, crosscutting calcite veins and stylolites and a few deformed echinoderma fragments and packstone-grainstone with distorted ooids (Fig. 7j). All of these microfacies reflect the late diagenetic selective recrystallization, mechanical distortion and pressure solution processes. There were no age-diagnostic fossils, thus the stratigraphic position of these lithoclasts is uncertain. 215 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Fig. 5. a-j) Krikov Formation, k-v) Ponikve Breccia Member of Tolmin Formation. The scale bar is 400 µm, except k) where 6 mm. a) sample 333 of the outcrop on the ridge of Mt Mrzlica NE, dolomitized carbonate mudstone-wackestone texture with “ghosts” of benthic foraminifera as involutinid (I) and textulariid (T); b-d) sample 337, Mrzlica NW, b) silicified bioclastic (sponge spicules, thin-shelled bivalves) packstone limestone, with Characeae gyrogonite (C) and spirillinid (S); c) textulariid foraminifera; d) involutinid foraminifera Licispirella sp.; e-j) sample 662a, Cemšeniška Planina; e) remnants of the peloid-ooid-bioclastic wackestone/packstone texture after the silicification, with agglutinated foraminifera, ?Siphovalvulina (S); f) Marginulina sp.; g) Involutina farinacciae Brönnimann & Koehn-Zaninetti; h) Ophthalmidium mg. kaptarenkoae Danitch; i) Ophthalmidium mg. terquemi Pazdrowa; j) miliolid aperture with tooth; k) photomicrograph of the thin section of sample 240, Cemšeniška Planina, on the right: the peloidal grainstone with gastropods, Dasycladacean algae, Echinodermata fragments and foraminifers, on the left: partly dolomitized matrix and different lithoclasts: Triassic (T) intraclastic packstone-grainstone clast with stromatoporoid, sponges, gastropods and foraminifers (see Fig. 6z for enlarged image), Lower Jurassic clast (J) with bioclastic grainstone fabric and algae (see Fig. 7e for enlarged image), dolomite clast (D), vermetus tubes (V), strongly dolomitized mudstone clast (M), peloidal mudstone clast (P); l) deformed ooids of the breccia matrix with Protopeneroplis striata Weynschenk, sample 674, Cemšeniška Planina; m) Protopeneroplis striata Weynschenk, sample 590, Cemšeniška Planina; n-o) Coscinoconus palastiniensis Henson, high (n) and low (o) spired forms, sample 240, Cemšeniška Planina; p) ?Siphovalvulina sp., sample 240, Cemšeniška Planina; q) Glomospira sp. and miliolids, sample 240, Cemšeniška Planina; r) Trochammina sp.; s) textulariid (?Valvulina sp.), sample 240, Cemšeniška Planina; t) Ophthalmidium mg. concentricum (Terquem & Berthelin), sample 674, Cemšeniška Planina; u) Crescentiella morronensis (Crescenti), sample 241, Cemšeniška Planina; v) microproblematicum, sample 240, Cemšeniška Planina. 216 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Fig. 6. Based on the field studies, microfacies and microfossils analyses the provenance of the matrix was threshold lines in the photic zone. The breccia formed on the upper slope environment and is characterized by the bimodal grain size, larger clasts, and well-sorted, sand-sized grains amidst them. It means that the Ponikve Breccia is a typical mass-flow breccia (e.g., sensu Flügel, 2010). Tolmin Formation Upper Member(?) It is worth mentioning that we could not find the contact of the Ponikve Breccia Member and Biancone Limestone on the field thus further observation is needed. On the topography, however, a linear depression marks the transitional interval of the two formations, the thickness of which was estimated to be approximately 10 m (Fig. 1c/log 11, 12; Fig. 2a, c). Although we did not find any outcrop of chert, shale or marl, this soil-covered depression may suggest a softer sedimentary rock between the formations. We postulate that this can correspond either to the Upper Member of the Tolmin Formation, which is in the topmost part often characterized by alternating radiolarite and marl/shale beds (Rožic, 2009). Alternatively, this covered part may correspond to the marly basal part of the Biancone Limestone. Biancone Limestone Formation The Biancone Formation is composed of white, yellow, light pink or grey thin-bedded limestone and the colours are often varying within the same bed. The macroscopic texture is fine-grained micritic (porcelain). The thinly bedded (or foliated?) limestones could be identified at the Tuhinj area (outcrop 672, Fig. 3a), the northern slope of the Flinskovo ridge and the Cemšeniška Planina (outcrops 241-246, Fig. 2c, and outcrop 246 Fig. 4a) and on the NW slope of Mt. Mrzlica (outcrop 681 Fig. 3e). On the eastern slope of the Flinskovo Ridge (outcrop 241a, Fig. 2c), a dm-scale closed fold was measured, which could be considered a slump fold. Here we include the description of the rocks near the Stari Grad (Fig. 2c) although they do not belong to the SB succession. Near the base of the sequence two different stratigraphic sequences with similar facies could be studied. In the Flinskovo ridge in outcrop 241a, the rock is light red to yellow micritic limestone, wackestone, and slightly dolomitized. In the thin section, fine lamination could be recognized due to the parallel orientation of the elongated calcite particles (“filaments”). The stylolites and the microcracks with offsets indicate slight layer-perpendicular shortening. The veins differ in width and their voids are filled with coarse crystalline calcite. A few calcified radiolarians, ostracods, and scattered opaque grains could be identified (Fig. 7k). From the second type of stratigraphic sequence north from Stari grad at outcrop 586 (Fig. 2c) pink-yellow variegated, silicified mudstone (wacke- stone) appears. In thin-section, this showed irregular crosscutting calcite veins often associated with irregular clay seams (Fig. 7m). A few stylolites and scattered pyrite crystals also occur. It did not contain identifiable fossils. Based on the microscopic features these rocks could be the hemipelagic uppermost part of the Tolmin or the base of the Biancone Limestone Formations although macroscopic characters support the latter option. Due to the diagenetic process, at each studied area (Fig. 2a–c), the Biancone Limestone is often chertified to varying degrees and often dolomitized (Fig. 3a, e; Fig. 4a). In some outcrops, chert nodules could be recognized (e.g., Cemšeniška Planina section, outcrop 246, Fig. 4a). The calcareous character becomes slightly more marly upward while in site 245 yellow silicified calcareous marlstone is the dominant rock type (Fig. 2c). Based on the microfacies study, its original depositional texture was most probably mudstone. Wavy stylolitic seams often filled with dark clay, dispersed opaque minerals, rhomboid dolomite crystals, and few radiolarians were recognized (Fig. 7l). The thickness of the formation is approximately 50–100 m at all three areas (Fig. 1c/log 10-12). 217 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Fig. 6. Ponikve Breccia Member of the Tomin Formation a-h) Middle Jurassic microfossils in clasts and matrix, i-aa) Triassic clasts. The scale bar is 1 mm, except g and bb where it is 3 mm a) broken radial-fibrous, and micritic ooids with Lenticulina sp., sample 590, Cemšeniška Planina; b-e) outcrop 240, Cemšeniška Planina; b) Selliporella mg. donzellii Sartoni & Crestenci; c-d) Salpingoporella sp., e) ?Megaporella sp.; f) Rivularia lissaviensis (Bornemann), sample 241, Cemšeniška Planina; g) algae indet., sample 674, Cemšeniška Planina; h) “Cayeuxia ” sp., ooids with dolomite crsystal rim, sample 240, Cemšeniška Planina; i-y) sample 674, Cemšeniška Planina: i) laminated pelmicritic packstone-grainstone with stromatolite layers with Frentzenella crassa (Kristan) (T) and ?Acicularia sp. (A); j) Aulotortus communis (Kristan); k) Aulotortus sinuosus Weynschenk; l) Aulotortus tenuis (Kristan) (te), A. tumidus (Kristan-Tollmann) (tu) and Arabicodium sp. (A); m) Parvalamella friedli (Kristan-Tollmann); n) Trocholina ultraspirata Blau; o) Gandinella falsofriedli (Salaj, Borza & Samuel); p-q) “Trochammina” almtalensis Koehn-Zaninetti; r) ?Trochammina alpina Kristan-Tollmann; s) cf. Paraophthalmidium sp. and ?Petrascula sp.; t) cf. Paraophthalmidium; u) ?Petrascula sp.; v) dasycladacean organ (D) and Rivularia lissaviensis (Bornemann); w) Bystrickyella ottii Barattolo, Cozzi & Romano; x) Salpingoporella austriaca Schlagintweit, Mandl & Ebli; y) Arabicodium sp.; z) Patruliuspora; aa) Triassic clast with Aulotortus sinuosus Weynschenk (I), Semiinvoluta sp. (S) and Triasina hantkeni Majzon (T) encrusted with Tolypammina gregaria Wendt (Tg); bb-dd sample 592, Cemšeniška Planina: bb) Styllophyllopsis sp. and ammonite embryo; cc) Coronipora etrusca (Pirini); dd) Semiinvoluta sp. It is to note that the rock exhibits a densely packed set of slightly undulating, wavy or planar surfaces. Locally the dark solution residue point to strong pressure solution. The interpretation is twofold: either they represent sedimentary lamination overprinted by pressure solution or the stylolitic surfaces are already the sign the incipient layer-parallel foliation induced by layer-perpendicular (vertical) shortening (Fig. 7k-m). Despite the absence of age-determining fossils, the macroscopic and microscopic characteristics of the rock match well with the development of the Biancone Limestone in the SB. The projected age is late Tithonian to Berriasian (Rožic et al., 2009; Gorican et al., 2012b). 218 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Fig. 7. 219 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Cr. Lower Triassic Anisian Ladinian Carnian Norian Rhaetian Hettangian Sinemurian Pliensbachian Toarcian Aalenian Bajocian Bathonian Callovian Oxfordian Kimmeridgian Tithonian BerriasianAlgaeRivularia lissaviensis Bystrickyella ottiiPalaeodasycladus mediterraneusSalpingoporella austriaca Selliporella donzelliiForaminiferaAulotortus communisAulotortus sinuosusAulotortus tenuisAulotortus tumidusCoscinoconus palastiniensis Coronipora etruscaEverticyclammina praevirguliana Frentzenella crassaGandinella falsofriedliInvolutina farinacciae Ophthalmidium concentricum Ophthalmidium kaptarenkoaeOphthalmidium terquemiParvalamella friedliProtopeneroplis striata Tolypammina gregariaTriasina hantkeni"Trochammina" almtalensisTrochammina alpinaTrocholina ultraspiraMicroproblamaticumBacinella irregularisCrescentiella morronensisSpeciesUpper JurassicTriassicLower JurassicMiddle Jurassic Fig. 8. Stratigraphic range of the most important age-determining fossils based on the literature cited in the appendix. Fig. 7. a-e) Lower Jurassic clasts, f-j) clast of unknown age of the Ponikve Breccia Member of Tolmin Formation, k) basinal facies of the Tolmin Formation or Biancone Limestone Formation, l-m) Biancone Limestone Formation. The scale bar is 10 mm, except a, c, d and f where it is 1 mm a) Silicified clast, bioclastic (radiolarians and sponge spicules) packstone with nassellarian Radiolaria (R) and textulariid foraminifera (T), sample 590c, Cemšeniška Planina; b) clast with the matrix of the breccia, which is dolomitized ooid–peloid grainstone with microsparite-sparite matrix and different angular lithoclasts. In the matrix, there are Rivularia lissaviensis (Bornemann) (R), Crescentiella mg. morronensis (C = Fig. 5u) and foraminifers. The lithoclasts are the following: dolomite (D), mudstone with Bacinella irregularis Radoicic (B, see also Fig. 7c) and stromatolite (Triassic?), dolomitized, basinal peloid mudstone-wackestone facies, with filaments and foraminifers (F, enlarged on Fig. 7d) Lower Jurassic clast from the Krikov Formation, mudstone with dolomite crystals (M), dolomitized lithoclast with a larger agglutinated foraminifera, Everticyclammina praevirguliana Fugagnoli, sample 241, Cemšeniška Planina; c) enlarged peloid mudstone- wackestone clast of Fig. 7b) with filaments, Echinodermata fragments and Lenticulina sp.; d) enlarged part of b), Everticyclammina praevirguliana Fugagnoli; e) Palaeodasycladus mediterraneaus (Pia) from the Jurassic lithoclast of sample 240, Cemšeniška Planina; f-h) sample 338a, NE ridge of Mt. Mrzlica: f) ostracod filled with sparry calcite, g) nodular-bounding appearance of stylolites with undulose surfaces and arranged in parallel sets, with Echinodermata fragments; h) calcite veins arranged in different sets; i-j) sample 678, NW flank of Mt Mrzlica, i) ooid packstone with micritic matrix and strongly elongated micritic ooids with crosscutting calcite veins; j) grainstone with distorted ooids; k) slightly dolomitized, micritic hemipelagic limestone, wackestone with elongated calcite particles (most probably calcified radiolarians) giving a fine lamination appearance, sample 241a, Cemšeniška Planina; l) chertified thin-bedded limestone mudstone with wavy foliation, which is filled with dark clay, sample 245, Cemšeniška Planina; m) chertified mudstone, irregular crosscutting quartz veins associated with irregular clay foliations, sample 586, Cemšeniška Planina. The Lower Flyschoid Formation This formation is more common in the western SB. The thickness of the formation is approximately 50–100 m at the Tuhinj area (Fig. 1c/log 10). Its age is late Aptian/Albian to middle Cenomanian (Buser, 1986; Demšar, 2016) or Turonian (Cousin, 1981; Rožic et al., 2014). At the Tuhinj area, we observed a small outcrop composed of very fine-grained material, grey marlstone and shale (outcrop 673, Fig. 1c/ log 10, Fig. 3b). This is the uppermost member of the Tuhinj area succession. The sedimentological features, laminated appearance, high clay content with a few cm thick carbonate-rich layers, and stratigraphic position support the identification of this formation as the Lower Flyschoid Formation of the SB. Short description of the detailed maps (stratigraphy and structures) Mount Mrzlica Mt. Mrzlica is located 5 km SW from Žalec with three ridges descending northward from the peak. The SB succession is only present on the north-western flank and the north-eastern ridge while the northern flank in between is composed of Permian to Lower Triassic rocks. The Mrzlica NW map (Fig. 2a) is located on the north-western flank of Mt. Mrzlica, 1 km northwest of the peak. Buser (1978) only indicated a unified Jurassic sequence over Triassic platform limestones and on the eastern part the equivalent of Baca Formation. Buser (2009) indicated the presence of the Baca Dolomite, Biancone Limestone and Triassic platform limestone in this order from north to south on the northern side of Mt. Mrzlica. Our study indicates that the succession is composed of the Baca Dolomite, Krikov Formation, Ponikve Breccia Member of the Tolmin Formation, and the Biancone Limestone. The Perbla Formation and the other three members of the Tolmin Formation, typical for more continuous Slovenian Basin successions (Rožic, 2009), are missing from the succession. There are two thrust faults; the hanging wall of the older thrust comprises the SB succession (Fig. 2a, Thrust Fault I.), and the footwall is the Middle Triassic Schlern Formation and the Lower Triassic Werfen Formation. This thrust was responsible for the displacement of the SB units over the Triassic Units of the Dinarides. The second thrust (Fig. 2, Thrust Fault II.) is interpreted as being younger, with a very steep angle; it is responsible for the overthrusting of the SB succession with the Middle Triassic Pseudozilian Formation and the overlying Triassic to Cretaceous succession. The map Mrzlica NE (Fig. 2b) is located 1.5 km northeast of the peak of Mt. Mrzlica. Previous maps (Buser, 1978, 2010) indicated the Baca Dolomite in this area. During our mapping, several formations of the SB were observed, partly based on lithological similarities of rocks to the succession of the Mrzlica NW section. At this part of Mt. Mrzlica two thrust faults are interpreted. The older one (Fig. 2b Thrust Fault II. a) is responsible for thrusting the Baca Dolomite over the succession of younger SB members. The younger thrust (Fig. 2b, Thrust Fault II. b) is responsible for the displacement of the Pseudozilian Formation over the SB units, shown also on the Mrzlica NW map (Fig. 2a). This younger thrust is then cut by a NW-SE trending dextral strike-slip fault that was already active before the second thrust. A west-dipping normal fault is cutting through the SB formations surely postdating the first thrust and probably predating the younger thrust. Flinskovo and Cemšeniška Planina In this area, the formations of the SB start from Ladinian Pseudozilian resedimented volcaniclastic rocks and sandstone, followed by the Baca Dolomite. We emphasise that this contact could as well be a thrust fault meaning that the lower boundary of the Baca Dolomite can be tectonic (similar to Fig. 2a, Thrust Fault I.). In the latter case, however, the Pseudozilian Formation would structurally belong to the Dinarides. Above the Baca Dolomite, follows the Lower Jurassic Krikov Formation, the Middle Jurassic Ponikve Breccia Member, and finally the Upper Jurassic to Lower Cretaceous Biancone Limestone. The SB succession seems to form a klippe above the Carboniferous to Lower Triassic sequence of the Dinarides, as judged from the map of Placer (2008). The eastern boundary of this klippe, just east of the Flinskovo ridge a north–south striking normal fault is positioned between the footwall Pseudozilian and Schlern Formations of the Dinarides and the hanging wall SB units (Fig. 2c). Later, a younger east-west striking thrust (Fig. 2c, Thrust Fault II.) displaced the Triassic Pseudozilian Formation over the SB succession (in the west) with an analogue role as in the Mt. Mrzlica area. In the eastern part of the map, the younger thrust cut across and repeats a Mesozoic succession composed of the Pseudozilian, Schlern and the Biancone Limestone Formations without the presence of the Jurassic rocks of the SB succession; this part does not belong to the SB. Near the Stari Grad we postulate strati 220 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR graphic contact between the Schlern and Biancone Formations because such stratigraphic order was followed between the Mt. Krvavica and Mt. Mrzlica (Scherman et al. 2022). Discussion and Conclusions Our observations and paleontological studies corroborate previous suggestions (Buser, 1996; Placer, 2008; Rožic, 2016), that the SB units extend eastward of the Ljubljana Quaternary basin, i.e., along the northern flank of the Sava Folds. The studied locations represent the important connection between the eastern and western sequences of SB units studied so far. SB successions are characterized by prominent stratigraphic gaps and are similarly developed in all three research areas. The successions start with the rather thick Baca Dolomite Formation, but its base seems to be a thrust plane near the Tuhinj Valley and on the Mrzlica Mts. An exception is the Cemšeniška Planina where it is not excluded that the succession starts with the Pseudozilian Formation and the basal thrust is just below it. In fact, all the map disposition suggests the dual position of the Pseudozilian Formation; north of the young steep E-W striking thrust the Pseudozilian Formation does not seem to be part of the SB succession, because the Jurassic formations are missing (Stari Grad Fig. 2c, and north of the Mt. Mrzlica, Fig. 2a, b). On the other hand, on the south-eastern corner of the Cemšeniška Planina the Pseudozilian Fm. can be the lower preserved unit of the overlying SB succession, like in many cases in the western SB (Rožic 2006; Gale 2010). The Baca Formation is followed by the Krikov Formation, documented in two of our sections at Cemšeniška Planina and Mrzlica areas (Fig. 1c/ logs 11, 12). No observations of the Krikov Formation were made in the Tuhinj area; however, a 300 m gap in observation could also suggest its possible presence (Fig. 1c/log 10). The Krikov Formation from the study area is dominated by hemipelagic limestone, with the subordinate occurrence of resedimented limestones. Similar successions are found in the Mrzli vrh and Mirna sections (Rožic, 2006; Rožic et al., 2017, 2022), whereas similar developments are found along the entire SB southern margin (Rožic, 2006; Rožic et al., 2019, 2022). The Perbla Formation and the Lower Member of the Tolmin Formation are missing from the studied sections. The Ponikve Breccia Member was observed and proven by paleontological data from all three areas (Fig. 1c/logs 10, 11, 12). This lithostratigraphic unit was described recently from the entire SB southern margin. The most similar thickness is reported from the Mrzli Vrh, the Ponikve Plateau and Podpurflca sections (Fig.1c/logs 1, 3, 6) (Rožic et al., 2022). The Ponikve breccia passes towards the basin gradually into the lower resedimented limestones that at the type locality (Fig. 1c/log 3, Rožic et al., 2022) occur as calciturbidite interbeds within siliceous limestone and radiolarite. In some transitional sections (Mrzli Vrh, Ponikve Plateau, Trnje, sites 1, 3, 7 on Fig. 1c), the Ponikve Breccia is overlain by these siliceous pelagic sediments (Rožic et al., 2013, 2019, 2022). Our observations at the Cemšeniška Planina area could be similar to the Ponikve Plateau (Rožic et al., 2019), where the fully covered, several meters thick stripe occurs between the Ponikve Breccia and Biancone Limestone. In other studied locations, the Biancone Limestone could lie directly over the Ponikve Breccia, which is observed also in the Mirna Valley sections (Rožic et al., 2019; 2022, see detailed discussion therein). The contact with the overlying Lower Flyschoid Formation is generally erosional in the SB, and the stratigraphic gap encompasses a large part of the Lower Cretaceous and is found practically in all SB successions. The formation is shale-dominated, which is characteristic for some other comparable sections, such as Zapoškar, Škofja Loka (Podpurflca, Dešna, Trnje) and Mirna River sections (Rožic et al., 2022). Our observation near Tuhinj corroborates this general knowledge although the lower contact was not observed. We conclude that within the northern flank of the Sava Folds, the outcrops of the SB can be traced. The three investigated successions (Fig. 1c/log 10, 11, 12) show close similarities to almost all previously studied Jurassic sections at the southernmost margin sequences of the SB (Rožic et al., 2019, 2022). Therefore, the newly studied successions establish the connection between the western and eastern Slovenian Basin successions. If the studied successions would represent the eastward continuation of the Podmelec Nappe (lowermost imbricate unit of the Tolmin Nappe) needs further consideration. Acknowledgements The Research was conjointly founded by National Research, Development and Innovation Office of Hungary (NKFIH OTKA project No 134873), the Hantken Foundation, and the Slovenian Research Agency (research core funding No. P1-0195). 221 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds References Barattolo, F., Cozzi, A. & Romano, R. 2008: New dasycladalean algae from the Middle Norian (Upper Triassic) of northern Italy (Mt. Pramaggiore, Carnic Prealps). Facies, 54: 549–580. https://doi.org/10.1007/s10347-008-0146-4 Bernecker, M. 2005: Late Triassic reefs from the Northwest and South Tethys. Facies, 51: 442– 453. https://doi.org/10.1007/s10347-005-0067-4 Blau, J. 1987: Neue Foraminiferen aus dem Lias der Lienzer Dolomiten. I. Die Foraminiferenfauna einer roten Spaltenfüllung in Oberrhätkalken. Jahrbuch der Geol. B.-A, 129/3-4: 495–523. Blau, J. & Haas, J. 1991: Lower Liassic involutinids (foraminifera) from the Transdanubian Central Range, Hungary. Paleontologische Zeitschrift, 65: 7–23. https://doi.org/10.1007/ BF02985771 Bornemann, J. G. 1887: Geologische Algenstudien. Jahrbuch der Königlich Preussischen geologischen Landesanstalt und Bergakadamie zu Berlin für das Jahr 1886: 116–134. Broglio Loriga, C., Masetti, D. & Neri, C. 1983: La Formazione di Werfen (Scitico) delle Dolomite occidentali: sedimentologia e biostratigrafia. Rivista Italiana di Paleontologia e Stratigrafia, 88: 501–598. Brönnimann, P. & Koehn-Zaninetti, L. 1969: Involutina hungarica Sidó et Involutina farinacciae , n. sp., deux Involutines post-triasiques, et remarques sur Trocholina minima Henson. Paläontologische Zeitschrift, 43/1–2: 72–80. https://doi.org/10.1007/BF02987930 Buser, S. 1978: Osnovna geološka karta SFRJ, 1:100.000, list Celje, L 33-67. Zvezni geološki zavod, Beograd. Buser, S. 1986: Osnovna geološka karta SFRJ 1:100 . 000. Tolmac listov Tolmin in Videm (Udine). Zvezni geološki zavod, Beograd: 1–103. Buser, S. 1989: Development of the Dinaric and the Julian carbonate platforms and of the intermediate Slovenian Basin (NW Yugoslavia). Memorie della Societŕ Geologica Italiana, 40 (1987): 313–320. Buser, S. 1996: Geology of western Slovenia and its paleogeographic evolution. In: Drobne, K., Gorican, S. & Kotnik, B. (eds.): The Role of Impact Processes in the Geological and Biological Evolution of Planet Earth). International workshop, ZRC SAZU, Ljubljana: 111–123. Buser, S. 2010: Geological map of Slovenia 1: 250, 000. Geološki zavod Slovenije, Ljubljana. Carras, N., Conrad, M. A. & Radoicic, R. 2006: Salpingoporella, a common genus of Mesozoic Dasycladales (calcareous green algae). Revue de Paléobiologie, 25/2: 457–517. Celarc, B., Gorican, Š. & Kolar-Jurkovšek, T. 2012: Middle Triassic carbonate-platform break- up and formation of small-scale half-grabens (Julian and Kamnik–Savinja Alps, Slovenia). Facies, 59: 583–610. https://doi.org/10.1007/ s10347-012-0326-0 Clerc, C. 2005: Les Miliolina (Foraminifčres porcelanés) du Dogger du Jura méridional (France): Systématique, stratigraphie et paléoenvironnement. Terre & Environnement, Univ. Genčve These No 3599: 250 p. Cousin, M. 1973: Le sillon slovčne: les formations triasiques, jurassiques et néocomiennes au Nord-Est de Tolmin (Slovénie occidentale, Alpes méridionales) et leurs affinités dinariques. Bulletin de la Société Géologique de France, 7/ XV: 326–339. Cousin, M. 1981: Les rapports Alpes-Dinarides. Les confins de l’Italie et de la Yougoslavie. Société géologique du Nord, Villeneuve d’Ascq: Publication no. 5/I: 1–521, Vol. II Annexe: 1–521. Crescenti, U. 1969: Biostratigrafia delle Facies Mesozoiche dell’Appennino Centrale: Correlazioni. Geologica Romana, VIII: 15–40. Danitch, M. 1971: Miliolidy. In: L. Romanov, & Danitch, M. (eds.): Molljuski i foraminifery mezozoja Dnestrovsko-Prutskogo mezdurecja, Kisinev: 85–215 (in Russian). Demšar, M. 2016: Geological map of the Selca valley 1:25.000. Geološki zavod Slovenije. Dozet, S. & Buser, S. 2009: Trias. In M. Plenicar, B. Ogorelec & M. Novak (eds.): Geologija Slovenije. Geološki zavod Slovenije, Ljubljana: 161–214. Dunham, R.J. 1962: Classification of carbonate rocks according to depositional texture. In: (ed. W.E. Ham) Classification of Carbonate Rocks-A Symposium. Am. Assoc. Pet. Geol. Mem., 1: 108–112. Flügel, E. 2010: Microfaces of Carbonate Rocks. Analysis, Interpretation and Application. Springer Verlag, Berlin-Heidelberg: 984 p. Fois, E. 1982: The Sass Da Putia Carbonate buildup (Western Dolomites): Biofacies succession and margin developement during the Ladinian. Rivista Italiana di Paleontologia e Stratigrafia. Milano: 87/4: 565–598. Folk, R.L. 1962: Spectral subdivision of limestone types. In: (ed. W.E. Ham) Classification of Carbonate Rocks-A Symposium. Am. Assoc. Pet. Geol. Mem., 1: 62–84. 222 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Fugagnoli, A. 2000: First record of Everticyclammina Redmond 1964 (E. Praevirguliana n. sp.; foraminifera) from the Early Jurassic of the Venetian Prealps (Calcari Grigi, Trenot Platform, northern Italy. Journal of Foraminiferal Research, 30/2: 126–134. https://doi. org/10.2113/0300126 Gale, L. 2010: Microfacies analysis of the Upper Triassic (Norian) „Baca Dolomite“: early evolution of the western Slovenian Basin (eastern Southern Alps, western Slovenia). Geologica Carpathica, 61/4: 293–308. https://doi. org/10.2478/v10096-010-0017-0 Gale, L. 2012: Rhaetian foraminiferal assemblage from the Dachstein Limestone of Mt. Begunjšcica (Košuta Unit, eastern Southern Alps). Geologija, 55/1: 17-44. https://doi. org/10.5474/geologija.2012.002 Gale, L., Kolar-Jurkovšek, T., Žmuc, A. & Rožic, B. 2012: Integrated Rhaetian foraminiferal and conodont biostratigraphy from the Slovenian Basin, eastern Southern Alps. Swiss Journal of Geosciences, 105: 435–462. Gorican, Š., Košir, A., Boštjan, R., Šmuc, A., Gale, L., Kukoc, D. Celarc, B., Crne, A., Kolar- Jurkovšek, T., Placer, L. & Skaberne, D. 2012a: Mesozoic deep-water basins of the eastern Southern Alps (NW Slovenia). Journal of Alpine Geology, 54: 101–143. https://doi. org/10.1007/s00015-012-0117-1 Gorican, Š., Pavšic, J. & Rožic, B. 2012b: Bajocian to Tithonian age of radiolarian cherts in the Tolmin Basin (NW Slovenia). Bulletin de la Société Géologique de France, 183: 369–382. https://doi.org/10.2113/gssgfbull.183.4.369 Gorican, Š., Žibret, L., Košir, A., Kukoc, D. & Horvat, A. 2018: Stratigraphic correlation and structural position of Lower Cretaceous flysch-type deposits in the eastern Southern Alps (NW Slovenia). International Journal of Earth Sciences, 107: 2933–2953. https://doi. org/10.1007/s00531-018-1636-4 Granier, B.R.C. 2021: Bacinella, a discrete type of Mesozoic calcimicrobial structure. Carnets Geol., 21/1: 1–25. https://doi.org/10.2110/ carnets.2021.2101 Haas, J., Görög, Á., Kovács, S., Ozsvárt, P. Matyók, I. & Pelikán, P. 2006: Displaced Jurassic foreslope and basin deposits of Dinaridic origin in Northeast Hungary. Acta Geologica Hungarica, 49/2: 125–163. https://doi. org/10.1556/ageol.49.2006.2.3 Haas, J., Pelikán, P., Görög, Á., Józsa, S. & Ozsvárt. P. 2012: Stratigraphy, facies and geodynamic settings of Jurassic formations in the Bükk Mountains, North Hungary: its relations with the other areas of the Neotethyan realm. Geological Magazine, 150/1: 18-49. https://doi. org/10.1017/S0016756812000246 Haas, J., Jovanovic, D., Görög, Á., Sudar, M. N., Józsa, S., Ozsvárt, P. & Pelikán, P. 2019: Upper Triassic-Middle Jurassic resedimented toe- of-slope and hemipelagic basin deposits in the Dinaridic Ophiolite Belt, Zlatar Mountain, SW Serbia. Facies, 65: 23. https://doi.org/10.1007/ s10347-019-0566-3 Haas, J., Piros, O., Budai, T., Görög, Á., Mandl, G. & Lobitzer, H. 2010: Transition Between the Massive Reef – Backreef and Cyclic Lagoon Facies of the Dachstein Limestone in the Southern Part of the Dachstein Plateau, Northern Calcareous Alps, Upper Austria and Styria. Abhandlungen der Geologischen Bundesanstalt, 65: 35–56. Henson, F.R.S. 1948: Foraminifera of the Genus Trocholina in the Middle East. Annals and Magazine of Natural History, 14/12: 445–459. Koehn-Zaninetti, L. 1969: Les Foraminifčres du Trias de la région de L’Almtal (Haute-Autriche). Jahrbuch Geologischen Bundesansalt, 14: 1–155. Krainer, K. & Vachard, D. 2011: The Lower Triassic Werfen Formation of the Karawanken Mountains (Southern Austria) and its disaster survivor microfossils, with emphasis on Postcladella n. gen. (Foraminifera, Miliolata, Cornuspirida). Revue de Micropaléontologie, 54/2: 59–85. https://doi.org/10.1016j.revmic. 2008.11.001 Kristan, E. 1957: Ophthalmiidae und Tetrataxinae (Foraminifera) aus dem Rhät der Hohen Wand in Nieder-Österreich. Jahrbuch der Geologischen Bundesanstalt, 100/2: 269–298. Kristan-Tollmann, E. 1962: Stratigraphisch wertvolle Foraminiferen aus Obertrias-und Liaskalken der voralpinen Fazies bei Wien. Erdoel- Zeitschrift, 78: 228–233. Kristan-Tollmann, E. 1964: Beiträge zur Mikrofauna des Rhät. II. Zwei charakteristische Foraminiferengemeinschaften aus Rhätkalken. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten in Wien, 14: 125–147 Lokier, S.W. & Junaibi, M.A. 2016: The petrographic description of carbonate facies: are we all speaking the same language? Sedimentology, 63: 1843–1885. Majzon, L. 1954: Contributions to the stratigraphy of the Dachstein Limestone. Acta Geologica, 2/3–4: 243–249. 223 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Neagu, T. 1984: Nouvelles données sur la morphologie du test, sur la systematique et la nomenclature des Miliolides Agatisthegues du Mesozoique. Revista Espańola de Micropaleontología, 15: 75–90. Oprckal, P., Gale, L., Kolar-Jurkovšek, T. & Rožic, B. 2012: Outcrop-scale evidence for the Norian- Rhaetian extensional tectonics in the Slovenian Basin (Southern Alps). Geologija, 55/1: 45–56. https://doi.org/10.5474/geologija. 2012.003 Pazdrowa, O. 1958: Ophthalmidium of the Vesulian and Bathonian in the neighbourhood of Czestochowa. Biuletyn Instytutu Geologicznego B., 128: 149–162. Pia, J. 1920: Die Siphoneae verticillatae vom Karbon bis zur Kreide. Abhandlungen der Zoologisch- Botanischen Gesellschaft in Wien, 11/2: 1–263. Pirini, C. 1966: Alcuni foraminiferi dei calcari liassici de Montemerano-Grosseto. Palaeontographia Italica, 60 LX (n. ser. XXX): 89–98. Placer, L. 1998a: Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija, 41/1: 223–255. https://doi. org/10.5474/geologija.1998.013 Placer, L. 1998b: Structural meaning of the Sava Folds. Geologija, 41/1: 191–221. https://doi. org/10.5474/geologija.1998.012 Placer, L. 2008: Principles of the tectonic subdivision of Slovenia. Geologija, 51/2: 205–217. https://doi.org/10.5474/geologija.2008.021 Premru, U. 1983: Osnovna geološka karta SFRJ, 1:100.000, list Ljubljana, L-33-66. Zvezni Geološki zavod, Beograd. Radoicic, R. 1959: Nekoliko problematicnih mikrofosila iz dinarske krede. (Some problematic microfossils from the Dinarian Cretaceous). Zavod za Geološka i Geofizicka Istraživanja, Vesnik, Beograd, (Serija A), (Bull Serv Géol Géophys Rep Serbie), XVII: 87-92. Radoicic, R. & Jovanovic, D. 2011: Involutina farinacciae Bronnimann & Koehn-Zanninetti 1969, a marker for the Middle Liassic in basinal and some platform facies of Mediterranean and near east areas; the discussion concerning the paleogeography of Montenegro-Albania border region (the Scutari–Pec Lineament). Annales Géologiques de la Péninsule Balkanique, 72: 47–61. https://doi.org/10.2298/ GABP1172047R Ramovš, A., Anicic, B. & Dozet, S. 2001: Comparison of Lower Triassic developments in EasternSava Folds and NorthernJulian Alps (Slovenia). RMZ-Mater. Geoenvir. Ljubljana: 48/3, 415–432. Rigaud, S., Blau, J., Martini, R. & Rettori, R. 2013: Taxonomy and phylogeny of the Trocholinidae (Involutinina). Journal of Foraminiferal Research, 43: 317–339. Rodríguez-Martínez, M., Heim, C., Simon, K., Zilla, T. & Reitner, J. 2011: Tolypammina gregaria Wendt 1969-Frutexites Assemblage and Ferromanganese Crusts: A Coupled Nutrient- Metal Interplay in the Carnian Sedimentary Condensed Record of Hallstatt Facies (Austria). In: Reitner, J., Quéric, N.-V. & Arp, G. (eds.): Advances in Stromatolite Geobiology, 131: 409–434. Rožic, B. 2005: Albian–Cenomanian resedimented limestone in the Lower Flyschoid Formation of the Mt. Mrzli Vrh Area (Tolmin region, NW Slovenia). Geologija, 48/2: 193–210. https:// doi.org/10.5474/geologija.2005.017 Rožic, B. 2006: Sedimentology, stratigraphy and geochemistry of Jurassic rocks in the western part of the Slovenian Basin. Ph.D. thesis, University of Ljubljana, Ljubljana: 148 p. Rožic, B. 2009: Perbla and Tolmin formations: revised Toarcian to Tithonian stratigraphy of the Tolmin Basin (NW Slovenia) and regional correlations. Bulletin de la Société Géologique de France, 180: 411–430. https://doi. org/10.2113/gssgfbull.180.5.411 Rožic, B. 2016: Paleogeographic units. In: Novak, M. & Rman, N. (eds.): Geological atlas of Slovenia. Geološki zavod Slovenije, Ljubljana: 14–15. Rožic, B., Kolar-Jurkovsek, T. & Šmuc, A. 2009: Late Triassic sedimentary evolution of Slovenian Basin (eastern Southern Alps): description and correlation of the Slatnik Formation. Facies, 55: 137–155. https://doi.org/10.1007/ s10347-008-0164-2 Rožic, B., Gale, L. & Kolar-Jurkovšek, T. 2013: Extent of the Upper Norian-Rhaetian Slatnik formation in the Tolmin nappe, Eastern Southern Alps. Geologija, 56/2: 175–186. https://doi. org/10.5474/geologija.2013.011 Rožic, B., Gorican, Š., Švara, A. & Šmuc, A. 2014: The Middle Jurassic to Lower Cretaceous succession of the Ponikve klippe: The southernmost outcrops of the Slovenian Basin in Western Slovenia. Rivista Italiana di Paleontologia e Stratigrafia, 120: 83–102. https://doi. org/10.13130/2039-4942/6051 Rožic, B., Kolar-Jurkovšek, T., Žvab Rožic, P. & Gale, L. 2017: Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary 224 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR interval in the Slovenian Basin (eastern Southern Alps). Geologica Carpathica, 68: 543–561. https://doi.org/10.1515/geoca-2017-0036 Rožic, B., Gercar, D., Oprckal, P., Švara, A., Turnšek, D., Kolar-Jurkovšek, T., Udovc, J., Kunst, L., Fabjan, T., Popit, T. & Gale, L. 2019: Middle Jurassic limestone megabreccia from the southern margin of the Slovenian Basin. Swiss Journal of Geosciences, 112/1: 163–180. https://doi.org/10.1007/s00015-018-0320-9 Rožic, B., Gale, L., Oprckal, P., Švara, A., Popit, T., Kunst, L., Turnšek, D., Kolar-Jurkovšek, T., Šmuc, A., Ivekovic, A., Udovc, J. & Gercar, D. 2022: A glimpse of the lost Upper Triassic to Middle Jurassic architecture of the Dinaric Carbonate Platform margin and slope. Geologija, 65/2: 177–216. https://doi.org/10.5474/ geologija.2022.011 Rychlinski, T., Gazdzicki, A. & Uchman, A. 2018: Dasycladacean alga Palaeodasycladus in the northern Tethys (West Carpathians, Poland) and its new palaeogeographic range during the Early Jurassic. Swiss Journal of Geosciences 111/1–2, 305–315. https://doi.org/10.1007/ s00015-018-0301-z Salaj, J., Borza, K. & Samuel, O. 1983: Triassic Foraminifers of the West Carpathians. Geologicky ústav Dionyza Stúra, Bratislava: 213 p. Sartoni, S. & Crescenti, U. 1962: Richerche biostratigrafiche nel Mesozoico dell’Apennino meridionale. Giornale di Geologia, 29/2: 161-388. Scherman, B., Rožic, B., Görög, A., Kövér, S. & Fodor, L. 2022: Platform to basin transitions: mapping observations at the Krvavica Mountain, and Cemšeniška Planina, in the Sava Folds Region. In: Rožic, B. & Žvab Rožic, P. (eds.): 15th Emile Argand Conference on Alpine Geological Studies: abstract book & fieldtrip guide. Faculty of Natural Sciences and Engineering, Ljubljana: 61. Schlagintweit, F. & Bover-Arnal, T. 2013: Remarks on Bacinella Radoicic, 1959 (type species B. irregularis) and its representatives. Facies, 59: 59–73. https://doi.org/10.1007/s10347-012- 0309-1 Senowbari-Daryan, B. 2013: Tubiphytes Maslov, 1956 and description of similar organisms from Triassic reefs of the Tethys. Facies, 59: 75–112. https://doi.org/10.1007/s10347-012- 0353-x Senowbari-Daryan, B., Bucur, I.I., Schlagintweit, F., Sasaran, E. & Matyszkiewicz, J. 2008: Crescentiella, a new name for “Tubiphytes” morronensis Crescenti, 1969: an enigmatic Jurassic–Cretaceous microfossil. Geologica Croatica, 61/2–3: 185–204. https://doi. org/10.4154/GC.2008.17 Senowbari-Daryan, B. & Schäfer, P. 1979: Neue Kalkschwämme und ein Problematikum (Radiomura cautica n. g., n. sp.) aus Oberrhät- Riffen südlich von Salzburg (Nördliche Kalkalpen), (Beiträge zur Paläontologie und Mikrofazies der obertriadischen Riffe des alpinmediterranen Gebietes, 8). Mitteilungen der österreische geologische Gesellschaft, 70: 7—42. Sokac, B. & Grgasovic, T. 2017: On the species of the genus Selliporella Sartoni & Crescenti, 1962 from the Middle Jurassic of the coastal Dinarides of Croatia. Geologica Croatica, 70: 115–161. https://doi.org/10.4154/gc.2017.15 Stolarski, J. & Russo, A. 2002: Microstructural diversity of the stylophyllid (Scleractinia) skeleton. Acta Palaeontologica Polonica, 47/4: 651–666. Teller, F. 1898: Erläuterungen zur Geologischen Spezialkarte der Österr. Ungar. Monarchie. Eisenkapel und Kanker. Geol. R. A., Wien Terquem, M.O. & Berthelin, G. 1875: Étude microscopique des marnes du Lias moyen d’Essey– Les–Nancy, zone inférieure de l’assisi a Ammonites margaritatus. Mémoires de la Société Géologique de France, 10/2: 1–126. Turnšek, D. 1997: Mesozoic corals of Slovenia. ZRC SAZU 16, Ljubljana:512 p. Vrabec, M. & Fodor, L. 2006: Late Cenozoic Tectonics of Slovenia: Structural Styles at the Northeastern Corner of the Adriatic Microplate. In: Pinter, N., Grenerczy, Gy., Weber, J., Stein, S. & Medak, D. (eds.): The Adria Microplate: GPS Geodesy, Tectonics and Hazards. Nato Science Series: IV: Earth and Environmental Sciences, 151-168. https://doi.org/10.1007/1-4020- 4235-3_10 Wendt, J. 1969: Stratigraphie und Paläontologie des Roten Jurakalks im Sonnwendgebirge (Tirol, Österreich). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 132: 219– 238. Weynschenk, R. 1950: Die Jura-Mikrofauna und -flora des Sonnwendgebirges (Tirol). Univ. Innsbruck, Austria, Schlern-Schriften. 83: 1–32. Weynschenk, R. 1956: Aulotortus, a New Genus of Foraminifera from the Jurassic of Tyrol, Austria. Contributions from the Cushman Foundation for Foraminiferal Research. 7/1: 26–29. 225 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds 226 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR Appendix: Microfossils species and their stratigraphic range and palaeoenvironment The species of each fossil group are listed in alphabetical order. Cyanophyta Rivularia lissaviensis (Bornemann, 1887) Stratigraphic range: Middle Triassic – Aptian. Environment: this species appears in the silent water of the back reef or lagoon (Haas et al., 2019). Chlorophyta Dasycladales Bystrickyella ottii Barattolo, Rozzi & Romano, 2008 Stratigraphic range: this species was established from the middle Norian. Environment: shallow marine, platform facies (Barottolo et al., 2008). Palaeodasycladus mediterraneus (Pia, 1920): Stratigraphic range: Hettangian – Pliensbachian. Environment: low-energy inner platform (Rychlinski et al., 2018). Salpingoporella austriaca Schlagintweit, Mandl & Ebli, 2001 Stratigraphic range: Norian. Environment: inner platform, near the reef (Carras et al., 2006). Selliporella mg. donzellii Sartoni & Crestenci, 1962 Stratigraphic range: lower Bajocian – upper Bathonian. Environment: low-energy inner platform (Sokac & Grgasovic, 2017). Foraminifera Aulotortus communis (Kristan, 1957) Stratigraphic range: Norian – Rhaetian. Environment: shallow marine platform (Gale et al., 2012). Aulotortus sinuosus Weynschenk, 1956 Stratigraphic range: Ladinian – Rhaetian. Environment: shallow marine platform (Gale et al., 2012). Aulotortus tenuis (Kristan, 1957) Stratigraphic range: Ladinian? Carnian – Rhaetian. Environment: shallow marine platform (Haas et al., 2010). Aulotortus tumidus (Kristan-Tollmann, l964) Stratigraphic range: Norian – Liassic? Environment: shallow marine platform (Haas et al., 2010). Coscinoconus palastiniensis Henson, 1847 Stratigraphic range: Bajocian – Callovian (Haas et al. 2006). Environment: it is common in the mud facies of the inner platform (Haas et al., 2012). Coronipora etrusca (Pirini, 1966) Stratigraphic range: upper Norian – Liassic. Environment: well-oxygenated low-energy environment (Blau & Haas, 1991). Everticyclammina praevirguliana Fugagnoli, 2000 Stratigraphic range: upper Sinemurian – lower Bajocian. Environment: shallow marine low-energy environments in the inner platform (Haas et al., 2019). Frentzenella crassa (Kristan, 1957) Stratigraphic range: Rhaetian. Environment: shallow marine, platform and reef (Rigaud et al., 2013). Gandinella falsofriedli (Salaj, Borza & Samuel, 1983) Stratigraphic range: Ladinian – Rhaetian. Environment: Different shallow marine environments, such as lagoons or upper slopes (Gale, 2012). Involutina farinacciae Brönnimann & Koehn-Zaninetti, 1969 Stratigraphic range: upper Sinemurian – lower Toarcian. Environment: ooidal-peloidal facies of the outer platform (Haas et al., 2019). Ophthalmidium concentricum (Terquem & Berthelin, 1875) Stratigraphic range: Hettangian – lower Bajocian. Environment: outer platform environment (Clerc, 2005). Ophthalmidium kaptarenkoae Danitch, 1971 Stratigraphic range: Bajocian – Callovian. Environment: inner and middle shelf environment (Clerc, 2005). Ophthalmidium terquemi Pazdrowa, 1958 Stratigraphic range: Aalenian – Callovian. Environment: inner and middle shelf environment (Clerc, 2005). Parvalamella friedli (Kristan-Tollmann, 1962) Stratigraphic range: Anisian – Rhaetian. Environment: Low-energy shallow water environment, such as lagoonal, back-reefal environment or shoal facies (Haas et al. 2019). Protopeneroplis striata Weynschenk, 1950 Stratigraphic range: Aaleni – end of the Tithonian. Environment: outer platform ooid shoal environment (Haas et al., 2006). Tolypammina gregaria Wendt, 1969 Stratigraphic range: Lower Triassic – Rhaetian Environment: It is an attached epifaunal foraminifera related to low sedimentation rate and mesotrophic conditions (Rodríguez-Martínez et al., 2011). Triasina hantkeni Majzon, 1954 Stratigraphic range: Rhaetian. Environment: shallow platform environment (Gale et al., 2012). “Trochammina” almtalensis Koehn-Zaninetti, 1969 Stratigraphic range: Anisian – Rhaetian. Environment: shallow marine, platform (Gale et al., 2012). Trochammina alpina Kristan-Tollmann, 1964 Stratigraphic range: Anisian – Rhaetian (Salaj et al., 1983). Environment: shallow marine, platform and reef (Bernecker, 2005). Trocholina ultraspirata Blau, 1987 Stratigraphic range: Lower Jurassic. Environment: shallow marine, platform and reef (Rigaud et al., 2013). 227 Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds Microproblematicum Bacinella irregularis Radoicic, 1959 emend. Schlagintweit and Bover Arnal, 2013 Stratigraphic range: Genus Bacinella described from the Ladinian – Albian of the Tethys (Schlagintweit and Bover Arnal, 2012). Environment: This species is a typical biostrome builder of backreefal or peritidal depositional settings environment (Granier, 2021). Crescentiella mg. morronensis (Crescenti, 1969) Stratigraphic range: Upper Triassic-Upper Jurassic. Environment: Shallow marine, mainly in a reef environment (Senowbari-Daryan et al., 2008, Senowbari- Daryan, 2013). 228 Benjamin SCHERMAN, Boštjan ROŽIC, Ágnes GÖRÖG, Szilvia KÖVÉR & László FODOR © Author(s) 2023. CC Atribution 4.0 License GEOLOGIJA 66/2, 229-245, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.010 Pisma Johanna Jacoba Ferberja Geološki opisi Slovenije iz druge polovice 18. stoletja Letters of Johann Jacob Ferber Geological descriptions of Slovenia from second half of 18th century Mihael BRENCIC Oddelek za geologijo, Naravoslovnotehniška fakulteta, Univerza v Ljubljani, Aškerceva cesta 12, SI–1000 Ljubljana, Slovenija; e-mail: mihael.brencic@ntf.uni-lj.si Geološki zavod Slovenije, Dimiceva ul. 14, SI–1000 Ljubljana, Slovenija Prejeto / Received 9. 10. 2023; Sprejeto / Accepted 15. 12. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Kljucne besede: mineralogija, razsvetljenska geologija, regionalna geologija, zgodovina geologije, Giovanni Arduino, Ignaz von Born Key words: enlightenment geology, history of geology, mineralogy, regional geology, Giovanni Arduino, Ignaz von Born Izvlecek Obravnavana sta prevoda pisem Johanna Jacoba Ferberja (1743–1790), švedskega geologa in mineraloga, ki je septembra 1771 potoval preko Slovenije. Prvo pismo, naslovljeno na Ignaza von Borna, je bilo objavljeno v knjigi »Pisma iz Italije o naravnih cudesih te dežele, ki so bila poslana naslovniku Ignacu plemenitemu Bornu«, ki je izšla leta 1773 v Pragi, drugo pismo, poslano Giovanniju Arduinu, pa najdemo v knjigi »Zbirka razprav s podrocja kemije, mineralogije, metalurgije in oriktografije«, ki je izšla leta 1775 v Benetkah. Obe pismi vsebujeta razsvetljenski znanstveni opis geologije dela obmocja današnje Slovenije, ki temelji na takrat veljavnih geoloških teorijah. V clanku smo podali kratke življenjepise akterjev, prevoda obeh pisem ter njun komentar in interpretacijo. Abstract The two translations of letters by Johann Jacob Ferber (1743–1790), a Swedish geologist and mineralogist, who travelled through Slovenia in September 1771, are discussed. The first letter addressed to Ignaz von Born was published in the book »Briefe aus Wälschland über natürliche Merkwürdigkeiten dieses Landes an den Herausgeber derselben Ignatz Edlen von Born« published in Prague in 1773, and the second letter to Giovanni Arduino was published in the book »Raccolta di memorie chimico-mineralogiche, metallurgiche, e orittografiche« published in Venice in 1775. Both letters represent an Enlightenment scientific description of the geology of part of what is now Slovenia, based on the geological theories valid at the time. In the article, we provide brief biographies of the actors, translations of the two letters, their commentary and interpretation. Uvod V cloveški zgodovini se je geološko védenje pricelo razvijati hkrati z drugim naravoslovnim znanjem. Clovek je bil vedno odvisen od naravnih virov, med katere sodijo tudi mineralne surovine, teh pa ni mogoce najti in izkorišcati brez izkušenj in teoreticnih izhodišc. Tako lahko zametke geološke teorije najdemo že v najzgodnejših spisih, kasneje pa še mnogo vec v spisih grških in rimskih filozofov. Ne glede na to, da so zacetki geološkega znanja zelo stari, se prava geološka znanost pricne razvijati mnogo kasneje, in sicer v razsvetljenskem 18. stoletju, ko se je geologija pricela razvijati v smeri sodobne znanosti. Iz tega razloga pogosto govorimo o razsvetljenski geologiji. Razsvetljensko stoletje je zelo pomembno tudi za razvoj geologije na obmocju današnje Slovenije in sosednjih pokrajin. Ceprav tudi v Sloveniji najdemo nekatera starejša dela, ki vsebujejo elemente geološkega znanja, na primer pri Janezu Vajkardu Valvasorju (1641–1693), je razsvetljensko 18. stoletje tisto obdobje, ko geologija zaživi v celoti, celo vec, doživi svojevrsten vrhunec. Zlasti v drugi polovici 18. stoletja je na obmocju današnje Slovenije nastala vrsta pomembnih del. Na tem mestu omenimo le nekatere pomembne osebnosti, kot so Giovanni Antonio Scopoli (1723–1788), Baltazar Hacquet (1739/1740–1815) in Žiga Zois (1747–1819), ki so se v vecji ali manjši meri ukvarjali s podrocjem geologije. V tistem casu je ponoven zagon doživel rudnik živega srebra v Idriji. Svojevrsten pojav živega srebra pa ni pritegoval le izobražencev, ki so delovali v Idriji ali na tedanjem Kranjskem, temvec tudi znanstvenike in intelektualce iz širšega evropskega prostora. Ti so rudnik v Idriji pogosto obiskovali in o tem ohranili pomembna pricevanja. Med pomembne obiskovalce rudnika v Idriji sodi tudi Johann Jacob Ferber (1743–1790), švedski naravoslovec, geolog in mineralog. Formalno gledano Ferber velja za avtorja prvega znanstvenega opisa rudnika v Idriji z naslovom Beschreibung des Quecksilber-Bergwerks zu Idria in Mittel- Crain (Opis živosrebrnega rudnika v Idriji na srednjem Kranjskem), ki je kot samostojna publikacija izšel leta 1774 (Car, 1991; Ferber, 1991; Car & Režun, 2002). Vendar so podrobne raziskave pokazale, da je Ferber za to delo le posodil svoje ime, pravi avtor pa je najverjetneje Ignaz von Born (1742–1791), pomembna osebnost avstrijskega razsvetljenstva (Brencic, 2014a). Drugo Ferberjevo delo, ki je prav tako pomembno za razumevanje geološke znanosti v Sloveniji, je knjiga Briefe aus Wälschland über natürliche Merkwürdigkeiten dieses Landes an den Herausgeber derselben Ignatz Edlen von Born (Pisma iz Italije o naravnih cudesih te dežele, ki so bila poslana naslovniku Ignacu plemenitemu Bornu – skrajšano Pisma iz Italije). Delo se pricne s pismom, v katerem Ferber opisuje svojo pot preko Slovenije in razpravlja o geoloških danostih obmocja, ki ga je obiskal. Ceprav gre pri tem z današnjega vidika za nekoliko nenavaden zapis, je to eden prvih znanstvenih in teoreticnih opisov geoloških razmer na ozemlju Slovenije, ki je napisan na podlagi takrat aktualnih geoloških znanstvenih teorij. To je eno prvih znanih besedil o geologiji Slovenije, ki izhaja iz zacetka razvoja sodobnih geoloških doktrin. Prvo Ferberjevo pismo iz dela Pisma iz Italije na svojevrsten nacin dopolnjuje drobna publikacija Lettera Orittografica del Celebre Signor Gian-Giacomo Ferber del Collegio Metallico di Svezia, scritta dalla Boemia al chiarissimo signor Giovanni Arduino Pubblico Soprantendente all Agricultura, etc. in Venezia (Oriktografsko pismo slavnega gospoda Johanna Jacoba Ferberja, clana švedskega montanisticnega kolegija, napisano iz Ceške dragemu gospodu Giovanniju Arduinu, javnemu kmetijskemu uradniku v Benetkah – skrajšano Pismo Arduinu). V njej je objavljeno Ferberjevo pismo naravoslovcu in geologu Giovanniju Arduinu, ki je postavil eno prvih teoreticno konsistentnih stratigrafskih teorij. Tudi to delo je pomembno za poznavanje razvoja geologije na obmocju Slovenije. Sl. 1. Johann Jacob Ferber (1743–1790). Fig. 1. Johann Jacob Ferber (1743–1790). V nadaljevanju podajamo prevod prvega Ferberjevega pisma, ki je objavljeno v Pismih iz Italije, ter nekatere odlomke njegovega pisma Giovanniju Arduinu. Ceprav prvo pismo deloma opisuje tudi obmocje izven meja današnje Slovenije, ga zaradi pomena podajamo v celoti. Pismo Arduinu pa navajamo le v tistih delih, ki omogocajo dodatne vpoglede v Ferberjevo razumevanje geoloških razmer na tem obmocju, saj se vsebinsko v veliki meri prekriva s prvim pismom in je v nekaterih opisih bolj površno kot prvo pismo. V nadaljevanju na kratko povzemamo življenjepise Johanna Jacoba Ferberja, Ignaza von Borna in Giovannija Arduina, predvsem z vidikov, ki so pomembni za razumevanje in takratno tolmacenje geoloških razmer na obmocju današnje Slovenije. Sledijo pregled dejstev 230 Mihael BRENCIC o nastanku obeh pisem, njun prevod in znanstvenokriticna analiza. V okviru slednje podajamo opombe s komentarji in interpretacijo v kontekstu sodobnega razumevanja razvoja razsvetljenske geologije. Biografska izhodišca Johann Jacob Ferber (1743–1790) je bil švedsko- nemški geolog in mineralog, cigar študijski mentor je bil Carl von Linné (1707–1778). Rodil se je septembra 1743 v Karlskroni na južnem Švedskem. Študiral je na Univerzi v Uppsali na Švedskem, kjer je leta 1763 doktoriral. Disertacija je bila posvecena botaniki, vendar se je že v tem casu navduševal predvsem za mineralogijo. Leta 1765 je odpotoval na svojo prvo pot v tujino. Najprej se je ustavil v Berlinu, kjer se je iz kemije in mineralogije izpopolnjeval na Pruski kraljevi akademiji znanosti. Nato je obiskal Ceško, Nemcijo, Nizozemsko, Francijo in Anglijo. V tem casu se je verjetno zacelo veliko prijateljstvo z Ignazem von Bornom, ki je bil prav tako pomemben mineralog, poleg tega pa je bil izredno pomembna in vplivna razsvetljenska osebnost. S te poti se je Ferber vrnil leta 1770, vendar je kmalu ponovno odpotoval, tokrat najprej na Ceško. Iz Prage je leta 1771 odšel na Dunaj in nato na pot po Italiji, ki jo je zakljucil avgusta 1772. To je obdobje, ki ga je obravnaval v delu Pisma iz Italije. V letih 1774–1783 je deloval kot profesor fizike na visoki šoli v Mitauu v današnji Jelgavi v Latviji. Leta 1783 so ga zvabili v St. Petersburg, kjer je postal clan akademije znanosti in profesor mineralogije, vendar je od tod leta 1786 na hitro odšel, skorajda pobegnil, ker mu je cesarica Katarina Velika namenila vodenje državnih rudnikov v Sibiriji. Po prihodu iz Rusije se je naselil v Berlinu, vendar je od tod kmalu ponovno odpotoval na Ceško. Ob vrnitvi v Berlin se je zaposlil pri pruski vladi. Zanjo je po vsej Evropi zbiral pomembne informacije o montanistiki, zlasti tam, kjer so imeli Prusi neposredne gospodarske ali politicne interese. Med svojimi številnimi potovanji se je leta 1789 znašel v Švici, kjer ga je v Bernu zadelo nekaj zaporednih kapi, po katerih si ni vec opomogel. Številna potovanja so terjala svoj davek, aprila 1790 je umrl (Zenzén, 1956; Hoppe, 1990; 1995; Beretta, 2007; Brencic, 2014a). Ferber je bil zelo plodovit pisec. Napisal je številne knjige in clanke, veliko se je ukvarjal z recenziranjem, zlasti geoloških del. Pisal je tudi potopise in izdajal zbirke svojih dopisovanj z drugimi pomembnimi raziskovalci. Vsebina teh del je danes znana le še specialistom za zgodovino razsvetljenske geologije. V casu svoje kariere je Ferber veljal za pomembnega mineraloga, cigar slava je segala v širši mednarodni prostor. Še dve desetletji po njegovi smrti je bilo objavljenih nekaj njegovih del. Vendar je kmalu nato utonil v pozabo, njegovega imena, tudi v delih, ki obravnavajo zgodovinski razvoj mineralogije, skorajda ni vec mogoce zaslediti. Morda je to posledica dejstva, da je vecina njegovih del napisana v nemšcini, vecina sodobne zgodovine geologije pa je interpretirana in objavljena v angleškem jeziku. Poznavanje in analiza Ferberjevega dela sta za razumevanje razvoja geološke znanosti na obmocju današnje Slovenije, zlasti Idrije, izredno pomembna. Kot znanstvenik, ki je prihajal iz širšega evropskega prostora in ki je v svojem casu veljal za enega najpomembnejših mineralogov in geologov, je z osebnimi in verjetno tudi pisnimi stiki na obmocje nekdanje Kranjske prinašal aktualna znanstvena spoznanja. Iz teh informacij so se oplajali intelektualci, ki so delovali na tem obmocju, hkrati pa so do njih vzpostavljali kriticno distanco. Na njihovo delo je Ferber vplival tudi s svojimi kasnejšimi deli in zapisi. Po izidu prve in druge knjige Oriktografija Kranjske, ki ju je Baltazar Hacquet objavil v letih 1778 in 1781, je Ferber v nemškem referatnem casopisu Allgemeine deutsche Bibliothek v letih 1780 in 1782 objavil oceni obeh knjig, ki sta bili za Hacqueta porazni. Negativna je bila zlasti kritika druge Hacquetove knjige, v kateri se avtor podrobno posveca rudniku v Idriji. Ferberjevi oceni sta v veliki meri vplivali na nadaljnje znanstveno sprejemanje Hacquetovega dela, pa tudi neposredno na Hacqueta samega. Kritiki nista le oceni njegovega dela, temvec v veliki meri tudi analiza geoloških razmer na obmocju Slovenije, zlasti Idrije, saj Ferber polemizira z avtorjevimi geološkimi opisi in razlagami, pri tem pa podaja tudi lastne geološke interpretacije. Podrobna analiza Ferberjevih ocen prvih dveh knjig Hacquetove Oriktografije Kranjske nas še caka. Naslovnik Ferberjevih Pisem iz Italije je bil Ignaz von Born (1742–1791). Rojen je bil v današnji Albi Iuliji, nekdanjem Karlsburgu, v Romuniji. Študiral je na dunajskem jezuitskem kolegiju, iz katerega je izstopil in leta 1763 v Pragi zakljucil študij prava. Zatem se je preusmeril v študij montanistike, ki jo je obiskoval v Schemnitzu, današnji Banski Štiavnici. Leta 1769 je v Pragi postal rudarski uradnik (Bergrat). Leta 1770 pa se je odpravil na znamenito popotovanje po Madžarski in Transilvaniji. S potovanja je Ferberju pošiljal pisma, ki jih je ta leta 1774 objavil v knjigi Briefe über mineralogische Gegenstände, auf seiner Reise durch das Temeswarer Bannat, Siebenbürgen, 231 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Ober- und Nieder- Hungarn an den Herausgeber derselben, Joh. Jacob Ferber, geschrieben (Mineraloška pisma Joh. Jacobu Ferberju s potovanja po Temišvarskem Banatu, Sedmograškem, Zgornji in Osrednji Madžarski). V letih 1772–1776 Born ni opravljal državnih služb, vendar je bil v tem casu zelo aktiven. Leta 1776 je na Dunaju prevzel Naturalienkabinet predhodnika današnjega Naturhistorisches Museum. Born velja za enega najpomembnejših mineralogov svoje dobe. Sodeloval je pri nastanku in urejanju še danes pomembnih mineraloških zbirk. Od tod izvira njegov velik vpliv na mineraloško sistematiko druge polovice 18. stoletja. Sedemdeseta leta 18. stoletja so cas, ko se je njegov družbeni vpliv zelo povecal. Bil je mojster najpomembnejše dunajske in s tem avstrijske prostozidarske lože »Zur wahren Eintracht« (slv. K pravi slogi). V svojih delih je segal na številna podrocja, od prostozidarstva do mineraloških in montanisticnih objav, pravnih in filozofskih del ter književnosti in številnih pamfletov. Intenzivno se je ukvarjal z eksperimentiranjem. Leta 1784 je razvil nov amalgamacijski postopek. Za posledicami bolezni je leta 1791 globoko zadolžen umrl na Dunaju (Lindner, 1986; Brencic, 2014a). Born se je zelo zanimal za rudnik živega srebra v Idriji, najverjetneje je tudi pravi avtor prvega znanstvenega dela o njem (Brencic, 2014a). Nekatera dela, ki so pripisana Ferberju, so verjetno njegova, saj kot rudarski uradnik ni smel objavljati. Iz njegovih in Ferberjevih del izhaja, da sta se intenzivno zanimala tudi za geologijo na širšem obmocju današnje Slovenije, informacije o tem pa sta posredovala v širši evropski prostor – v kakšni meri in o cem, je treba še raziskati. Izpricano je Bornovo poznanstvo z Žigo Zoisom in drugimi intelektualci iz Kranjske. Od tod naj bi izvirala domneva, da je bil Zois clan njegove prostozidarske lože, kar pa je malo verjetno (Košir, 2015). Prav tako obstajajo dokazi o osebnih stikih med Bornom, Ferberjem, Scopolijem in Hacquetom. Biografija Giovannija Arduina (1714–1795) je mnogo manj razburljiva kot Ferberjeva in Bornova, zato pa so njegova dela veliko pomembnejša za razvoj geoloških znanosti. In ceprav se je v enem od svojih pisem Ferber iz Arduina norceval, ceš da je že nekoliko star, je preživel oba. Rodil se je v Caprinu pri Veroni. Imel je zelo dobro izobrazbo s podrocja rudarstva in metalurgije, na podrocju kemije in mineralogije pa je bil samouk. Študiral je v Veroni, pri osemnajstih pa je odšel delat v rudnike na Tirolsko. Nato je delal v Toskani, Modeni in Vicenzi. Do leta 1769 je opravljal delo deželnega geodeta v Livornu, zatem pa je postal višji uradnik za kmetijstvo v Beneški republiki – to funkcijo je opravljal do svoje smrti v Benetkah (Vaccari, 2006). Zaradi rudarske in geodetske prakse v rudnikih v širšem italijanskem in avstrijskem prostoru je imel izreden obcutek za prostor, hkrati pa je imel neposredne izkušnje iz rudnikov. Njegovi geološki profili že imajo znacaj pravih stratigrafskih profilov z vrisanimi litostratigrafskimi elementi in prvimi 232 Mihael BRENCIC Sl. 2. Ignaz von Born (1742–1791). Fig. 2. Ignaz von Born (1742–1791). Sl. 3. Giovanni Arduino (1714–1795). Fig. 3. Giovanni Arduino (1714–1795). zametki strukturnih interpretacij. Postavil je stratigrafsko klasifikacijo sedimentov in kamnin ter jih razdelil v štiri skupine, ki sestavljajo klasifikacijski sistem. Ferber se je z njim srecal ob obisku Padove septembra 1771. Prvo pismo iz Italije Izhodišca Knjiga Pisma iz Italije o naravnih cudesih te dežele, ki so bila poslana naslovniku Ignacu plemenitemu Bornu, je izšla leta 1773 v Pragi pri založbi Wolfgang Gerle. Izvod izvirnika je ohranjen tudi v NUK in izhaja iz knjižnice Žige Zoisa. Nemško besedo das Wälschland v naslovu bi bilo morda smiselneje prevajati kot Laško, vendar smo se zaradi lažjega razlikovanja in geografske opredelitve odlocili, da uporabimo današnji geografski oznacevalec Italija. Na velik tedanji pomen Ferberjeve knjige kažejo tudi njeni prevodi. Prevedena je bila v anglešcino in francošcino. Francoski prevod je izšel leta 1776 v Strasburgu pri založniku Bauer et Treuttel. Delo je prevedel in komentiral clan akademije in montanist Philippe-Frédéric de Dietrich (1748–1793). Istega leta je izšel tudi angleški prevod v Holbournu v Londonu pri tiskarju Davisu, ki je tiskal za Royal Society. Angleški prevod pa je zelo površen, saj je prevajalec besedilo krajšal. Knjigo je prevedel in obsežne opombe napisal Rudolf Erich Raspe (1736–1794), ki je v svetovni književnosti najbolj znan kot avtor dela o Lažnivem Kljukcu ali baronu Münchhausenu (Brencic, 2014b), veliko pa se je ukvarjal tudi z geologijo in mineralogijo. Prvo pismo, ki je predmet naše analize, je Ferber napisal iz Benetk in je datirano s 25. septembrom 1771. V originalni objavi iz leta 1773 je zapisano v gotici in objavljeno na 14 straneh. Posamezne krajše dele prevoda pisma, ki so pomembni za razumevanje Ferber/Bornove knjige o rudniku živega srebra v Idriji, smo že objavili (Brencic, 2014a), na tem mestu pa podajamo integralni prevod celotnega pisma. Pismo je iz nemškega izvirnika prevedeno s pomocjo Raspejevega angleškega prevoda. Zaradi lažjega sklicevanja so odstavki v pismu numerirani z oglatimi oklepaji od [B1] do [B16]. S kratico B smo odstavke oznacili zaradi tega, ker gre za pismo Bornu, v nadaljevanju kratico A uporabljamo za pismo Arduinu. 233 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Sl. 4. Naslovna stran Ferberjevega dela pisma iz Italije. Fig. 4. First page of Ferber‘s work written in German Travels through Italy. Sl. 5. Rudolf Erich Raspe (1736–1794). Fig. 5. Rudolf Erich Raspe (1736–1794). Prevod prvega pisma Nadvse spoštovani in dragi prijatelj! [B1] Koncno imam cas, da Vam pišem iz te krasne dežele, ki sem si jo tako dolgo želel videti in kjer sem se na majhnem obmocju, na katero sem vstopil med Benetkami in Gorico, preprical, da si zasluži pohvale, ki jih opisujejo potopisci; z upoštevanjem mile klime, plodov narave in lepote, po katerih presega skoraj vso preostalo Evropo. V Benetkah sem še tujec in svojo radovednost po znamenitostih, ki me vabijo, sem žrtvoval za nekaj enakega užitka pogovora z Vami. Vec kot nagrajen bom, ce Vam bodo opisi mojega potovanja z Dunaja do sem, ki bi Vam jih rad posredoval, naredili pol toliko zadovoljstva, kot sem ga obcutil jaz, ko sem opazoval naravo. Ko bom nadaljeval svoje potovanje po Italiji, bom, v skladu z Vašo željo, opisoval naravna cudesa, ki jih bom videl, zlasti tista, ki sodijo v oriktografijo in fizikalno geografijo, opise ostalih zanimivosti lahko najdete v drugih knjigah. Tu bom uporabil svobodo, ki ste mi jo dali, in se ne bom veliko posvecal eleganci. Ce se bo kaj zgodilo proti Vaši volji, mi morate oprostiti, iz lastne izkušnje veste, da množica objektov zelo pogosto odvraca in šibi pozornost najboljših naravoslovcev in da potovanje ne dopušca ne casa in ne priložnosti za eksperimente in metodološka razlikovanja. Pišem Vam kot prijatelju, o katerega dobri volji imam toliko dokazov in ki sam namerava potovati po Italiji, tako da bo zlahka popravil moje nenamerne napake; ki mu bom opisal, kar bom videl, in tudi to, kar bom verjetno izpustil ter cesar sploh ne bom videl ali pa ne bom mogel dovolj natancno preiskati. Sedaj me poslušajte! [B2] Takoj ko zapustiš Dunaj, opaziš iz smeri Madžarske, kot tudi v smeri proti Avstriji in Štajerski, dolge razpotegnjene verige med seboj povezanih apnencevih hribov, ki so oblikovani kot valovi in sem jih opazoval na celotni poti od Dunaja do Vipave. Dve poštni postaji pred Gorico sem jih deloma prevozil, deloma pa so me spremljali. Ponekod se vzpenjajo izrazito visoko ali pa se razširijo ter so razdeljeni z globokimi dolinami in široko raztezajocimi se ravninami, po katerih tecejo reke. Preko teh hribov je speljana odlicna cesarska deželna cesta. Pri Vipavi, kjer se pricne milo italijansko podnebje in trta, se gorovje razdeli. Na levi se razteza skozi Furlanijo in vzdolž Jadranskega morja do Istre, Dalmacije in otocja, toda na desni se razteza do Tirolskih Alp, kjer se te združijo s Tridentskim in Veroneškim gorovjem. Med tem gorovjem je do Benetk ravna pokrajina z vinsko trto, koruzo, ajdo, prosom in sirkom, zasajenih pa je le malo žit. Apnenec, ki tvori prej omenjena gorovja, je v vecjem delu svetlo siv, vendar je tu in tam njegova barva crna, v celoti ali pa razpršeno, kot crni klini znotraj svetlo sivega apnenca. V nekaterih primerih so apnenceve gore v celoti crne. Trdota kamnine je povsem drugacna kot v Avstriji, na Štajerskem in Kranjskem je dober marmor, ki ga lomijo v kamnolomih. Njegova zrna so v vecji meri drobna, gosta in mocna, ne zaznamo jih, redko je luskast in nikoli slan. Znotraj lahko najdemo okamnine iz velikih in manjših morskih školjk, vendar v majhnem številu. Ti hribi so v Avstriji vse do meja Štajerske neporašceni z gozdom ter v vecji meri posajeni z vinsko trto in žiti; toda na Zgornjem Štajerskem se povzpnejo do znatnih višin, porašceni so z jelovim in smrekovim gozdom ter loceni z globelmi, ki so porašcene z listavci. Na Spodnjem Štajerskem in vsem Kranjskem sem jih videl porašcene z brezami, bukvami in kostanji, 234 Mihael BRENCIC Sl. 6. Naslovna stran angleškega prevoda Ferberjevega dela Pisma iz Italije. Fig. 6. First page of English translation of Ferber‘s work Travels through Italy. razen nekaterih krajev, kjer rasteta jelka in smreka. V celoti jih sestavljajo bolj ali manj horizontalne in debele plasti ali telesa in so pravo dvignjeno gorovje, ki glede na okoliške pokrajine ležijo na skrilavcih, ki se zvezno razprostirajo v podlagi. Ti skrilavci so pravi glinavci modre ali crne barve ali tudi tako imenovani rožencevi skrilavci, sestavljeni iz kremena in sljude, v katerih najdemo tudi glinasto mešanico. [B3] Skoraj na vsakem koraku sem imel priložnost prepricati se o tem, kako ta skrilavec neprekinjeno poteka pod apnencevimi hribi. Vcasih izdanja na površino in se tako nadaljuje na doloceni razdalji, toda kmalu nato se skrije pod apnencev pokrov. Svincevi rudniki na Štajerskem in rudnik živega srebra v Idriji ležijo v tem skrilavcu, pod pridruženim debelim apnencem, ki leži na njih. Na podlagi vzorcev in porocil s Tirolske, o katerih ste mi Vi, dragi prijatelj, pripovedovali, sem opazil, da ima ta sosednja dežela enako zgradbo, in ceprav v štajerskih rudnikih železa v okolici Eisenerza kopljejo rudo v apnencih, ni nobenega dvoma, da je v vecjih globinah skrilavec. Želel bi Vam predstaviti vsaj nekaj krajev, v katerih sem imel na svoji poti skozi Avstrijo, Štajersko in Kranjsko priložnost opazovati znacilnosti teh hribov in vse ostalo, kar bi si zaslužilo Vašo pozornost. [B4] V Bistrici na Muri, blizu Pegaua (poštna postaja) na Štajerskem, najdemo rudnik svinca, ki je v lasti barona von Heipela. Rudnik sestavljajo: 1. Paulov glavni vpadnik in zracnik, 2. Martinov glavni šaht, 3. Nepomukova štolna, 4. Marijina in Melhiorjeva štolna, 5. Elizabetina štolna in 6. Novi Barbarin šaht. Tu pridobijo letno od 8.000 do 9.000 centov svinceve rude, ki vsebuje 3 kvinte do 1 lot srebra. Svinceva ruda je iz drobnih kristalov ter se nahaja v žilah kremena in apnenca, ki potekajo skozi moder skrilavec, preko katerega se vzpenja štajersko apneno gorovje, porašceno z jelovim gozdom. Rudnik s šahti in štolnami leži malo nad dnom doline reke Mure, ki tece zelo blizu rudnika, rovi so izkopani v isti ravnini. V njej se konca apnenec in v notranjost nadaljuje skrilavec, v katerem je izkopan Paulov vpadnik, ki vpada do globine 52 klafter. V tem šahtu delajo in izvažajo s konji, celo vodno kolo poganjajo konji. Tako bo vse dotlej, dokler ne bo dokoncano novo vodno kolo. Na površju ležeci goli apnenec je brez kakršnih koli žil, iz gostih in trdih zrn, vsebuje pa nekaj malega okamnin. V Votschbergu, 5 do 6 ur od Bistrice, je rudnik premoga, vendar je boljši rudnik v Limu na Zgornjem Štajerskem, 10 milj od tod. Reka Mura me je spremljala na poti od Kriglocha preko Merzhofna, Brugga, Radelsteina, Pegaua in Gradca in še dalje. Kaže, da je dolina, po kateri tece reka, nastala z divjim prebojem skozi apnencevo hribovje, ki ga sedaj opazujemo ob straneh, ali s pocasnim odnašanjem in poglabljanjem z vodo. V Gradcu sem z velikim veseljem pregledal zbirko naravnih zanimivosti v jezuitskem kolegiju, ki z minerali in insekti ni tako revna in po kateri me je vodil uceni pater Biwald, dober botanik. Od Gradca do Gorice sem se moral ozreti za poštno kocijo in poiskati kraje, ki jih bom sedaj poimenoval. [B5] Med Ehrenhausnom in Mariborom sem se spustil po pobocjih visokega hriba iz sivega apnenca. Kosi apnenca, ki so ležali na cesti, so vsebovali sledove okamenelih polžev. Tu sem našel tudi kose crnega apnenca, ki je vseboval siva zrna. Ko sem prešel ta hrib, se je nadaljevala dolina med Mariborom 235 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Sl. 7. Pregledni prikaz Ferberjeve poti po Sloveniji. Fig. 7. Schematic representation of Ferber's travel through Slovenia. in Bistrico (drugo naselje, ceprav se imenuje enako kot Bistrica ob Muri), ki je tu zadnje naselje. V celotni dolini ni bilo vec vidnih apnencev, vendar so na površini, ki je bila pokrita z zemljo, kakor tudi kršje, ki je bilo razbito zato, da bi izboljšalo cesto, ležali crnikasti in modrikasti glinavci, deloma rožencevi skrilavci, ki jih tvorita kremen in sljuda. [B6] Za Bistrico se hribi ponovno dvignejo in na vrhu hriba se ponovno pojavi siv apnenec, ki vsebuje, ceprav malo, nekaj velikih morskih školjk ostrig, pektinid in njim podobnih. Tudi tu je apnenec iz gostih zrn, toda najvišji del je bil porozen in rahel kot kak lehnjak, v katerem so bili zaobljeni prodniki in druge nesprijete kamnine povezani med seboj. Na drugih mestih so te plasti vsebovale deformirane ali podolgovate školjkaste pizolite, ki so bili sprijeti med seboj. Našel sem tudi crn apnenec in v njem sive vkljucke – v nekaterih delih je bil otrdel in nato tudi crn roženec. Prav tako sem videl crn apnenec z belimi žilami. Pri Bistrici in tudi pred tem med Ehrenhausnom in Mariborom ležijo razlicne lece iz modro sivega trapa z vkljucenimi crnimi vecstranskimi kristali šorlita, ki so kratki in s povprecnim precnim presekom. [B7] Med Bistrico in Konjicami sem našel naslednje lece: 1. velike rdece granate v zelenem zrnatem šorlitu in med njimi drobne delce blešcece sljude, 2. velik crn žilnati šorlit v belem kremenu, 3. zelen jaspis. Zavedam se, da prosto ležeci kosi kamnov niso pravi dokaz, ne glede na to pa dajejo obcutek o tem, kakšno je sosednje hribovje. Ce so kot material za rekonstrukcijo nakopiceni ob cesti, je to vzrok, da lahko upraviceno sklepamo na kamnolome v bližini, zlasti ce se ne pojavljajo v zaobljeni obliki, kar bi kazalo na njihov izvor v bližnji reki, temvec so ostri in sveže razbiti. [B8] Na tem predelu je apnencevo gorovje pokrito s tanko plastjo brece, ki je sestavljena iz zaobljenih prodnikov, zacementiranih skupaj s kalcitom. [B9] Med Celjem in Vranskim sem na poti našel rožencu podobno, otrdelo rdeco zrnato glino ali bolus z vkljucenimi kremenovimi žilicami. [B10] Med Vranskim in Šentožboltom je takoj pod prvim krajem zgrajena piramida, ki oznacuje mejo med Štajersko in Kranjsko, povsem poleg nje pa je iz kamna zgrajen slavolok. Tu stoji precej visok mizasti hrib iz skrilavca, ki se razteza v bližino Ljubljane. Vendar v daljavi vidimo apnenec, s katerim so pokrite vzpetine skrilavca. [B11] Nad podobne skrilave hribe se med Ljubljano in Vrhniko vzpenja apnencev pokrov. V gozdu pred Ljubljano sem na površini hriba našel majhno plast rdeckastega morskega peska, ki izvira s površja hribovja in ki ga kopljejo za potrebe vzdrževanja ceste. [B12] Med Vrhniko in Idrijo so skrilavi hribi prekriti z obicajnimi apnenci, ki so na veliki dolžini svetlo sivi, nato pa se spremenijo v crno obarvane. [B13] Idrija je majhno neurejeno rudarsko mesto v zelo globoki dolini, na obeh straneh reke z enakim imenom, z visokimi gorami iz crnega apnenca, ki se vzpenjajo na obeh straneh. V tej dolini se iz globine na plano vzpenja crn skrilavec, ki vpada poševno ter ima v talnini in krovnini apnenec. Znameniti rudnik živega srebra se nahaja v njem, skrilavec pa je bolj ali manj prežet z živim srebrom in cinabaritom. Razteza se do 20 idrijskih rudarskih klafter globoko in v širino od 200 do 300 klafter. Vpad in površina te plemenite skrilave žile sta zelo spremenljiva in nepredvidljiva. Pravokotna globina glavnega jaška je 111 klafter. Izognil se bom opisovanju tukajšnjih rud, ker jih imaš v svoji zbirki, poleg tega pa jih je opisal že gospod rudarski uradnik Scopoli v svoji razpravi de Hydrargio Idriensi. Kljub temu pa imam manjšo opombo: na stenah rudnika sem videl halotrictum gospoda Scopolija, ki je bil zaradi cinabarita znatno pordecen. Tu je taljenje in žganje rude skrivnost, zaradi cesar nobenemu tujcu ne dovolijo, da bi obiskal žgalnico, ceprav njena zunanjost že na prvi pogled prica o tem, da je njihova metoda zelo podobna tisti, ki jo uporabljajo v Almadenu v Španiji in ki jo je zelo natancno opisal gospod Jussieuj v razpravah kraljeve družbe v Parizu. Dalec od tega, da bi bila ta metoda dobra in brez potrebe po izboljšavah. Vendar verjetno ne razmišljajo tako, ker v nasprotnem primeru ne bi bilo nobenega razloga za takšno skrivanje. Nic ni bolj nasprotnega napredku znanosti in celo napredku držav kot takšno ustvarjanje skrivnostnosti. [B14]1 1 Na tem mestu smo zaradi preglednosti besedila namerno vrinili odstavek, tako kot je storil prevajalec v anglešcino Raspe. Primer Francoske akademije, ki objavlja do sedaj neznane podatke, bi lahko bil za druge narode spodbuda za javno posnemanje; in še vec kot to, ker Akademija deluje po darežljivih principih, ki so razloženi v Preface v Spectacles des Arts. Tako bi se posnemanje prav gotovo izkazalo kot uspešno in obvladljivo ter v dobro cloveštva. Poleg tega je živega srebra v Idriji v izobilju in, z izjemo Zwybruckna in Palatinata, ga je v Evropi težko najti, zato ne vidim nobenega smisla, zakaj žganje obravnavajo s takšno skrivnostnostjo nasproti tujcem, ki trpijo pomanjkanje te dobrine. Narava je dala Idriji tako izjemno kolicino, da jo je dovolj za potrebe Evrope in celo Amerike. Ce želijo zadržati doloceno ceno, jim njihove surovine in cene ni treba podvreci reguliranim omejitvam. Ce želijo, lahko z nizkimi cenami premagajo katerega koli tekmeca. Dolgo je že tega, kar smo na Švedskem 236 Mihael BRENCIC razpisali nagrado za izboljšanje pridobivanja našega bakra; na podlagi tega smo povabili vse švedske in tuje kemike. Tako je, za to smo podelili plemstvo in druge velike ugodnosti proslavljenemu Kuncklu, ceprav njegov predlog novega procesa ni v celoti zadovoljil naših pricakovanj. Kljub temu je naš baker najboljši v Evropi, pri cemer se sploh ne branimo, da bi se njegovega taljenja in predelovanja naucili na Madžarskem ali v drugih deželah. Kakršno koli izboljšanje takšne vrste lahko pricakujemo od kemije in metalurgije, toda kako naj ga dosežemo, ce je še tistim, ki posedujejo nekaj znanja, prepovedan vpogled v osnovne postopke. Obiskal sem rudnike živega srebra v Palatinatu in Zweybrucknu, opazoval sem taljenje, seznanjen sem s tem, kakšen proces uporabljajo v Almadenu, in kar je na vsem tem, kemija in metalurgija sta me naucili principov teh postopkov. Le želim si lahko, da bi v moji deželi odkrili tako bogat rudnik živega srebra, kot je v Idriji. Povsem preprican sem, da naši teoreticni plavžarji ne bodo imeli težav s tem, kako obvladati rudo. [B15] Med Planino in Postojno sem srecno preckal dobro znani gozd, ki se razteza vse do Turcije in od koder vdirajo tolpe turških roparjev, ki ne napadajo le popotnikov, temvec vpadajo tudi v vasi, kakor se je zgodilo pred nekaj leti v Planini, kjer so ubili gospodarja v hiši, v kateri sem imel skromno kosilo. Helebarde cesarjevih vojakov, ki so namešceni po vaseh, so zelo prispevale k izboljšani varnosti. Hribi iz apnenca pri Planini in Postojni ponujajo mnogo podzemnih jam, ki so obložene z razlicno oblikovanimi stalaktiti, v katerih lahko prepoznamo razlicne figure. Te potekajo tudi do 2 milji dalec pod zemljo in sprejemajo vodo iz razlicnih rek, kot na primer Postojnska jama reko Pivko. Znamenito Cerkniško jezero, dve uri oddaljeno od Planine, je nekaj casa plovno, nato ribarijo, sejejo in žanjejo; še vec, pravijo, da se voda iz njega izprazni v takšne jame. [B16] Med Vipavo in Meštrami, kjer sem se vkrcal za Benetke, sem šel skozi plodno ravnino, ki je bila bogato zasajena z vinsko trto, figami, murvami, koruzo in mnogimi drugimi rastlinami, znacilnimi za toplo klimo. To me je v razmerju, ki je zelo nenavadno, zelo ocaralo. Enolicnost razmerij, ki je tako znacilna za druge ravninske pokrajine, ni bila utrudljiva, ker je bil vsak korak tal preoran za trojno žetev, zasajen s pšenico ali koruzo, z murvami in lombardskimi topoli, v enakomernih vrstah, da podpirajo grozdje in slikovite brajde, povezujoce se od drevesa do drevesa. Italija bo prav gotovo prikazala vec možnosti te vrste. O, ko bi bili z menoj. V bodoce Vam bom opisal vec. Imejte se lepo in imejte me radi. Vaš ... Pismo Giovanniju Arduinu Nastanek pisma V zbirki knjig Žige Zoisa, ki jo hrani NUK v Ljubljani, je ohranjeno Ferberjevo natisnjeno oriktografsko pismo italijanskemu geologu Giovanniju Arduinu, ki ni identicno prvemu Ferberjevemu pismu iz njegove knjige Pisma iz Italije. Poleg tega pisma so v knjigi še druga besedila, ki vsa izvirajo iz tiskarne beneškega založnika Benedetta Milocca. Najstarejše besedilo je iz leta 1779. V Zoisovi knjižnici prevladujejo geološko-mineraloška dela, v njej sta med drugim Arduinovo delo Osservazioni chimicae sopra alcuni fossili (O kemijskih opazovanjih in nekaterih fosilih) iz leta 1779 in italijanski prevod Bornovega dela o potovanjih po Banatu iz leta 1778. Po kataložnem zapisu NUK naj bi bilo Ferberjevo pismo natisnjeno med letoma 1771 in 1780 v Benetkah, vendar je razpon te datacije preširok. Kot bomo pokazali v nadaljevanju, je bilo pismo natisnjeno leta 1775. Kot loceno tiskano delo je, po za sedaj znanih podatkih, natisnjeno Ferberjevo pismo Arduinu le v NUK v okviru Zoisove zbirke, v katalogih drugih svetovnih knjižnic ga kot samostojne publikacije nismo našli. 237 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Sl. 8. Naslovnica Ferberjevega pisma italijanskemu geologu Giovanniju Arduinu. Fig. 8. First page of Ferber‘s letter to Italian geologist Giovanni Arduino. Izkaže se, da je Ferberjevo pismo Arduinu sestavni del dela Raccolta di memorie chimico- mineralogiche, metallurgiche, e orittografiche (Zbirka razprav s podrocja kemije, mineralogije, metalurgije in oriktografije), ki je leta 1775 izšlo v Benetkah pri založniku Benedettu Miloccu. Gre za zbirko razlicnih esejev, ki obravnavajo kemijska, mineraloška, metalurška in geološka vprašanja. Knjiga je brez tekoce paginacije, vsak prispevek ima lastno številcenje strani. Po vsebini sodec ne gre za Arduinova dela, temvec za dela ali zapise, ki so mu jih posredovali drugi avtorji ali njegovi dopisniki. Nekateri prispevki so anonimni, na primer tisti o rudniku železa v Eizenerzu na Štajerskem. Arduino je dela le uredil in nekatera komentiral. V knjigi so objavljena tri Ferberjeva pisma Arduinu. Prvo med njimi je naše pismo, med prispevki je objavljeno pod zaporedno številko 7. Poleg tega sta natisnjeni še dve kasnejši pismi, prvo je bilo 15. decembra 1772 poslano iz Altzedlitza, drugo pa 1. marca 1773 iz Prage. Obe se ukvarjata s stratigrafijo in kamninami na obmocju Alp ter Apeninov. Pismo, ki ga obravnavamo, je Ferber Arduinu napisal 25. septembra 1772 iz Altzedlitza na Ceškem, potem ko se je avgusta 1772 že vrnil s potovanja po Italiji. Pismo je izvirno, saj Ferber zapiše: »Odlocen sem, da Vam porocam o tem, kar sem opazoval na poti od Dunaja do Benetk. To, kar bom zabeležil, je veren povzetek zapiskov, ki sem jih naredil od kraja do kraja, seveda preveden v italijanšcino na najboljši nacin, kot ga poznam, ne glede na švedsko skladnjo, ki jo uporabljam.« Zelo pomenljiv je kraj, v katerem je pismo nastalo. Altzedlitz ali v kasnejši pisavi Alt Zedlitz je današnji ceški kraj Staré Sedlište na zahodu Ceške blizu meje z današnjo Avstrijo, v katerem je imel sedež svojega posestva Ignaz von Born. Cas in kraj nastanka ter vsebina pisma Arduinu, ki je v marsicem identicno prvemu pismu iz Italije, nakazujejo, da sta bila potovanje in celotna knjiga Pisma iz Italije Bornov in Ferberjev skupni projekt. Tako po datumu nastanka kot po natisu je Ferberjevo pismo Arduinu mlajše. Zato je razumljivo, da Ferber samo povzema nekatera dejstva, ki jih je napisal v prvem pismu, ali pa jih v celoti izpušca. V tem pismu se podrobneje ukvarja z nekaterimi teoreticnimi izhodišci, zlasti s splošnimi vprašanji o primarnih kamninah, medtem ko nekatere podrobnosti in komentarje iz prvega pisma izpušca. V natisu ima pismo 22 v izvirniku numeriranih strani. Vsebuje 34 odstavkov, ki smo jih zaradi lažjega sklicevanja oznacili od [A1] do [A34], kratica A oznacuje, da je pismo namenjeno Arduinu. Zaradi prekrivanja vsebine s pismom Bornu iz pisma Arduinu prevajamo le posamezne odstavke. Odlomki in povzetki iz pisma V uvodnem delu pisma, v odstavkih od [A1] do [A3], Ferber zapiše svoje prepricanje, da lahko sklepe o naravi izpeljemo le iz usklajenih opazovanj pojavov, ki jih opazuje vec razlicnih ljudi. Z Dunaja preko Gradca, Gorice in Benetk do Neaplja se je v Italijo odpravil z namenom, da spozna naravne znamenitosti, o katerih na severni strani Alp ni porocil, tako kot v Italiji ni mogoce dobiti knjig, ki izidejo na severu Evrope, zato izmenjava informacij ni mogoca. Tako ni poznal številnih del, zlasti o oriktografiji, ki so jih napisali italijanski ucenjaki, med njimi Arduino. Vse to je spoznal med svojim potovanjem, zahvaljujoc italijanšcini, ki se je je naucil med potjo. Vse to ga izredno veseli in sedaj, ko se je vrnil, bo Arduinu sporocil svoja opažanja ter premisleke o poti med Dunajem in Benetkami. Po teh uvodnih stavkih v odstavkih od [A4] do [A7] sledijo opisi, ki so zelo podobni opisom v odstavku [B2] prvega pisma iz Italije. V nadaljevanju pisma sledi splošno teoreticna razprava o naravi kamnin na obravnavanem obmocju. Ferber zapiše: [A8] Vsa ta apnenceva gorovja tvorijo razlicno debele plasti, ki so zdaj bolj, zdaj manj nagnjene proti obzorju. Kamnine so tiste vrste, ki jih v soglasju z vašo ekscelenco prepoznavam kot sekundarne. Ocitno je, da jih sestavljajo morski sedimenti, ki so stratigrafsko odloženi nad drugacno vrsto kamnin, to je primarnih, ki so starejše in drugacne narave. [A9] Te primarne kamnine, ki v vseh prej omenjenih deželah ležijo pod apnencevim gorovjem sekundarnega reda in tvorijo njegovo podlago, so iz skrilavca, ki je bodisi glinen, turkizno obarvan, bodisi crn in pogosto popolnoma cist, vcasih pa tudi pomešan s sljudo; ali pa je sestavljen iz sljude in kremena, kot to poimenujejo Nemci, ali iz rožencevega skrilavca, kot to poimenujemo Švedi. [A10] To je popolnoma enak pojav, spoštovani gospod Arduino, kot ste ga opazili v gorah Belluna in Feltre, na Tirolskem, v Trentu, Vicenzi, Brescii in Bergamu ter na razlicnih mestih v Velikem toskanskem vojvodstvu, Republiki Lucca in podobno. Ceprav je vaš skrilavec, ki ste ga opazili v prej omenjenih krajih in zelo dobro opisali ter z utemeljenimi razlogi dokazali, da je v primerjavi z drugimi vrstami kamnin, ki imajo ocitne znake kasnejšega nastanka, ena od po vrsti resnicno prvotnih kamnin, je sestavljen iz lojevca ali sljude in kremena, zato menim, da ni drugacne vrste, temvec je varianta skrilavcev, ki sem jih opazoval v prej omenjenih avstrijskih pokrajinah. Raznovrstnost je prvotno odvisna od nakljucnih mešanic ter nacinov združevanja in zgošcevanja. 238 Mihael BRENCIC [A11] Na zgoraj omenjenem potovanju sem se lahko na vsakem koraku preprical o obstoju tega pojava. Rudniki svinca na Štajerskem in živega srebra v Idriji na Kranjskem ležijo v omenjenem skrilavcu, ki leži pod stratificiranim apnencem, ki je vsepovsod brez mineralov. Znamenite železove rude na Štajerskem, v okolici kraja Eisenertz, ki je tako poimenovan zaradi obilja te kovine, res pridobivajo iz apnenca; vendar ni dvoma, da bodo izkopi, ce se lahko nadaljujejo zelo globoko in z dobickom, dosegli zgoraj omenjeni skrilavec. Moja zgoraj navedena opažanja in tista, ki sem jih izvedel v rudnikih svinca, ki jih je mogoce najti v isti državi, me v to zelo prepricajo. [A12] V teh rudnikih železa najdemo zanimive stalaktite bizarnih in elegantnih oblik, ki so zelo znani pod neprimernim in zavajajocim imenom železne rože, saj so popolnoma brez kovine. Niso nic drugega kot kalcitne ali selenitne konkrecije, saj gre za kalcinacijsko snov, nasiceno z vitriolno kislino. V nadaljevanju Ferber omeni (odstavek [A13] skupaj z obsežno opombo), da je o teh pojavih pisal jezuit Nikolaus Poda von Neuhaus (1723–1798). Na kratko poda njegovo biografijo profesorja rudarstva v Banski Štiavnici in v jezuitskem kolegiju v Traunkirchnu na Salzburškem. Nato nadaljuje z razpravo o naravi apnenca in gorovij, ki jih tvori. [A14] Tudi na Tirolskem so skrilavce pridobivali skozi apnenec. Verjetno je vecina apnencastih gora nastala z odlaganjem na drugih primarnih kamninah, skrilavih, granitnih in drugih; torej so to sekundarne kamnine, ki so nastale kasneje. Zatem (odstavka [A15] in [A16]) Ferber izraža svoje mnenje o tem, da so apnenci sekundarne kamnine, odložene nad skrilavci. Pri tem navaja, v katerih primerih po Evropi to drži (na primer na Madžarskem, v Franciji, Angliji), tudi v primerih, ko pod njimi ležijo marmorji, kot na primer v Servezzi in Carrari. Podoben prostorski odnos med kamninami je opazoval tudi na obmocju Neaplja, v Apeninih ter drugod po Italiji. V odstavkih od [A17] do [A34] so opisi podobni opisom od [B4] do [B16], tako da je pismo vsebinsko zelo podobno prvemu pismu iz Italije. Rudnik svinca v Bistrici na Muri, ki je natancno opisan v [B4], le na kratko opiše v odstavku [A19], Idrije, opisane v [B13], se le dotakne, diskusijo o skrivanju podatkov in znanja v Idriji iz [B14] pa povsem izpusti. Tudi Cerkniškega jezera se v primerjavi z [B15] v [A33] le dotakne, vendar pa na koncu pisma poda zelo zanimivo nepaginirano pripombo. Ferber nakaže, da se kraške jame pojavljajo tudi v Nemciji, Angliji, Franciji in drugod, ter zapiše: »Takšne jame v velikem številu obstajajo v apnencevih gorovjih, ki obkrožajo rudogorje v okolici Harza, Hanovra in drugod. V njih pogosto najdemo številne okamnine, sestavljene iz kosti, zob in rogov živali, za katere verjamemo, da so morskega izvora. Takšna je tudi Baumannova jama, ki jo je proslavil Leibnitz v svojem delu Protogea.« Ferber pismo Arduinu zakljuci s prijaznimi in vdanostnimi pozdravi. Opombe in komentarji Rekonstrukcija Ferberjeve poti preko Slovenije nam povzroca nekaj težav, saj je pot površno in neuravnoteženo opisana. V nekaterih primerih avtor uporablja popacena imena krajev, ki jih lahko rekonstruiramo le s pomocjo primerjave z imeni na starejših topografskih kartah. Ta imena smo v prevodu pisma Bornu zapisali v današnji obliki. Domnevamo, da je ta površnost posledica Ferberjevega neznanja jezika krajev, skozi katere je potoval, hkrati pa nas njegovo zapisovanje imen sili v domnevo, da je kraje po spominu opisoval nekaj dni kasneje, ne da bi si sproti delal natancnejše terenske zapiske. Nenatancnost njegovih opisov je verjetno tudi posledica pomanjkanja natancnejših topografskih kart, ki takrat še niso bile na razpolago. Kljub temu lahko njegovo pot rekonstruiramo in opišemo s sodobnimi, danes veljavnimi geografskimi imeni. Z Dunaja je potoval proti jugozahodu do Gloggnitza in Mürzzuschlaga ter nato do Bruck and der Murr, od tod dalje je potoval po dolini reke Mure do Peggaua in Gradca. Pot je nadaljeval ob Muri do današnjega Leibnitza – Lipnice, pri Ehrenhausnu – Ernovžu je preckal reko Muro in nadaljeval pot do Maribora, Slovenske Bistrice, Slovenskih Konjic, Celja, Vranskega, Trojan in Ljubljane. Od tod je šel do Vrhnike, obiskal je Idrijo in verjetno tudi Cerkniško jezero. Pot je nadaljeval od Planine skozi Postojno, Razdrto in nato v Vipavsko dolino do Vipave, od tod pa do Gorice. Nato je odšel do Mešter, kjer se je vkrcal na ladjo za Benetke. Tega dela poti ni posebej opisoval. Na poti se je ves cas držal cesarske ceste, saj poroca o poštnih postajah, na katerih je prenoceval. To je obicajna pot, ki so jo v tistem casu ubirali popotniki z Dunaja proti Benetkam. Na tej poti je verjetno obiskal tudi Eisenerz, na kar posredno namiguje v obeh pismih. V pismih ne poroca, koliko dni je potovanje trajalo, opravil pa ga je septembra 1771. Zapisi krajevnih imen, tako v izvirnikih kot v prevodih prvega pisma, bi si zaslužili posebno pozornost, vendar to ni namen našega zapisa. Na tem mestu se na kratko dotaknimo le dveh toponimov. V nemškem izvirniku je Ljubljana poimenovana 239 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Lanbach, Vrhnika pa Oberlaubach. Verjetno gre v prvem primeru za tipkarsko napako. V angleškem in francoskem prevodu prevajalca uporabljata toponim Laubach. V italijanskem pismu Arduinu je Ljubljana zapisana kot Lubiana. V nemškem besedilu je Idrija zapisana kot Hydria, prav tako tudi v angleškem prevodu, medtem ko je v francoskem prevodu in v pismu Arduinu zapisana kot Idria. Posebno poglavje pri razumevanju in prevajanju starejših geoloških tekstov je znanstvena terminologija. Ta se je v casu dveh stoletij in vec povsem spremenila. Izrazi, ki jih uporabljamo danes, imajo povsem drugacen pomen, kot so ga imeli nekoc. Ugotovimo lahko, da so oznacevalci, to je besede same, danes enaki ali zelo podobni, oznacenci, to je njihov pomen, pa povsem drugacni. Ferber izraza geologija ne pozna, namesto njega uporablja izraz oriktografija, ponekod pa bi lahko sklepali tudi na uporabo sinonima fizikalna geografija. Izraz oriktografija se je uporabljal zlasti v srednjeevropskem prostoru, lep primer je delo Baltazarja Hacqueta Oriktografija Kranjske. Odsotnost uporabe termina geologija in iz nje izhajajocih izvedenk je razumljiva, saj je de Luc izraz v sodobnem pomenu uvedel šele leta 1778, v polni rabi pa je šele od leta 1779, ko je de Sassure objavil prvi del Potovanj po Alpah (Brencic, 2011). Dotaknimo se še nekaterih litološko-stratigrafskih terminov. Sodobnega geologa najbolj zbode uporaba pojma skrilavec. Termina skrilavec v starejših geoloških besedilih pred zacetkom 19. stoletja ne smemo enaciti s terminom skrilavec, kot so ga uporabljali geologi sredi 19. stoletja ali kasneje. Termin skrilavec je lep primer razvoja besede, kjer oznacevalec ostaja skozi stoletja nespremenjen, spreminja pa se oznacenec, to je pomen besede. Pri Ferberju in njegovih sodobnikih je skrilavec tako litološki kot stratigrafski pojem. Z litološkega vidika kot skrilavce imenujejo vse sedimentne klasticne kamnine, predvsem drobnozrnate, hkrati pa mednje uvršcajo vse metamorfne kamnine, predvsem tiste, za katere danes vemo, da so rezultat nizkotemperaturne in nizkotlacne metamorfoze. S stratigrafskega vidika pa so pri starejših geologih skrilavci najstarejše kamnine, v nekaterih primerih jih imenujejo tudi primitivne kamnine, ki naj bi nastale takoj za magmatskimi kamninami. Opredelitve skrilavcev se bomo nekoliko dotaknili še v nadaljevanju. Podobno je s terminom marmor. Kot marmor geologi 18. stoletja opredelijo vse tiste kamnine, ki jih je mogoce uporabljati kot masivne bloke za gradnjo ali oblikovanje, tudi za skulpture, ne glede na njihovo petrologijo, kot jo razumemo danes. Ceprav se zdi, da Ferber v pismu Arduinu pozna metamorfni marmor ([A16]) kot posebno petrološko kategorijo, ta termin istocasno uporablja za kamnine, ki jih je mogoce oblikovati ([B2]). Tudi pri terminu apnenec (Ferber uporablja nemško besedo »das Kalchstein«) se je treba zavedati, da ga je Ferber uporabljal mnogo širše kot danes. Iz opisov izhaja, da med apnence vkljucuje tudi dolomite in verjetno nekatere plastnate klasticne kamnine, na kar lahko sklepamo bolj iz njegovih drugih del kot iz obravnavanih pisem. Ocitno ne loci med mineralom kalcitom in kamnino apnencem. Pri Ferberjevem nemškem terminu »das Hornschifer« ([B2], [B5], [A9]) je pri prevajanju nastala dilema. Ker smo Ferberjev izraz »Horn« prevajali kot roženec [B6], smo se odlocili, da uporabimo izraz rožencev skrilavec, cesar v sodobni petrološki terminologiji ne poznamo vec. Za takšno rešitev smo se odlocili tudi zaradi tega, ker v pismu Arduinu Ferber nakaže, da to kamnino Nemci poimenujejo drugace [A9] ter da sta v njej minerala kremen in sljuda. Alternativa temu prevodu ostaja rogovacni skrilavec, kar bi bilo morda v primerjavi s sodobno mineraloško in petrološko terminologijo bolj sprejemljivo. Pri tem je bolj verjetno, da se v »skrilavcih«, ki jih je opazoval Ferber, pojavljajo minerali, podobni rogovaci. Ferber pogosto navaja imena mineralov. Za nekatere je nesporno, da jih lahko imenujemo tudi v skladu z današnjo nomenklaturo, na primer kremen ([B2], [B4], [B5], [B7], [A9], [A10]) in sljuda ([B7], [A9], [A10]). Verjetno je pravilno poimenoval tudi razlicek kremena jaspis ([B7]). Nekoliko bolj problematicno je poimenovanje granatov ([B7]) in šorlitov ([B6], [B7]), ki po današnji mineraloški terminologiji sodijo med crne razlicke turmalinov. V rudniku Idrija omenja mineral halotrictum ([B13]). To poimenovanje je vpeljal Scopoli in ga danes ne poznamo vec, po vsej verjetnosti pa naj bi šlo za epsomit. V Ferberjevi terminologiji zasledimo tudi termin trap ([B6]). Tudi to je izraz, ki ga danes v vecini geoloških terminologij ne poznamo vec. Gre za temne drobnozrnate bazalte. Tam, kjer je to kamnino videl Ferber, med Mariborom in Slovensko Bistrico, je ne bomo našli. V diskusiji z Arduinom Ferber zapiše: »Niso nic drugega kot kalcitne ali selenitne konkrecije, saj gre za kalcinacijsko snov, nasiceno z vitriolno kislino ([A12])«. Selenit je sinonim za sadro, vitriolna kislina pa je obicajno žveplova (VI) kislina. Ta stavek bi potemtakem razumeli, kot da gre za mešanico mineralov kalcita in sadre. Dotaknimo se še opombe o Cerkniškem jezeru, ki je dodana pismu Arduinu. V njej Ferber citira 240 Mihael BRENCIC delo Protogea, katerega avtor je nemški filozof Gottfried Wilhelm Leibniz (1646–1716). Leibniz je delo napisal v letih 1691–1693, ko je delal na obmocju Ceško-saškega rudogorja, vendar za casa njegovega življenja ni izšlo. Natisnili so ga šele leta 1749 na podlagi rokopisov, ki so jih našli v Kraljevi knjižnici v Hanovru (Cohen & Wakefield, 2008). V tem delu se Leibniz posveca tudi najdbam v Baumannovi jami. Gre za Baumannshöhle na obmocju Harza v Nemciji, ki velja za eno najstarejših turisticnih jam na svetu. Interpretacija in diskusija Prevod Svojevrsten izziv pri študiju starejših geoloških besedil, pa tudi drugih starejših naravoslovnih besedil, je terminologija. Na ta problem smo opozorili že pri prevajanju Hacquetovih del (Brencic, 2020). Znanstvena terminologija se neprestano razvija, dopolnjuje in spreminja. Pri tem se pojavljajo takšne težave, da si lahko upraviceno zastavimo vprašanje, ali so takšni prevodi smiselni in ali je prevode brez obsežnih spremnih študij sploh mogoce izvesti. Pri prevajanju starejših geoloških tekstov moramo biti zelo previdni, saj zlahka zdrsnemo v popravljanje geoloških napak. Prevajalec je soocen z dilemo, ali naj opis nekega izdanka ali obmocja prevede tako, kakor to obmocje geologi vidimo in razumemo danes, ali tako, kot je zapisano v izvirniku. Odgovor je na videz kot na dlani; prevajati je treba tako, kot je zapisano v izvirniku. Vendar pri takšnem izhodišcu naletimo na veliko težavo. Terminologija, ne glede na željo po objektivizaciji znanosti, je vedno zaznamovana s trenutnim stanjem znanosti, iz katere izhaja. Ker se znanstveno védenje neprestano spreminja, se spreminja tudi terminologija. Pri razvoju znanstvene terminologije se dogajajo neprestane pomenske spremembe ali preskoki, ki jih razdelimo v tri skupine. Pri razlagi tega si lahko pomagamo s terminološkim aparatom, ki izhaja iz lingvistike. V ta namen uporabimo pojem oznacenca ali signifikata, ki predstavlja pomenski ali vsebinski del jezikovnega znaka, ter pojem oznacevalca ali signifikanta, ki predstavlja jezikovni znak. Oglejmo si to na primeru besede sediment. Ce to besedo obravnavamo kot oznacevalec, je to sklop crk ali glasov sediment, ki jo tvorijo, ce pa jo obravnavamo kot oznacenec, je to konkreten predmetni ali materialni sediment v naravi, ki ga na primer najdemo na bregu reke Save. Z razvojem geološke terminologije se razmerja med oznacenci in oznacevalci neprestano spreminjajo. Prvo skupino pomenskih terminoloških sprememb predstavlja preskok oznacenca; ohrani se oznacevalec, spremeni pa se oznacenec. Lep primer tega sta pojma bazalt in marmor. Gre za oznacevalca, ki ju uporabljamo že stoletja, vendar pa so danes njuni oznacenci, torej njuni pomeni, povsem drugacni kot nekoc. Tako je danes marmor metamorfna kamnina, nekoc je bil katera koli kamnina, ki jo je bilo mogoce klesati in obdelovati. Nekoc je bil bazalt katera koli temnejša kamnina, praviloma magmatskega izvora. Danes je bazalt petrološko le še maficna predornina. Te pomenske razlike opazimo tudi v Ferberjevih pismih. Drugo skupino predstavlja preskok oznacevalca; ohrani se oznacenec, spremeni pa se oznacevalec. Sem sodijo vsi tisti geološki pojavi, ki so jih nekoc poimenovali drugace kot danes. Takšnih primerov v analiziranih Ferberjevih pismih ne zasledimo. Iz starejše slovenske geološke terminologije pa bi lahko navedli pojem labora, kar danes opredeljujemo kot konglomerat ali groh oziroma tuf. Tretjo skupino pomenskih sprememb predstavlja izginotje termina, pri cemer iz znanstvene teorije izgineta tako oznacenec kot oznacevalec. Do tega pride takrat, ko za dolocen pojav ugotovimo, da je bil sestavljen iz vec drugih, prav tako pomembnih pojavov ali da je bil plod povsem napacnih teoreticnih predpostavk. Primer tega sta pojma eter in flogiston. V to skupino bi lahko uvrstili tudi pojem skrilavec, kot ga uporablja Ferber. Ta pojem je v današnji geološki terminologiji že zelo omejen in iz specializiranega petrološkega izrazja postopoma izginja. Uporabljamo ga le še v laicnem ali polstrokovnem diskurzu. Pri prevajanju starejših geoloških znanstvenih besedil je treba opozoriti še na dva problema. Prvi je opis pojavov, ki znanstveno v casu izida besedila še niso bili znani, avtor pa jih je na neki nacin opisal. Pri geoloških besedilih, ki opisujejo obmocje današnje Slovenije, sta taka primera dolomitna kamnina in mineral dolomit. Tak primer je pri Ferberju omenjanje apnenca, ki je podoben lehnjaku ([B6]), Hacquet pa v Oriktografiji Kranjske dolomit opisuje na zelo razlicne nacine (Brencic, 2020). Starejša besedila je treba terminološko prevajati tako, da uporabljamo istocasno terminologijo. Ce bi prevajali besedilo iz starejše anglešcine v nemšcino, bi morali uporabljati takratno nemško terminologijo. To je mogoce le v tistih jezikih, v katerih je bila takšna terminologija razvita, težje pa je tam, kjer istocasna terminologija še ni obstajala. In takšen primer je prav slovenšcina. Slovenska geološka terminologija se pricne razvijati šele v drugi polovici 19. stoletja. 241 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Zaradi vsega naštetega so prevodi starejših geoloških besedil še v vecji meri interpretacije kot prevodi literarnih besedil. Geološke metode Še danes, po vecstoletnem razvoju geološke znanosti, je terensko delo temeljni kamen, na katerem geologi gradimo svoja spoznanja. Brez terenskega dela ni geologije. Podobno vlogo je imelo terensko delo tudi v preteklosti, pri tem pa se je njegova narava spreminjala, spreminjali so se inštrumenti, ki so jih geologi uporabljali pri delu in v laboratoriju, predvsem pa je prišlo do velikih sprememb v teoreticnih spoznanjih. Ce bi analizirali terensko delo predhodnikov sodobnih geologov, bi opazili, da je bilo v primerjavi z današnjim mnogo bolj površno, da so geologi pogosto skušali v kratkem casu zajeti vecja obmocja, na podrobnosti pa se niso ozirali. Zlasti na zacetku geoloških raziskav, ko je bilo na voljo le malo podatkov o geoloških razmerah izven vplivnih obmocij posameznih univerz in administrativnih središc, so bile dobrodošle že osnovne informacije o nekem obmocju. Takšnemu geološkemu pristopu pravimo potovalna geologija (Klemun, 2007), najbolj znan predstavnik takšnega pristopa na obmocju današnje Slovenije je bil Baltazar Hacquet (Brencic, 2020). Tudi celotno Ferberjevo raziskovalno delo na podrocju geologije ni nic drugega kot potovalna geologija, njega samega pa lahko opredelimo kot potujocega geologa. Ferberjeva geološka pisma so nastala v casu, ko so se v mineralogiji kemijske analizne metode šele pricele uveljavljati. Te metode so bile z današnjega vidika zelo enostavne, temeljile pa so predvsem na kvalitativnih izhodišcih, osnovne kvantitativne analize so se šele vzpostavljale. Pomembna Lavoisierjeva (1743–1794) dela so bila objavljena in postala dostopna šele po nastanku Ferberjevih pisem. Zaradi tega Ferberjeva prepoznava kamnin in mineralov temelji predvsem na uporabi cloveških cutov, vida, tipa, vonja in okusa, kar bi lahko poimenovali senzoricna metoda dolocanja mineralov. Za dolocanje mineralov so uporabljali tudi osnovne fizikalne preizkuse, na ta nacin so dolocali predvsem njihovo trdoto. Veliko pozornost so namenjali barvi mineralov. Tako je Abraham Gottlob Werner (1747–1817) v svoji Lepiziški sistematiki, ki je izšla leta 1774, opredelil 50 barv mineralov, ki so bili osnova za njihovo klasifikacijo. V istem delu je opredelil tudi druge vizualne znacilnosti mineralov, kot sta hrapavost in razkolnost. Opredelil je tudi slanost kot okus na jeziku (Carozzi, 1962). Ceprav Ferberjeva pisma segajo v cas pred nastankom Wernerjeve sistematike, je mogoce njene zametke opaziti tudi v obravnavanih pismih. Zato tudi zapiše, ali je dolocen mineral slan ali ne. Veliko pozornost posveca tudi barvi in strukturi kamnin. Kljub vsemu izhaja tudi iz rezultatov kemijskih analiz, ko na primer govori o mineralih konkrecij in kapnikov v Eisenerzu ([A12]). Pri takšnem dolocanju mineralov je z današnjega vidika prihajalo do velikih napak. Osnovne minerale, kot sta kremen in sljuda, so dolocili pravilno, težave pa so se pojavile že pri karbonatnih in silikatnih mineralih, ki jih je senzoricno težko lociti med seboj. Nekaterih, kot so gline, pa niso niti prepoznavali kot minerale. Podobno kot pri nekaterih drugih geoloških terminih je tudi pri poimenovanju mineralov prihajalo do velikih sprememb. Prav zaradi tega je ob analizi starejših geoloških besedil pogosto težko dolociti, katere minerale so takratni geologi zares opazili in opisali. Na tem mestu velja omeniti, da je Ferber fosile razumel že v povsem sodobnem pomenu, kar je za tisti cas zelo pomemben preskok, saj je to še obdobje, ko so kot fosili pogosto opredeljeni vsi predmeti, ki so pod zemljo (Brencic, 2021). Ferber v obeh pismih sledi stratigrafski teoriji, ki jo je vpeljal Arduino. Vpogled v to teorijo je kljucen za razumevanje njegovih pisem. Arduino je sedimente in kamnine razdelil v štiri skupine, ki sestavljajo osnovno ogrodje njegovega klasifikacijskega sistema kamnin (Vaccari, 2006). Prva skupina je sestavljena iz dveh velikih podskupin, roccia primigenia in montes primarii. Prva podskupina, roccia primigenia, je nastala kot posledica ohlajanja prvotnega Zemljinega površja. V to skupino je Arduino uvršcal skrilavce. Drugo podskupino, montes primarii, je razdelil na dve dodatni podskupini. V prvi so graniti, porfirji in kristalinske kamnine, ki so posledica delovanja »ognja«, v drugi pa pešcenjaki in konglomerati brez fosilov, ki so nastali kot posledica delovanja »vode«. V drugo veliko skupino, imenovano montes secundarii, so bili uvršceni marmorji in plastnati apnenci s fosili. Tretjo veliko skupino sestavljajo montes tertiarii, vanjo sodijo prodovi, pešcenjaki in gline. V zadnjo skupino sodijo predvsem plastnati recni sedimenti. Arduinova stratigrafska klasifikacija je apriorna, starost kamnine je dolocena ne glede na njeno prostorsko lego. Tako so skrilavci apriori najstarejše kamnine in niso nastali hkrati z drugimi kamninami ali celo kasneje. Ohranjeni so tudi nekateri Arduinovi geološki profili, ki nakazujejo zametke razumevanja strukture. Dosedanje raziskave kažejo, da je na Arduinovo klasifikacijo kamnin svoje geološke opise naslonil tudi Baltazar Hacquet v svoji Oriktografiji Kranjske (Brencic, 2020). 242 Mihael BRENCIC Ferber v skladu z Arduinovo stratigrafsko doktrino prepoznava skrilavce kot primarne kamnine, vendar ostalih kamnin ne razdeljuje tako natancno kot on, uvršca jih med sekundarne, zdi pa se, da terciarnih kamnin ne prepoznava kot locene skupine. Ferberjeva delovna klasifikacija kamnin je sestavljena le iz dveh skupin, znotraj katerih opisuje razlicne litološke razlicke. Ceprav se v celoti ne opredeli do Arduinove klasifikacije, se zdi, da mu pri opisovanju litoloških razmer na poti skozi Slovenijo posredno oporeka, saj stratigrafsko med kamninami, ki jih opredeli kot skrilavce in apnence, ne opazi nobenih drugih kamnin. Sklep Ferberjevi geološki pismi, prvo pismo Ignazu von Bornu, ki je bilo objavljeno v knjigi Pisma iz Italije iz leta 1771, in drugo pismo Giovanniju Arduinu iz leta 1772, sta pomemben dokument iz obdobja prvih znanstveno utemeljenih geoloških raziskav ozemlja na obmocju današnje Slovenije. Zavest o zacetkih geoloških raziskav pomikata v starejše obdobje, kot je veljalo do sedaj. Druga polovica razsvetljenskega 18. stoletja se tako ponovno kaže kot pomemben mejnik na podrocju geoloških raziskav današnje Slovenije. Po Sloveniji je Ferber potoval na zacetku obdobja, v katerem se oblikujejo prve konsistentne geološke teorije, ki jih današnja zgodovina znanosti uvršca v skupino neptunisticnih in plutonisticnih teorij. Prav tako je to obdobje, ko se v mineralogiji šele pricenjajo uveljavljati metode kvantitativnih kemijskih analiz. Zacetki tega se odražajo v Ferberjevih zapisih, vendar pa se, vsaj v obravnavanih pismih, naslanja bolj na takratno italijansko geološko šolo z Giovannijem Arduinom kot njenim glavnim predstavnikom kot na nemško geološko šolo. Dosedanje raziskave geoloških del iz 18. stoletja kažejo, da je besedil in s tem geoloških analiz ozemlja današnje Slovenije vec, kot smo jih poznali do sedaj. Odkritja teh del pomembno dopolnjujejo dosedanja spoznanja o delovanju Giovannija Antonija Scopolija, prvega na Kranjskem nastanjenega naravoslovca, ki se je aktivno ukvarjal tudi z geološkimi raziskavami v modernem pomenu, v okviru teh prizadevanj pa je sodeloval tudi s Ferberjem in Bornom. Nekatera od starejših geoloških besedil, ki obravnavajo obmocje današnje Slovenije, so ohranjena v Zoisovi zbirki knjig, ki jih hrani Narodna in univerzitetna knjižnica v Ljubljani. Analiza teh del nas še caka v prihodnje. Objava in obdelava Ferberjevih pisem je eden prvih korakov v tej smeri. Summary In the second half of the 18th century, geology, alongside other natural sciences, starts to develop more intensively. In the area of present-day Slovenia, there was a great interest in the Idrija mercury mine at this time. The most famous figures involved in its exploration were Giovanni Antonio Scopoli (1723–1788) and Baltazar Hacquet (1739/1740– 1815), but it also attracted other explorers. The first scientific work on the mercury mine was written by the Swedish-German mineralogist and geologist Johan Jacob Ferber (1743–1790), entitled "Beschreibung des Quecksilber-Bergwerks zu Idria in Mittel-Crain", published in 1774. Detailed research into other documents from the period has shown that Ignaz von Born (1742–1791) is probably the real author of this work. Ferber was a prolific writer, with numerous works on geology. Two other published letters are important for his view of the geology of the area. The first letter was published in his book of letters from his travels in Italy, "Briefe aus Wälschland über natürliche Merkwürdigkeiten dieses Landes an den Herausgeber derselben Ignatz Edlen von Born" published in Prague in 1773. This work was also translated into English in 1776 under the abridged title "Mr Ferber‘s Travels through Italy" and translated by Rudolph Erich Raspe (1736–1794). A second letter about a visit to the area was written by Ferber to the Italian geologist Giovanni Arduino and was published in two editions. The first is a separate edition of the letter entiteld "Lettera Orittografica del Celebre Signor Gian-Giacomo Ferber del Collegio Metallico di Svezia, scritta dalla Boemia al chiarissimo signor Giovanni Arduin Pubblico Soprantendente all Agricultura, etc. in Venezia", which, according to the information known so far, is preserved as such only in the library of Sigismund Zois (1747–1819), which is held by the National and University Library in Ljubljana. The second available edition of this letter is part of the monograph "Raccolta di memorie chimico-mineralogiche, metallurgiche, e orittografiche", published in Venice in 1775, in which Govanni Arduino collected and published the letters and works of his correspondents. In both letters Ferber describes his journey from Vienna to Mestre in what is now the Republic of Italy. He travelled along the then imperial road in a mail coach from Vienna to Bruck an der Mur, and from Mura valley past Graz to Ehrenhausen in what is now the Republic of Austria. In the present-day Republic of Slovenia he travelled from Maribor to Slovenska Bistrica, Slovenske Konjice, Celje, Trojane, Ljubljana, Vrhnika, to 243 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja Idrija and Cerkniza Lake, then via Planina, Postojna and Vipava to Gorizia. Along the way, he described the geological conditions. The letter to von Bron is more detailed in terms of the description of the lithological conditions on the route. He describes in detail the lead mine at Feistriz an der Mur and the mercury mine in Idrija. In the context of this description, he also discusses the futility of concealing information about the processing of mercury ore, as he witnessed during his visit to Idrija. He describes Lake Cerknica very briefly. In his letter to Arduio, he summarises the geological situation to a large extent, as he does in his letter to von Born. However, in it he discusses much more thoroughly the nature of the sedimentary rocks he had observed on his journey. He disputes with Arduin his interpretation of the rocks, which he divides into primary and secondary rocks. Ferber describes the relationships between the shists sensu Arduino and the carbonates as they were understood before the discovery of dolomitic rock. The paper provides a translation of both letters into Slovene. The letter to von Born has been translated in its entirety, while the letter to Arduino has been translated only in the part that complements the first letter. On the basis of the translation, we provide a commentary on Ferber‘s individual geological terms and compare them with those that are valid today. In the final part of the paper we give an interpretation of Ferber‘s letters. In it, we address the problem of understanding and translating older geological texts from the point of view that the terminology has changed considerably. We also touched upon the issue of geological and mineralogical descriptions, which at the time of the Ferber letters were based almost entirely on sensory abilities. Finally, we touched on Ferber‘s understanding of Arduino‘s stratigraphic theory and the descriptions of stratigraphy on his journey through Slovenia. Zahvala Clanek je nastal v okviru dejavnosti Raziskovalnega programa št. P-0020 »Podzemne vode in geokemija«, ki ga sofinancira Javna agencija za raziskave in inovacije Republike Slovenije iz državnega proracuna. Clanek je jezikovno pregledal lektor Rok Janežic. Viri in literatura Beretta, M. 2007: Linnaeans in Italy – The case of Johann Jacob Ferber. In: Beretta, M. & Tosi, A. (eds.): Linneus in Italy – The Spread of a Revolution in Science, 91–112, Science History Publications, Watson Publishing International, Sagamore Beach. Brencic, M. 2011: Izvor in pomen besede geologija. Geologija, 54/2: 177–192. https://doi. org/10.5474/geologija.2011.014 Brencic, M. 2014a: Nastanek Ferberjeve knjige o idrijskem rudniku: ob 240. obletnici objave knjige Johanna Jacoba Ferberja: opis živosrebrnega rudnika v Idriji na srednjem Kranjskem. Idrijski razgledi 59/2: 102–111. Brencic, M. 2014b: Ali je bil Lažnivi Kljukec geolog? Proteus, 76/9–10: 419–425. Brencic, M. 2020: Potujoca geologija. Geologija v I. delu Oryctographie Carniolice. In: Hacquet, B.: Oryctographia Carniolica ali Fizikalno zemljepisje vojvodine Kranjske, Istre in deloma sosednjih dežel. Cerknica: Knjižnica Jožeta Udovica; Ljubljana: »Maks Viktor«, str. Xxxiii– lii. Brencic, M. 2021: O izvoru besede fosil. Konkrecija, 10: 72–75. Carozzi, A. V. 1962: Introduction. Werner, Abraham Gottlob: On the External Characters of Minerals (transl. Albert, V. Carozzi). Urbana: University of Illinois Press, 118 pp. Cohen, C. & Wakefield, A. 2008: Introduction. Gottfried Wilhelm Leibniz: Protogea (transl. Cohen, C. & Wakefield, A.). The University of Chicago Press, 173 pp. Car, 1991: Ferberjev prispevek k poznavanju idrijskega živosrebrovega rudnika. Zbornik za zgodovino naravoslovja in tehnike, 11: 211– 217. Car, J. & Režun, B. 2002: Prvi geološki opis idrijskega rudišca (Ferber, 1774). Idrijski razgledi, 47/2: 22–29. Ferber, J.J. 1991: Opis živosrebrovega rudnika v Idriji na srednjem Kranjskem. Zbornik za zgodovino naravoslovja in tehnike, 11: 173– 207 (v slovenšcini prevod Jože Pfeifer). Hoppe, G. 1990: Johann Jakob Ferber (1743– 1790) und die Gesellschaft naturforschender Freunde in Berlin. Fundgrube, 26/1: 2–7. Hoppe, G. 1995: Johann Jacob Ferber (1743– 1790). Zum Leben und Wirken des bedeutenden Geo- und Montanwissenschaftlers. Der Aufschluß, 46: 233–244. Klemun, M. 2007: Writing, ‘inscription’ and fact: eighteenth century mineralogical books based on travels in the Habsburg regions, the 244 Mihael BRENCIC Carpathian Mountains. In: Wyse Jackson, P.N. (ed.): Four Centuries of Geological Travel: The Search for Knowledge on Foot, Bicycle, Sledge and Camel. London: Geological Society, Special Publications, 287: 49–61. Košir, M. 2015: Zgodovina prostozidarstva na Slovenskem. Modrijan, Ljubljana: 528 p. Lindner, D. 1986: Ignaz von Born Maister der Wahren Eintracht. Wiener Freimaurerei im 18. Jh. Österreichischer Bundesverlag, 243 S., Wien. Vaccari, E. 2006: The »classification« of mountains in eighteen century Italy and the lithostratigraphic theory of Giovanni Arduino (1714–1795). In: Vai, G. B., in Caldwell, W. G. E. (eds.): The origins of geology in Italy. Geological Society of America Special Paper, 411: 157–177. Zenzén, N. 1956: Johan (Johann) Jacob Ferber. Svenskt biografiskt lexikon. Dostopno na http://sok.riksarkivet.se/sbl/artikel/15257 (zadnji dostop 10. 8. 2023). 245 Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja © Author(s) 2023. CC Atribution 4.0 License GEOLOGIJA 66/2, 247-255, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.011 Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) Celjust vrste Prospalax priscus iz najdišca Weze 2 (južna Poljska, pliocen) Michal CZERNIELEWSKI Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; e-mail: m.czernielewski@twarda.pan.pl, m.czernielewski@int.pl Prejeto / Received 6. 9. 2023; Sprejeto / Accepted 15. 12. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Key words: Pliocene, Rodentia, Muroidea, Anomalomyidae, Weze, paleontology Kljucne besede: pliocen, Rodentia, Muroidea, Anomalomyidae, Weze, paleontologija Abstract The ecology and adaptations of the Anomalomyidae (Muroidea) have been long debated in the scientific literature. A jaw belonging to Prospalax priscus (Anomalomyidae) was found at the Late Pliocene site of Weze 2 in southern Poland. The presence of this species at the site agrees with the interpretation of P. priscus and the Anomalomyidae in general as adapted to forest environments. Izvlecek V znanstveni literaturi se že dolgo razpravlja o ekologiji in prilagoditvah družine Anomalomyidae (Muroidea). Celjust, ki pripada vrsti Prospalax priscus (Anomalomyidae), je bila najdena na najdišcu Weze 2 iz zgornjega pliocena na južnem Poljskem. Prisotnost te vrste na tem najdišcu se ujema z interpretacijo, da sta bili vrsta P. priscus in družina Anomalomyidae na splošno kot prilagojeni gozdnemu okolju. Introduction The Muroidea (mouse-like rodents) is a highly diverse superfamily of rodents (Rodentia) encompassing around 1750 species, which amounts to circa 75 % of all rodent species. Six main extant clades may be distinguished among the Muroidea, namely the Muridae, the Cricetidae, the Spalacidae, the Platacanthomyidae, the Calomyscidae and the Nesomyidae (Michaux et al., 2001; D’Elía et al., 2003; Jansa & Weksler, 2004; Steppan et al., 2004; Musser & Carleton, 2005; Jansa et al., 2009; Schenk et al., 2013). Moreover, the extinct family Anomalomyidae has been recognized, which cladistically should be supposedly included in the Cricetidae (Bolliger, 1999; López-Guerrero et al., 2017; Nesin & Kovalchuk, 2020). The Muroidea, having probably originated in Eurasia during the Eocene, now inhabit every continent except Antarctica, thriving in a wide range of habitats and occupying many different ecological niches (Lindsay, 1977; Flynn et al, 1985; D’Elía et al., 2003; Musser & Carleton, 2005; Jansa et al., 2009; Schenk et al., 2013; Li et al., 2016). The Anomalomyidae is an example of a muroid clade of which ecology has been long debated and apparently not well understood (Kalthoff, 2000; Hordijk & de Bruijn, 2009; Nesin & Kovalchuk, 2020). Thus, each newly described discovery may bring about important information clarifying the mode of life of this enigmatic family. The purpose of this paper is to present part of the anomalomyid fossil material (a fragmentary left lower jawbone of Prospalax priscus) collected at the Late Pliocene site of Weze 2, and subsequently to argue that the presence of this species in the Weze 2 assemblage further supports the interpretation of the Anomalomyidae as adapted to forest environments. Geological and stratigraphical settings The Weze 2 site is situated on the NW slope of the Zelce Hill (51°05´52.N 18°47´30.E; 228 m a.s.l.), near the village of Weze, in the vicinity of the town of Dzialoszyn (Pajeczno County), in the Wielun Upland, southern Poland. The site comprises a vertical crevice etched in the Upper Jurassic (Oxfordian) limestone by karst processes, originally infilled with late Pliocene fossiliferous sediment of the terra rossa type. The crevice itself is a part of a larger karst cave system of the hill and is located about 150–200 m north from the better known Weze 1 site, which has been dated at MN 15 (Sulimski, 1962; Stefaniak et al., 2020; Szynkiewicz, 2015 A and B). The locality of Weze 2 was discovered and preliminary explored between 1958 and 1961 by Sulimski. The terra rossa deposits (~3.5 t in total) were collected during field work organized by the Department of Paleozoology of the Polish Academy of Sciences in Warsaw (currently the Institute of Paleobiology PAS) and the Department of Paleozoology of the Wroclaw University. Three to four clayey fossiliferous strata of slightly differing lithology were distinguished. These were initially named D1, D2 and D3 by Sulimski (1962) and then renamed D (= upper D1), E (= lower D1), F, and G. Additionaly, there was a stratum of quartz sand at the bottom in which some specimens were also found (this stratum was initially named D4 and then renamed as H). However, only part of the fossil material collected has been attributed to a particular stratum and the faunal lists are generally given for the site as a whole, which is also the case for the nearby and better known site of Weze 1. The faunal composition of the Weze 2 fossil assemblage is currently dated at the late Pliocene (Early Villafranchian) and is considered to belong to the MN 16b zone in the European Land Mammal Age chronology, i.e. 2.9–2.6 mya (Sulimski, 1962; Nadachowski et al., 2015; Szynkiewicz, 2015 A and B; Stefaniak et al., 2020; Marciszak et al., 2023). The rodents thus far described from Weze 2 include the previously unknown species of a flying squirrel, Pliopetaurista dehneli (originally named Pliosciuropterus dehneli) (Sulimski, 1964; Hordijk & de Bruijn, 2009), the dormice Glis minor and G. sackdillingensis (Czernielewski, 2021), the beavers Trogontherium minus and Dipoides ex gr. problematicus-sigmodus (Czernielewski, 2022) and the porcupine Hystrix refossa (Czernielewski, 2023), see Table 1. Several non-rodent mammalian taxa have also been recognized. These include the lagomorph Hypolagus beremendensis (Fostowicz- Frelik, 2007), the cervids Croizetoceros ramosus and Metacervocerus pardinensis, (Stefaniak, 1995; Stefaniak et al., 2020), the talpid Rzebikia skoczeni, defined based on material from Weze 2 (Rzebik-Kowalska, 1990, 2014; Skoczen, 1976, 1993; Zijlstra, 2010; Sansalone et al., 2016), a proboscidean ?Anancus sp. (Stefaniak et al., 2020), as well as the chiropterans Rhinolopus sp. and Myotis sp. (Kowalski, 1990). Moreover, the presence of several carnivorans was attested, including the canids Nyctereutes donnezani and Canis etruscus (Marciszak et al., 2023). In addition to mammals, some other vertebrate remains have been found in Weze 2. Reptiles were represented by the turtle Emys orbicularis antiqua , the serpents Elaphe paralongissima and Natrix cf. longivertebrata, as well as the lizards Ophisaurus pannonicus, Anguis cf. fragilis, Lacerta cf. viridis and Lacerta sp. (Mlynarski et al., 1984). The amphibian fauna included a new species of salamander named Mioproteus wezei and the anurans Palaeobatrachus sp., Pliobatrachus cf. langhae, Pelobates fuscus, Pelobates sp., Bufo bufo, Rana dalmatina, Rana sp. and Pelophylax kl. esculentus (Mlynarski et al., 1984; Mlynarski & Szyndlar, 1989). Moreover, remains of unidentified birds were uncovered (Bochenski et al., 2012) as well as isolated vertebrae of salmonid fishes (Nadachowski et al., 2015). In general, the fauna of Weze 2 is considered to be suggestive of a forest environment, which is supported by the presence of genera strongly associated with woodland habitats, such as Glis, Sciurus, Pliopetaurusta, Blackia, Trogontherium and Dipoides (Sulimski, 1964; Szynkiewicz, 2015 A; Stefaniak et al., 2020; Czernielewski, 2021, 2022). Material and methods The Prospalax specimen here described (Fig. 1) was discovered and handpicked at the site of Weze 2 in the late 1950’s / early 1960’s during excavations conducted by Andrzej Sulimski, the Department of Paleozoology of the Polish Academy of Sciences in Warsaw, and the Department of Paleozoology of the Wroclaw University. The exact provenance of the mandible (the stratum in which it was found) is not known. In addition, each of the strata contained several dozens of isolated teeth morphologically and morphometrically identical to the P. priscus specimens from Weze 1 (Sulimski 1964). This material is part of the collection of the Institute of Paleobiology, Polish Academy of Sciences (abbreviated as ZPAL). The described specimen was examined, measured and photographed with Keyence VHX 900-F Digital Microscope System. 248 Michal CZERNIELEWSKI Systematic palaeontology Superfamily Muroidea Illiger, 1811 Family Anomalomyidae Schaub, 1925 Genus Prospalax Méhely, 1908 Prospalax priscus (Nehring, 1897) Material A fragmentary left mandible of Prospalax priscus with m1-m2 preserved in situ (ZPAL M. VIII/b/P1/1), Fig. 1. 249 Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) Fig. 1. Left mandible of Prospalax priscus (ZPAL M. VIII/b/P1/1) in labial (A), occlusal (B) and lingual (C) views. Description The specimen exhibits the sigmoid pattern of the occlusal dental surfaces typical for the genus Prospalax. It is an adult specimen (cf. Sulimski 1964) and corresponds with other mandibles attributed to P. priscus and illustrated by Méhely (1908), Sulimski (1964) and Topachevskii (1976) by its relatively robust appearance compared to the P. petteri specimens (including the holotype) illustrated by Bachmayer and Wilson (1970). In the Weze 2 specimen the height of the horizontal branch at the level of the posterior edge of the alveolus of m1 is ca. 5.00 mm measured at the labial side. The shape of the angular process is typical 250 Michal CZERNIELEWSKI Table 1. Rodent material from Weze 2 present in the collection of the Institute of Paleobiology PAS according to taxa and stratigraphic units. Stratigraphic unit Rodent taxa present D Glis ex gr. sackdillingensis-minor (Gliridae) Muscardinus pliocaenicus (Gliridae) Pliopetaurista dehneli (Sciuridae) Blackia miocaenica (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. E Glis ex gr. sackdillingensis-minor (Gliridae) Muscardinus pliocaenicus (Gliridae) Pliopetaurista dehneli (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Trogontherium minus (Castoridae) Hystrix refossa (Hystricidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. F Glis ex gr. sackdillingensis-minor (Gliridae) cf. Pliopetaurista dehneli (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Trogontherium minus (Castoridae) Hystrix sp. (Hystricidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. G Glis ex gr. sackdillingensis-minor (Gliridae) Blackia miocaenica (Sciuridae) Tamias orlovi (Sciuridae) Prospalax priscus (Anomalomyidae) Trogontherium minus (Castoridae) Dipoides ex gr. problematicus-sigmodus (Castoridae) Hystrix sp. (Hystricidae) Baranomys sp. (Cricetidae) Mimomys sp. (Cricetidae) Cricetidae indet. for P. priscus, while in the holotype of P. rumanus it exceeds the length of m1–m2 which is a diagnostic trait for this species (Simionescu 1930; Topachevskii 1976). The dimensions of the preserved teeth in the Weze 2 specimen are 2.07/1.54 mm (m1) and 2.02/1.88 mm (m2). The alveolar m1– m3 length is 6.43 mm which corresponds to the lower end of the range typical for P. priscus, i.e. 6.0–9.0 mm (Jánossy 1972; Topachevskii 1976). Topachevskii (1976) points out to the smaller size of P. rumanus as defined by the length of the mandibular tooth row which in the described specimens of P. rumanus equals 6.0 and 6.2 mm, but as the dimensions of the measured specimens of P. rumanus overlap with the measurements of the smaller mandibles of P. priscus, it would apparently not be possible to distinguish between the species based on morphometric traits alone. However, the dimensions of m2 (2.02/1.88 mm) and the alveolar length of the Weze 2 specimen are also much smaller than in the holotype specimen of P. kretzoii (2.8/2.4 mm, and 10.2 mm), a species that has been diagnosed as being significantly larger than P. priscus (Jánossy 1972). Discussion Prospalax priscus is now recognized as a representative of the Anomalomyidae. Apparently restricted to the Old World, this family is known to have lasted since the Early Miocene till the beginning of MN 18 (Markovic & Milivojevic, 2010; López-Guerrero et al. 2017; Nesin and Kovalchuk 2020). The family includes three genera (Anomalomys , Anomalospalax, Prospalax), all of which were previously assigned to the Cricetidae (i.e. the family that comprises hamsters, voles, lemmings, muskrats and the so called New World rats and mice) or the Spalacidae (i.e. the family that includes mole-rats, bamboo rats and zokors) (Bachmayer & Wilson 1978; Kordos 1985; Hugueney & Mein 1993; Bolliger 1999; Jansa & Weksler, 2004; Musser & Carleton, 2005; Nesin & Kovalchuk 2020). It is hypothesized that the Anomalomyidae originated within the Cricetidae, with Argyromys aralensis from the Oligocene of Kazakhstan being the immediate ancestor, even though the oldest anomalomyids have been attested in southern Europe (López-Guerrero et al. 2017; Nesin and Kovalchuk 2020). Another hypothesis holds that the origins of the Anomalomyidae are associated with the primitive cricetid Eumyarion intercentralis from western Asia (de Bruijn 2009). Among anomalomyids the eponymous genus Anomalomys is the most species-rich and is also considered to be the most primitive, while Prospalax and Anomalospalax are described as being more derived (Kordos 1985, 2005; Nesin & Kovalchuk 2020). The evolutionary lineage Anomalomys – Prospalax has been inferred from the fossil record (Bachmayer & Wilson 1970; Nesin & Kovalchuk 2020). P. priscus is known from several sites in Central Europe and Greece, dated from the Upper Miocene (Daxner-Höck 1970; Temper 2005) till the beginning of MN 18 (Markovic & Milivojevic, 2010). In Poland it was attested at the MN 15 sites of Draby 1, Mokra 1, Raciszyn 1 (Nadachowski 1989; Nadachowski et al. 1989) and Weze 1 (Sulimski, 1964), as well as the MN 16 site of Rebielice Królewskie 1A (Kowalski, 1960). In Hungary P. priscus was reported from the Late Pliocene / Early Pleistocene sites of Csarnóta (Kretzoi 1956; Jánossy 1986; Szentesi et al. 2015) and Beremend (Méhely 1908; Kretzoi 1956; Jánossy 1986; Hordijk & de Bruijn 2009; Pazonyi et al. 2019), the Early/Middle Pleistocene site of Nagyharsány (Nehring 1897; Kretzoi 1956; Jánossy 1986; Pazonyi et al. 2021), the MN 16? sites of Osztramos 7 and Villány 3 (Kretzoi 1956; Jánossy 1986; Kessler 2019), the Late Villanyian site of Dunaalmás IV, as well as from Kisláng, supposedly also of the Late Villanyian age (Jánossy, 1986). Romanian localities of P. priscus include the Pliocene sites of Malusteni and Barault Capeni (= Barót-Köpec) (Simionesciu, 1930; Kormos, 1932). Moreover, the species was attested at the MN 15? site of Notio 1 in Greece (Hordijk & de Bruijn, 2009), MN 16 of Hajnácka I in Slovakia (Sabol, 2003), and MN 18 of Ridake in Serbia (Markovic & Milivojevic, 2010). It was also reported from the Upper Miocene of Eichkogel in Austria (Daxner-Höck, 1970; Temper, 2005). The localities are summed up in Table 2. Supposedly by analogy to the extant Eurasian blind mole rats (the genus Spalax), to which it was once considered closely related (Méhely, 1908; Topachevskii, 1976), Prospalax has been described as a burrowing animal of the steppe and open grasslands, similar in their behavior and adaptations to the modern spalacids (Kowalski, 1964; Sulimski, 1964; Bachmayer and Wilson, 1970; Sabol, 2003) which was also considered true for the Anomalomyidae in general (Bachmayer & Wilson, 1970; Kowalski, 1994; Bolliger, 1999). However, the interpretation of anomalomyid ecology has been shifting towards understanding them as animals dwelling in forest environments, behaviorally similar to the extant burrowing shrews, and not well adapted to strictly underground lifestyle (Kalthoff, 2000; Hordijk & de Bruijn, 2009; Nesin & Kovalchuk, 2020). Such a shift has been caused by findings of anomalomyid remains within faunal 251 Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) assemblages otherwise typical for forest habitats (Hordijk & de Bruijn, 2009; Nesin & Kovalchuk, 2020) as well as by the reinterpretation of the anomalomyid incisors as not being proficient digging tools (Kalthoff, 2000; Nesin & Kovalchuk, 2020). Also the relationships between Anomalomyidae and Spalacidae seem to be more distant than previously thought and the presence of burrowing adaptations in these two clades is now described as a result of an evolutionary convergence (Nowakowski et al., 2018; Nesin & Kovalchuk, 2020). It is noteworthy that P. priscus itself has not infrequently been found in association with species suggestive for arboreal environments, i.e. flying squirrels (Sciuridae: Petauristini) and dormice (Sulimski, 1964; Daxner-Höck, 1970; 252 Michal CZERNIELEWSKI Table 2. Anomalomyid occurrences unequivocally referred to as Prospalax priscus. No. Locality Age References 1. Eichkogel (Austria) Upper Miocene Daxner-Höck 1970; Temper 2005 2. Malusteni (Romania) Pliocene Simionesciu 1930; Kormos 1932 3. Barault Capeni (Romania) Pliocene Simionesciu 1930; Kormos 1932 4. Beremend (Hungary) Late Pliocene / Early Pleistocene Méhely 1908; Kretzoi 1956; Jánossy 1986; Pazonyi et al. 2019 5. Csarnóta (Hungary) Late Pliocene / Early Pleistocene Kretzoi 1956; Jánossy 1986; Szentesi et al. 2015 6. Draby 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989 7. Mokra 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989 8. Raciszyn 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989 9. Weze 1 (Poland) MN 15, Late Ruscinian Nadachowski 1989; Nadachowski et al. 1989; Sulimski 1964 10. Notio 1 (Greece) MN 15? Hordijk and de Bruijn 2009 11. Hajnácka I (Slovakia) MN 16 Sabol 2003 12. Osztramos 7 (Hungary) MN 16? Kretzoi 1956; Jánossy 1986; Kessler 2019 13. Rebielice Królewskie 1A (Poland) MN 16 Kowalski 1960 14. Villány 3 (Hungary) MN 16? Kretzoi 1956; Jánossy 1986; Kessler 2019 15. Weze 2 (Poland) MN 16 Sulimski 1962; Stefaniak 1995; Stefaniak et al. 2020 16. Dunaalmás IV (Hungary) Late Villanyian Jánossy 1986 17. Kisláng (Hungary) Late Villanyian? Jánossy 1986 18. Nagyharsány (Hungary) Early/Middle Pleistocene Nehring 1897; Kretzoi 1956; Jánossy 1986; Pazonyi et al. 2021 19. Ridake (Serbia) MN 18 Markovic and Milivojevic 2010 Jánossy, 1986; Nadachowski, 1989; Sabol, 2003; Hordijk & de Bruijn, 2009; Markovic & Milivojevic, 2010). Attributing the Weze 2 specimen to P. priscus seems well supported due to the robust appearance of the jaw, the shape of the angular process, and the smaller dimensions than the holotype of P. kretzoii. Moreover, it can be inferred that the isolated Prospalax teeth found at Weze 2 also belong to P. priscus, although this cannot be proved by the occlusal morphology as it does not seem to differ significantly between the species and possible interspecific differences were never cited as diagnostic while defining new species within Prospalax (Nehring, 1897; Simionescu, 1930; Bachmayer and Wilson, 1970; Jánossy 1972). The presence of P. priscus at the site of Weze 2 agrees with the interpretation of this species as adapted to forest rather than steppe environments. Acknowledgements I thank the anonymous Reviewers for their remarks and suggestions. References Bachmayer, F. & Wilson, R.W. 1970: Die Fauna der altpliozänen Höhlen- und Spaltenfüllungen bei Kohfidisch, Burgenland (Österreich) / Small Mammals (Insectivora, Chiroptera, Lagomorpha, Rodentia) from the Kohfidisch Fissures of Burgenland, Austria. Annalen des Naturhistorischen Museums in Wien, 74: 533–587. Bachmayer, F. & Wilson, R.W. 1978: A second Contribution to the Small Mammal Fauna of Kohfidisch, Austria / Zweiter Beitrag zur Kleinsäugerfauna von Kohfidisch (Burgenland, Österreich). Annalen des Naturhistorischen Museums in Wien, 81: 129–161. Bochenski, Z., Bochenski, Z.M. & Tomek, T. 2012: A history of Polish birds. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków: 226 pp. Bolliger, T. 1999: Family Anomalomyidae. In: Rössner, G. E. & Heissig, K. (eds.): The Miocene Land Mammals of Europe. Verlag Dr. Friedrich, Pfeil: 389–394. Czernielewski, M. 2021: Gliridae (Rodentia) from the Villafranchian site of Weze 2 in southern Poland. Geological Quarterly, 65: 49. https:// doi.org/10.7306/gq.1618 Czernielewski, M. 2022: Castoridae (Rodentia) from the Villafranchian site of Weze 2 in southern Poland. Geological Quarterly, 66: 18. https://doi.org/10.7306/gq.1650 Czernielewski, M. 2023: A new species of Hystrix (Rodentia: Hystricidae) from the Pliocene site of Weze 1 in southern Poland. Acta Geologica Polonica, 73: 73–83. Daxner-Höck, G. 1970: Die Wirbeltierfauna aus dem Alt-Pliozän (O-Pannon) vom Eichkogel bei Mödling (NÖ.). Annalen des Naturhistorischen Museums in Wien, 74: 597–605. de Bruijn, H. 2009: The Eumyarion (Mammalia, Rodentia, Muridae) assemblage from Sandelzhausen (Miocene, Southern Germany): a test on homogeneity. Paläontologische Zeitschrift, 83: 77–83. D’Elía, G., González, E.M. & Pardińas, U.F.J. 2003: Phylogenetic analysis of sigmodontine rodents (Muroidea), with special reference to the akodont genus Deltamys. Mammalian Biology, 68: 351–364. Flynn, L.J., Jacobs, L.L. & Lindsay, E.H. 1985: Problems in Muroid Phylogeny: Relationship to Other Rodents and Origin of Major Groups. In: Luckett, W.P. & Hartenberger, J.-L. (eds.): Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Springer Science + Business Media, New York: 589–616. Fostowicz-Frelik, L. 2007: Revision of Hypolagus (Mammalia: Lagomorpha) from the Plio-Pleistocene of Poland: Qualitative and quantitative study. Annales Zoologici, 57: 541–590. Hordijk, K. & de Bruijn, H. 2009: The succession of rodent faunas from the Mio/Pliocene lacustrine deposits of the Florina-Ptolemais-Servia Basin (Greece). Hellenic Journal of Geosciences, 44: 21–103. Hugueney, M. & Mein, P. 1993: A Comment on the Earliest Spalacinae (Rodentia, Muroidea). Journal of Mammal Evolution, 1: 215–223. Jánossy, D. 1972: Middle Pliocene Microvertebrate Fauna from the Osztramos Loc. 1. (Northern Hungary). Annales Historico-Naturales Musei Nationalis Hungarici, 64: 27–52. Jánossy, D. 1986: Pleistocene vertebrate faunas of Hungary. Developments in Palaeontology and Stratigraphy, 8: 206. Jansa, S.A., Giarla, T.C. & Lim, B.K. 2009: The phylogenetic position of the rodent genus Typhlomys and the geographic origin of Muroidea. Journal of Mammalogy, 90: 1083–1094. Jansa, S.A. & Weksler, M. 2004: Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Molecular Phylogenetics and Evolution, 31: 256–276. Kalthoff, D.C. 2000: Die Schmelzmikrostruktur in den Incisiven der hamsterartigen Nagetiere 253 Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) und anderer Myomorpha (Rodentia, Mammalia). Palaeontographica A, 259: 1–193. Kessler, J.E. 2019: Evolution of Galliformes and their presence in the Carpathian Basin. Ornis Hungarica, 27: 142–174. https://doi. org/10.2478/orhu-2019-0021 Kordos, L. 1985: Late Turolian (Neogene) Anomalospalax gen. n. from Hungary and its phylogenetic position. Fragmenta Mineralogica et Palaeontologica, 12: 27–42. Kordos, L. 2005: Anomalomys (Rodentia, Mammalia) from Rudabánya, Hungary (Miocene, MN9): terminology of molars, age categories and phylogenetic interpretations. Fragmenta Palaeontologica Hungarica, 23: 20–28. Kormos, T. 1932: Neue pliozäne Nagetiere aus der Moldau. Palaeontologische Zeitschrift, 14: 193–199. Kowalski, K. 1960: Pliocene Insectivores and Rodents from Rebielice Królewskie (Poland). Acta Zoologica Cracoviensia, 5: 155–202. Kowalski, K. 1964: Palaeoecology of Mammals from the Pliocene and Early Pleistocene of Poland (in Polish). Acta Theriologica, 8: 73–88. Kowalski, K. 1990: Stratigraphy of Neogene mammals in Poland. In: Lindsay, E. H., Fahlbusch, V. & Mein, P. (eds.): European Neogene Mammal Chronology. Plenum Press, New York: 193–209. Kowalski, K. 1994: Evolution of Anomalomys Gaillard, 1900 (Rodentia, Mammalia) in the Miocene of Poland. Acta Zoologica Cracoviensia, 37: 163–176. Kretzoi, K. 1956: Die altpleistozänen Wirbeltierfaunen des Villányer Gebirges. Geologia Hungarica, Series Palaeontologia, 27: 1–274. Li, Q., Meng, J. & Wang, Y. 2016: New Cricetid Rodents from Strata near the Eocene-Oligocene Boundary in Erden Obo Section (Nei Mongol, China). PLoS One, 11/5: e0156233. https:// doi.org/10.1371/journal.pone.0156233 Lindsay, E.H. 1977: Simimys and origin of the Cricetidae (Rodentia: Muroidea). Geobios, 10: 597–623. López-Guerrero, P., Maridet, O., Zhang, Z. & Daxner-Höck, G. 2017: A new species of Argyromys (Rodentia, Mammalia) from the Oligocene of the Valley of Lakes (Mongolia): Its importance for palaeobiogeographical homogeneity across Mongolia, China and Kazakhstan. PLoS One, 12. https://doi.org/10.1371/ journal.pone.0172733 Marciszak, A., Kropczyk, A., Gornig, W., Kot, M., Nadachowski, A. & Lipecki, G. 2023: History of Polish Canidae (Carnivora, Mammalia) and Their Biochronological Implications on the Eurasian Background. Genes, 14: 539. https:// doi.org/10.3390/genes14030539 Markovic, Z. & Milivojevic, M. 2010: The Neogene small mammals from Serbia – collection methods and results. Bulletin of the Natural History Museum, 3: 105–114. Méhely von, L. 1908: Prospalax priscus (NHRG), die pliocäne Stammform der heutigen Spalax- Arten. Annales Musei Nationali Hungarici, 6: 306–316 + plates. Michaux, J., Reyes, A. & Catzeflis, F. 2001: Evolutionary history of the most speciose mammals: Molecular phylogeny of muroid rodents. Molecular Biology and Evolution, 18/11: 2017– 2031. https://doi.org/10.1093/oxfordjournals. molbev.a003743 Mlynarski, M., Szyndlar, Z., Estes, R. & Sanchíz, B. 1984: Amphibians and reptiles from the Pliocene locality of Weze II near Dzialoszyn (Poland). Acta Palaeontologica Polonica, 29: 209–226. Mlynarski, M. & Szyndlar, Z. 1989: Plazy i gady – Amphibia et Reptilia (in Polish). Folia Quaternaria, 59–60: 69–88. Musser, G.G. & Carleton, M.D. 2005: Superfamily Muroidea. In: Wilson, D.E. & Reeder, D.M. (eds.): Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed. Johns Hopkins University Press: 894–1531. Nadachowski, A. 1989: Gryzonie – Rodentia (in Polish). Folia Quaternaria, 59–60: 151–176. Nadachowski, A., Marciszak, A., Rzebik-Kowalska, B., Ratajczak, U. & Gornig, W. 2015: Fossil fauna – Weze 2 (WE2) (in Polish). Materialy 49. Sympozjum Speleologicznego. Sekcja Speleologiczna Polskiego Towarzystwa Przyrodników im. Kopernika: 31–34. Nadachowski, A., Pawlowski, J. & Stworzewicz, E. 1989: The characteristics of the sites and their stratigraphic correlation (in Polish). Folia Quaternaria, 59–60: 5–19. Nehring, A. 1897: Mehrere neue Spalax-Arten. Sitsungs-Berichte der Gesellschaft Naturforschender Freunde zu Berlin: 163–183. Nesin, V. & Kovalchuk, O. 2020: A new late Miocene Anomalomys species from western Ukraine with implications for the diversity and evolution of anomalomyid rodents in Eastern Europe. Historical Biology. https://doi.org/10.1080/08912963.2020.1742711 Nowakowski, D., Rekovets, L., Kovalchuk, O., Pawlina, E. & Demeshkant, V. 2018: Enamel ultrastructure of molars in †Anomalomys gaillardi and some spalacid taxa (Rodentia, 254 Michal CZERNIELEWSKI Mammalia). Palaeontologia Electronica, 21.2.18A: 1–15. https://doi.org/10.26879/846 Pazonyi, P., Szentesi, Z., Trembeczki, M., Hír, J. & Mészáros, L. 2021: A new middle Pleistocene small vertebrate fauna from the Nagyharsány Crystal Cave (Villány Hills, Southern Hungary). Fragmenta Palaeontologica Hungarica, 37: 101–126. http://doi.org/10.17111/FragmPalHung. 2021.37.101 Pazonyi, P., Trembeczki, M., Mészáros, L. & Szentesi, Z. 2019: Preliminary report on the Early Pleistocene vertebrate sites of Beremend Crystal Cave (Beremend 16, South Hungary) and on their palaeoecological importance. Fragmenta Palaeontologica Hungarica, 36: 115–140. https://doi.org/10.17111/FragmPalHung. 2019.36.115 Rzebik-Kowalska, B. 1990: Pliocene and Pleistocene Insectivora (Mammalia) of Poland. VII. Soricidae: Mafia Reumer, 1984, Sulimskia Reumer, 1984 and Paenelimnoecus Baudelot, 1972. Acta Zoologica Cracoviensia, 33: 303– 327. Rzebik-Kowalska, B. 2014: Revision of the Pliocene and Pleistocene Talpidae (Soricomorpha, Mammalia) of Poland. Palaeontologia Electronica, 17: 1–26. Sabol, M. 2003: New findings of Late Pliocene vertebrates from Hajnácka I site (southern Slovakia). Coloquios de Paleontología, Vol. Ext. 1: 595–602. Sansalone, G., Kotsakis, T. & Piras, P. 2016: New systematic insights about Plio-Pleistocene moles from Poland. Acta Palaeontologica Polonica, 61/1: 221–229. Schenk, J.J., Rowe, K.C. & Steppan, S.J. 2013: Ecological Opportunity and Incumbency in the Diversification of Repeated Continental Colonizations by Muroid Rodents. Systematic Biology, 62: 837–864. Simionescu, I. 1930: Vertebratele Pliocene de la Malusteni (Covurlui). Publicatiunile Fondului Vasile Adamachi, 9: 83–151. Skoczen, S. 1976: Condylurini Dobson 1883 (Insectivora , Mammalia) in the Pliocene of Poland. Acta Zoologica Cracoviensia, 21: 291–313. Skoczen, S. 1993: New records of Parascalops, Neurotrichus and Condylura (Talpinae, Insectivora ) from the Pliocene of Poland. Acta Theriologica, 38: 125–137. Stefaniak, K. 1995: Late Pliocene cervids from Weze 2 in southern Poland. Acta Palaeontologica Polonica, 40: 327–340. Stefaniak, K., Ratajczak, U., Kotowski, A., Kozlowska, M. & Mackiewicz, P. 2020: Polish Pliocene and Quaternary deer and their biochronological implications. Quaternary International, 546: 64–83. https://doi.org/10.1016/j. quaint.2019.09.048 Steppan, S., Adkins, R. & Anderson, J. 2004: Phylogeny and Divergence-Date Estimates of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes. Systematic Biology, 53/4: 533–553. https://doi. org/10.1080/10635150490468701 Sulimski, A. 1962: On a new finding of fossil vertebrate fauna near Dzialoszyn (in Polish with English summary). Przeglad Geologiczny, 10: 219–223. Sulimski, A. 1964: Pliocene Lagomorpha and Rodentia from Weze 1 (Poland). Acta Paleontologica Polonica, 9: 149–244 + plates. Szentesi, Z., Pazonyi, P. & Mészáros, L. 2015: Albanerpetontidae from the late Pliocene (MN 16A) Csarnóta 3 locality (Villány Hills, South Hungary) in the collection of the Hungarian Natural History Museum. Fragmenta Palaeontologica Hungarica, 32: 49–66. Szynkiewicz, A. 2015A: Karst phenomena – Weze 2 (WE2) (in Polish). Materialy 49. Sympozjum Speleologicznego. Sekcja Speleologiczna Polskiego Towarzystwa Przyrodników im. Kopernika: 29–30. Szynkiewicz, A. 2015B: Samsonowicz’s Cave, Weze 1 (WE1) (in Polish). Materialy 49. Sympozjum Speleologicznego. Sekcja Speleologiczna Polskiego Towarzystwa Przyrodników im. Kopernika: 19–21. Temper, P.M. 2005: The Herpetofauna (Amphibia: Caudata, Anura; Reptilia: Scleroglossa) of the Upper Miocene Locality Kohfidisch (Burgenland, Austria). Beiträge zur Paläontologie, 29: 145–253. Topachevskii, V.A. 1976: Fauna of the USSR: Mammals. Mole Rats, Spalacidae. Amerind Publishing Co. Pvt. Ltd., 308 pp. Zijlstra, J.S. 2010: Neurotrichus skoczeni, new name for Neurotrichus minor Skoczen 1993, preoccupied. Journal of Vertebrate Paleontology, 30/6: 1903. https://doi.org/10.1080/02724634.2010.521606 255 Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) © Author(s) 2023. CC Atribution 4.0 License GEOLOGIJA 66/2, 257-273, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.012 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Groundwater quantitative status assessment for River Basin Management Plan 2022–2027 (RBMP III) Petra SOUVENT1, Urška PAVLIC1, Mišo ANDJELOV1, Nina RMAN2 & Peter FRANTAR1 1Agencija Republike Slovenije za okolje, Vojkova 1b, SI–1000 Ljubljana, Slovenija; e-mail: petra.souvent@gov.si, urska.pavlic@gov.si, miso.andjelov@gov.si, peter.frantar@gov.si 2Geološki zavod Slovenije, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenija; e-mail: nina.rman@geo-zs.si Prejeto / Received 6. 9. 2023; Sprejeto / Accepted 15. 12. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Kljucne besede: podzemna voda, vodno telo, preizkus kolicinskega stanja, vodna bilanca, ekosistemi, odvzemi Key words: Groundwater, water body, quantitative status test, water balance, ecosystems, abstractions Izvlecek Ocena kolicinskega stanja podzemnih voda je del Nacrta upravljanja voda 2022–2027 (NUV III). Z njo po dolocenih kriterijih ovrednotimo kolicinsko stanje na 21 vodnih telesih podzemnih voda v Sloveniji kot »dobro« ali »slabo«. Ocena je izvedena s štirimi preizkusi, kjer analiziramo vpliv odvzemov (crpanih kolicin) podzemne vode na: kolicine podzemne vode in vodno bilanco, ekološko stanje površinskih vodnih teles, kopenske ekosisteme odvisne od podzemne vode in vdore slane vode ali vode slabše kakovosti v vodonosnik. Koncno skupno oceno, na podlagi opravljenih preizkusov, doloca kriterij najslabše ocene. Na podlagi rezultatov izvedenih preizkusov imamo 20 vodnih teles ocenjenih s skupno oceno »dobro«. Vodno telo Dravska kotlina pa je ocenjeno kot »slabo«, ker crpanje podzemne vode povzroca vdore vode slabše kakovosti v vodonosnik. Zadnja obdobna ocena kolicinskega stanja 1991–2020 razkriva, da imamo v plitvih vodonosnikih podzemnih vodnih teles letno na razpolago dobrih 4 milijarde m3 podzemne vode. Odvzemi podzemne vode (crpane kolicine) so v obdobju 2014–2019 v plitvih vodonosnikih dosegali povprecno 135 milijonov m3/leto. Na obmocju globokega geotermalnega vodonosnika v Murski kotlini so odvzemi v tem obdobju ocenjeni na 2,5 milijona m3/leto. Numericni modeli simulirajo omejeno napajanje, ki se kaže kot izcejanje iz okoliških kamnin v geotermalni vodonosnik v višini približno 2,3 milijona m3 termalne vode na leto. Abstract The Groundwater quantitative status assessment is part of River Basin Management Plan 2022–2027 (RBMP III) and is used to evaluate, according to certain criteria, the 21 groundwater bodies (GWBs) in Slovenia. GWB can achieve good or poor quantitative status. The assessment is carried out with four tests, where the impact of groundwater abstraction (pumped quantities) on: groundwater quantity and water balance, the ecological status of associated surface water bodies, groundwater dependent terrestrial ecosystems and the intrusion of saline or poor water quality into the aquifer is analyzed. The final overall assessment of each groundwater body, based on the completed tests, is determined by the criterion of the worst test assessment. Based on the results of the tests, within the assessment period, 20 GWBs in Slovenia achieved good quantitative status. GWB Dravska kotlina achieved poor quantitative status, because the pumping of groundwater causes poor quality water intrusions into the deeper aquifer of that groundwater body. Within the last assessment period 1991–2020, approx. 4 billion m3 of groundwater was available annually in shallow aquifers within groundwater bodies. Groundwater abstraction (pumper quantities) in the period 2014–2019 reached an average of 135 million m3. In the area of deep geothermal aquifers of the Mura basin, abstractions were estimated to sum up to 2.5 million m3 per year. Latest numerical simulations point out induced aquifer recharge of approx. 2.3 million m3 of thermal water. Uvod V Sloveniji so kolicine podzemne vode v prejšnjem stoletju ocenjevali po principih klasifikacije in kategorizacije zalog mineralnih surovin (Andjelov et al., 2016a). Na prehodu v novo tisocletje je okvirna direktiva o vodah, glavni zakon za zašcito voda v evropskem prostoru, postavila nova zakonodajna izhodišca za ocenjevanje kolicinskega stanja podzemnih voda (Uradni list RS, 2003, 2005, 2009a, 2009b, 2016, 2018). Glavni cilj vodne direktive je trajnostna raba podzemne vode z zahtevo po dolgorocnem ohranjanju vodnih kolicin brez povzrocanja nesprejemljivih okoljskih in drugih posledic. Vodna direktiva od držav clanic zahteva, da uporabljajo nacrte upravljanja voda in programe ukrepov za zašcito vodnih teles z namenom, da se doseže dobro stanje voda. Tretji nacrt upravljanja voda v Sloveniji (NUV III) je aktualni nacrt upravljanja z vodami za obdobje izvajanja med leti 2022 in 2027. Nacrt je strateški dokument države za izvajanje okvirne direktive o vodah (Direktiva, 2000). Izdelan je za obdobje šestih let in predstavlja inštrument za doseganje zašcite, izboljšanja in trajnostne rabe vode oz. vodnega okolja v Evropi. V Sloveniji tako za vsako šestletno obdobje na vodnih telesih preucimo in analiziramo vpliv clovekovega delovanja na površinske in podzemne vode in zanje dolocimo cilje. Del NUV III je tudi ocena kolicinskega stanja podzemnih voda, ki predstavlja kontinuiteto standardiziranega prikaza ocene ter razvoja metodologije ocene kolicinskega stanja podzemnih voda predhodnih ciklov ocenjevanja kolicinskega stanja podzemnih voda od leta 2006 dalje (Andjelov et al., 2006, 2016a, 2021a). Kolicinsko stanje podzemne vode ocenjujemo z vplivi rabe vode na razpoložljive kolicine podzemne vode. Razpoložljive kolicine podzemne vode so opredeljene z razliko med obnovljivo kolicino podzemne vode, ki predstavlja napajanje vodonosnikov iz padavin in kolicino podzemne vode, ki je potrebna za ohranjanje ekološkega stanja površinskih voda in kopenskih ekosistemov (Uradni list RS, 2009a, 2012, 2016). Kolicinsko stanje podzemnih voda je na podlagi opravljenih preizkusov ocenjeno kot »dobro« ali »slabo« (sl. 1). Preizkus vpliva odvzema podzemne vode na spremembo gladine podzemne vode in vodno bilanco izvedemo na vseh 21-tih vodnih telesih podzemnih voda v Sloveniji. Ostale preizkuse izvedemo le tam, kjer ocenjujemo tveganje, da ucinki rabe podzemne vode vplivajo na stanje površinskih vodnih teles, na kopenske ekosisteme, ki so odvisni od podzemnih voda, ali na vdore slane vode oz. vode slabše kakovosti. V clanku so predstavljene metode dela in rezultati ocene kolicinskega stanja podzemnih voda do vkljucno leta 2020 v Sloveniji, ki so podlaga NUV III. Podana je primerjava z oceno kolicinskega stanja iz NUV II (Vlada RS, 2016a, 2016b) ter nakazani predlogi nadaljnjih raziskav za povecanje zanesljivosti ocene stanja za prihodnji nacrt upravljanja z vodami. Metodologija izracuna ocene kolicinskega stanja podzemnih voda Metode dela Ocena kolicinskega stanja podzemnih voda se izvaja za posamezna vodna telesa podzemnih voda (VTpodV) s štirimi preizkusi (Evropska komisija, 2009) (sl. 1). Ugotavlja se vpliv odvzemov podzemne vode, kjer se upoštevajo crpane kolicine, na: 1. gladine podzemne vode in vodno bilanco (preizkus 1); 2. ekološko stanje površinskih vodnih teles (preizkus 2); 3. kopenske ekosisteme, odvisne od podzemne vode (preizkus 3) in 4. vdore slane vode ali vode slabše kakovosti v vodonosnik (preizkus 4). Koncno skupno oceno, na podlagi opravljenih preizkusov, doloca kriterij najslabše ocene (sl. 1). Ocena vpliva odvzemov podzemne vode na kolicine podzemne vode (preizkus 1) se je izvedla na vseh enaindvajsetih VTPodV. Prvi del preizkusa 1 je bil locen za plitve odprte vodonosnike in za globoke zaprte vodonosnike. Za plitve vodonosnike je preizkus temeljil na analizi trenda gladin podzemne vode in malih pretokov izvirov oziroma vodotokov v obdelovalnem in napovedovalnem obdobju na izbranih merilnih mestih državnega monitoringa, za globoke vodonosnike pa na analizi piezometricne gladine v opazovalnih vrtinah. Izracun malih letnih pretokov temelji na povprecju najmanjših dnevnih pretokov po posameznih mesecih (Höller, 2004). Drugi del preizkusa 1 je predstavljal vodnobilancno analizo vseh komponent odtoka, ki smo jo izvedli z regionalnim vodnobilancnim modelom GROWA-SI (Andjelov et al., 2016b). Eden izmed rezultatov vodnobilancnega modela GROWA-SI je tudi kolicinsko obnavljanje podzemne vode oz. obnovljiva kolicina podzemne vode, ki predstavlja napajanje vodonosnikov oz. VTPodV iz padavin. Obnovljiva kolicina podzemne vode je bila izhodišce za oceno razpoložljivih kolicin podzemne vode. Iz obnovljivih kolicin podzemne vode se je ob upoštevanju potreb teles površinskih voda in ekosistemov, odvisnih od podzemnih voda, t. i. ekološkega odbitka (Janža et al., 2016), ocenilo razpoložljive kolicine podzemne vode (Andjelov et al., 2016a, 2021a) in nadalje izracunal delež odvzete crpane podzemne vode. Analiza trenda gladin podzemne vode se je za plitve vodonosnike zakljucila z zaporedjem preizkusov z ugotavljanjem deleža merilnih mest z zniževanjem gladin v obdelovalnem in napovedovalnem obdobju, ki naj bi na posameznih VTPodV ne presegal 25 % (Andjelov et al., 2016a, 2021a). Vodnobilancni preizkus se je zakljucil s 258 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR primerjavo odvzetih crpanih kolicin podzemne vode z razpoložljivimi kolicinami podzemne vode. Kolicinsko stanje VTPodV je po vodnobilancnem preizkusu ocenjeno kot »dobro«, kadar dolgorocna povprecna letna kolicina crpanja podzemne vode ne presega razpoložljive kolicine podzemne vode (Andjelov et al., 2016a, 2021a). Za plitve vodonosnike se je nadalje po razlicnih kombinacijah podnebnih in emisijskih scenarijev ocenila še povprecna obnovljiva kolicina podzemne vode do leta 2100. Analiza vpliva podnebnih sprememb na napajanje podzemne vode je bila izdelana z modelom mGROWA-SI z mesecno casovno resolucijo (Draksler, 2019; Frantar et al., 2019). Ocena vpliva odvzemov podzemne vode na ekološko stanje površinskih vodnih teles (preizkus 2) se je izvedla na štirinajstih VTPodV, ki so povezana z vodnimi telesi površinskih voda, na katerih je bilo ugotovljeno slabo (ocena slabo in zelo slabo) ekološko stanje. Analizo vplivov odvzemov smo tako izvedli na 20 vodnih telesih (VT) površinskih voda, za katere je bilo za obdobje 2014–2019 ocenjeno slabo ekološko stanje (Andjelov et al., 2021a). Analiziran je bil delež vseh odvzemov podzemne vode glede na kolicine srednjega pretoka površinske vode (Qs) in glede na povprecno obnavljanje podzemne vode v obdobju 1991–2020, kjer za dobro kolicinsko stanje delež odvzemov ne sme presegati 10 %, hkrati pa mora biti vecina odvzemov iz podzemne vode (Andjelov et al., 2021a). Ocena vpliva odvzemov podzemne vode na kopenske ekosisteme odvisne od podzemne vode (KEOPV) (preizkus 3) se je izvedla na devetih VTPodV kjer je bilo ocenjeno, da ucinki odvzemov podzemne vode lahko vplivajo na kopenske ekosisteme, ki so odvisni od podzemnih voda (Andjelov et al., 2016a, 2021a). Vsi v analizo vkljuceni kopenski ekosistemi so gozdni habitati in so opredeljeni kot ogroženi oz. poškodovani (Mezga et al., 2015). Analizo kolicinskega pritiska, oz. primerjavo odvzemov podzemne vode in povprecnega obnavljanja podzemne vode v obdobju 1991–2020 na hidrološkem vplivnem obmocju habitata, smo izvedli na 13 obmocjih VTPodV (Andjelov et al., 2021a). Za dobro kolicinsko stanje VTpodV odvzemi ne smejo presegati mejo 5 % obnovljivih kolicin podzemne vode na obmocju ekosistema in njegovega prispevnega zaledja, kar glede na analizo pritiskov predstavlja še zanemarljiv vpliv na KEOPV (WFD Ireland, 2005). Analiza odvzemov podzemne vode na vdore slane vode ali vode slabše kakovosti v vodonosnik (preizkus 4) se je izvedla za dve vodni telesi podzemne vode: VTPodV 5019 Obala in Kras z 259 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Sl. 1. Postopek ugotavljanja skupne ocene kolicinskega stanja vodnega telesa podzemne vode – kriterij »odloca najslabša ocena« (prirejeno po Evropska komisija, 2009). Fig. 1. Overall procedure of tests for assessing groundwater quantitative status – criterion “the worst-case assessment decides” (modified after Evropska komisija, 2009). Brkini (slovenski del vodonosnega sistema 50621 Brestovica-Timav) in VTPodV 3012 Dravska kotlina (Andjelov et al., 2021a). Pri preizkusu se je izvedla analiza odvzemov podzemne vode na vdore slane vode ali vode slabše kakovosti, kjer so se povprecne kolicine odvzema podzemne vode obdobja primerjale s srednjo dolgoletno obnovljivo kolicino podzemne vode vodonosnika. Nadalje se je primerjalo povprecne dolgoletne vrednosti specificne elektricne prevodnosti (SEP) z naravnim ozadjem in mejno vrednostjo SEP za pitno vodo. Pri preizkusu se je ugotavljalo tudi trend indikativnih parametrov vdora slane vode (natrij, klorid, SEP) oziroma vode slabše kakovosti (nitrat, SEP) (Andjelov et al., 2016a, 2021a). Za dobro kolicinsko stanje VTPodV odvzemi ne smejo presegati 10 % obnovljivih kolicin podzemne vode, ne sme biti presežena meja SEP kakovosti pitne vode in naravnega ozadja ter ne sme biti zaznanega statisticno znacilnega narašcajocega trenda indikativnih parametrov (Andjelov et al., 2021a). Ocena kolicinskega stanja po posameznih VTPodV je podana z doloceno stopnjo zaupanja (Evropska komisija, 2016). Visoka stopnja zaupanja pomeni, da so na razpolago kakovostni podatki monitoringa in dober konceptualni model, razumevanje hidrološkega sistema pa temelji na poznavanju naravnih znacilnosti in antropogenih pritiskov. Pri srednji stopnji zaupanja imamo na razpolago omejene podatke monitoringa in pomanjkljivo poznavanje hidrološkega sistema. Nizka stopnja zaupanja pa pomeni, da ne razpolagamo s podatki monitoringa oz. ne poznamo hidrološkega sistema. Vhodni podatki Ocena kolicinskega stanja podzemnih voda temelji na državnih podatkovnih zbirkah hidrološkega in meteorološkega monitoringa v upravljanju Agencije RS za okolje (Internet 1, Internet 2, Internet 3) ter na podatkih v upravljanju Direkcije RS za vode o odvzetih kolicinah podzemne vode (Evidenca vodnih povracil). Vodnobilancni model GROWA-SI (Andjelov et al., 2016b) poleg casovnih podatkov upošteva tudi izbrane prostorske podatkovne sloje za ugotavljanje antropogenega vpliva rabe podzemne vode na obnovljive kolicine podzemne vode. Na vodnih telesih plitvih vodonosnikov s prevladujoco medzrnsko poroznostjo je bil monitoring usmerjen v meritve gladine podzemne vode (86 merilnih mest) in ugotavljanje trendov gladin podzemnih voda. Na vodnih telesih z vodonosniki s kraško, razpoklinsko ali mešano poroznostjo so vhodne podatke predstavljale meritve pretokov (30 merilnih mest), kjer se je ugotavljalo trende malih pretokov izvirov in vodotokov na referencnih merskih profilih. Za umerjanje regionalnega vodnobilancnega modela napajanja vodonosnikov GROWA-SI, je bil vkljucen del merilne mreže hidrološkega monitoringa površinskih voda z meritvami pretokov in del mreže meteorološkega monitoringa (sl. 2) s podatki padavin in temperature. Za oceno napajanja globokih geotermalnih vodonosnikov je bil uporabljen hidrogeološki matematicni model toka podzemne vode in prenosa toplote (Rman & Šram, 2019). Vodnobilancna ocena temelji na podatkih 199 merilnih mest hidrološkega monitoringa podzemnih in površinskih voda z nizom meritev 30 let in ob predpostavki, da meritve ne odražajo umetnih vplivov na merjeni lokaciji (Internet 1). Za monitoring kolicinskega stanja podzemnih voda v globokem geotermalnem vodonosniku severovzhodne Slovenije smo v oceno vkljucili dve merilni mesti z nizom meritev 11 let in v upravljanju Geološkega zavoda Slovenije (Rman et al. 2016; Andjelov et al. 2021a, b). Državni monitoring v obdobju 2014–2019 namrec še vedno ni bil vzpostavljen. Vhodni podatki za ugotavljanje vpliva crpanih odvzemov podzemnih in površinskih voda na stanje površinskih vodnih teles so ocenjeni pretoki na izhodnem profilu in obnovljive kolicine podzemne vode (model GROWA-SI) na obmocju vodozbirnega zaledja vodnega telesa površinske vode s slabim ali zelo slabim ekološkim stanjem (21 površinskih vodnih teles). Obnovljiva kolicina podzemne vode za preizkus vpliva crpanih odvzemov podzemne vode na KEOPV je pridobljena iz regionalnega vodnobilancnega modela GROWA-SI za obmocje KEOPV in njihovih prispevnih zaledij. Vhodni podatki za ugotavljanje vdora slane vode (2 merilni mesti) ali druge vrste vdorov (5 merilnih mest) v vodno telo so meritve gladine podzemne vode, SEP vode in meritve indikativnih kemijskih parametrov (kloridni, natrijev in nitratni ion). V oceno so vkljuceni tudi podatki crpanih kolicin podzemne vode, odvzetih iz vodnih teles podzemnih voda. Vzorcenje indikativnih parametrov poteka 1 do 2 krat letno, v primeru dveh vzorcenj kot referencno letno vrednost uporabimo povprecno vrednost. Casovno okno obdelovalnega obdobja je med letom 1990 in 2020 in sicer je bilo za izracune vodne bilance vzeto obdobje 1991–2020, za analize trenda gladin podzemnih voda in pretokov kraških izvirov iz plitvih vodonosnikov obdobje 1990–2019, za povprecne odvzeme podzemne vode pa obdobje 2014–2019, saj pred letom 2014 ni na razpolago ustreznih podatkov oz. urejenih baz. Tridesetletno primerjalno obdobje je 1991–2020. Kolicinsko 260 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR 261 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Sl. 2. Merilna mesta vkljucena v oceno kolicinskega stanja podzemnih voda v obdobju ocenjevanja za NUV III. Fig. 2. Monitoring sites for groundwater quantitative status assessment for RBMP III. 262 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR Sl. 3. Casovni okvir ocenjevanja kolicinskega stanja podzemnih voda za pripravo NUV III (2022–2027) Casovna skala ni v merilu. Fig. 3. Time frame of groundwater quantitative status assessment for RBMP III (2022–2027). Timeline is not in scale. Sl. 4. Trendi letnih povprecij gladine podzemne vode za obdobje 1990–2019 za VTPodV s prevladujoco medzrnsko poroznostjo (geotermalni vodonosniki tukaj niso presojani). Fig. 4. Annual mean groundwater level trends for the period 1990–2019 for GWBs with predominant intergranular porosity (geothermal aquifers are not included). stanje podzemnih voda vkljucuje tudi napovedovalni obdobji 2020–2027 za oceno ekstrapolacije trenda gladin in pretokov iz plitvih vodonosnikov ter 2021–2100 za oceno sprememb napajanja plitvih vodonosnikov po scenarijih podnebnih sprememb do leta 2100 (sl. 3). Za globok geotermalni vodonosnik severovzhodne Slovenije so zanesljivi podatki o odvzemih in gladinah v aktivnih vrtinah na voljo šele od leta 2017, ko je bil po letu 2015 zaradi podeljenih koncesij po Zakonu o vodah uveden nadzor rabe termalne vode (Andjelov et al., 2019). Rezultati Izmed 86 reprezentativnih merilnih mest, ki so bila vkljucena v preizkus 1 z namenom dolocitve trendov gladin podzemnih voda na vodnih telesih plitvih vodonosnikov s pretežno medzrnsko poroznostjo (Andjelov et al., 2016a, 2021a), beležimo statisticno znacilne upadajoce trende letnih povprecij gladin podzemnih voda (stopnja zaupanja a=0,05) na 18 merilnih mestih, statisticno znacilne trende zviševanja gladine pa na 9 merilnih mestih (sl. 4). Delež merilnih mest z zniževanjem gladin v napovedovalnem obdobju nikjer ne presega praga 25 % (Uradni list RS, 2009a, 2012, 2016; Andjelov et al., 2021a). Tudi analiza trenda malih pretokov površinskih voda in izvirov na 30 reprezentativnih merilnih mestih obdelovalnega obdobja 1990–2019 izkazuje nekatere statisticno znacilne trende zmanjševanja malih letnih pretokov (stopnja zaupanja a=0,05) na 5 merilnih mestih: 3320 Bohinjska Bistrica - Bistrica, 5030 Vrhnika II - Ljubljanica, 8561 Vipava II - Vipava, 6060 Nazarje - Savinja in 8450 Hotešk - Idrijca. Mali letni pretoki po oceni/ ekstrapolaciji linearnega trenda do konca napovedovalnega leta 2027 ne bodo dosegli vrednosti praga 95 % pretoka iz krivulje trajanja (Q95) (Andjelov et al., 2021a). Vodnobilancni preizkus (preizkus 1) vseh komponent odtoka (GROWA-SI) kaže, da je v obdobju 1991–2020 v Sloveniji letno padlo povprecno 1.447 mm padavin, od te kolicine se je z evapotranspiracijo letno vrnilo v ozracje povprecno 650 mm. Povprecni skupni letni odtok je znašal 797 mm, od tega je bilo 505 mm direktnega odtoka (kolicina vode, ki odtece površinsko in z vmesnim odtokom) in 292 mm podzemnega odtoka (kolicina vode, ki napaja oz. obnavlja podzemno vodo). Najvec skupnega povprecnega letnega odtoka je bilo v porecju Soce, na obmocju VTPodV 6020 Julijske Alpe v porecju Soce, najmanj pa v porecju Mure, na obmocju VTPodV 4018 Goricko, kar se odraža tudi pri kolicinskem obnavljanju podzemne vode (sl. 5). Iz obnovljivih kolicin podzemne vode (sl. 5) se je ob upoštevanju potreb teles površinskih voda in ekosistemov, odvisnih od podzemnih voda, t. i. ekološkega odbitka (Janža et al., 2016), ocenilo razpoložljive kolicine podzemne vode (Andjelov et al., 2016a, 2021) in nadalje izracunal delež odvzete podzemne vode od le-te. Odvzemi s crpanjem podzemne vode so v izbranem obdobju 2014–2019 v plitvih vodonosnikih dosegli povprecno 135 milijonov m3. Delež povprecnih letnih crpanih kolicin podzemne vode za obdobje 2014–2019 pa je bil, glede na model napajanja vodonosnikov GROWA- SI in izracun razpoložljive kolicine podzemne vode za obdobje 1991–2020, najvecji na obmocjih treh aluvialnih vodnih teles: VTPodV 3012 Dravska kotlina (25,9 %), VTPodV 1001 Savska kotlina in Ljubljansko Barje (22,4 %) in VTPodV 4016 Murska kotlina (20,9 %) (Tabela 1, sl. 6). Analiza vpliva podnebnih sprememb na napajanje podzemne vode, po scenarijih izpustov RCP4.5 in RCP8.5 do konca stoletja, kaže na povecanje napajanja podzemne vode. Predvidoma se bo do leta 2100 po srednjem scenariju RCP4.5 napajanje enakomerno povecevalo po vsej državi v vseh obdobjih, po scenariju RCP8.5 je najvecje povecanje predvideno v sredini stoletja, proti koncu stoletja pa se kolicina napajanja ustali. Po scenariju RCP8.5 se konec stoletja kaže tudi zmanjšanje napajanja v posameznih predelih južne Slovenije. Sezonski pregled kaže, da se bo po obeh scenarijih povecalo napajanje pozimi, v ostalih letnih casih pa je odklon napajanja nepredvidljiv. Do konca stoletja je po scenariju RCP4.5 v Sloveniji predvideno povecanje napajanja za približno 20 %, po scenariju RCP8.5 pa za približno 10 %, medtem ko so relativne vrednosti povecanja v severovzhodni Sloveniji nekoliko višje. Najvecjo zanesljivost vpliva podnebnih sprememb po obeh scenarijih imajo napovedi za povecanje napajanja na vzhodu države. Analiza mesecnih povprecij piezometricnih gladin podzemne vode v vrtini Do-1 v Dobrovniku in vrtini V-66 v Petanjcih v globokih geotermalnih vodonosnikih SV Slovenije, kot del preizkusa 1, kaže v obdobju 2009–2019 statisticno znacilno zniževanje piezometricne gladine. V letu 2019 so bile, glede na obdobje 2009–2019, izmerjene najnižje piezometricne gladine v obeh vrtinah (sl. 7) in do obrata trenda ni prišlo, se pa je zniževanje gladine nekoliko upocasnilo. Hidrogeološka simulacija z modelom vodne bilance naravnega stanja geotermalnega vodonosnika Murske formacije, ki jo je izvedel Geološki zavod Slovenije, ocenjuje letno napajanje na približno 5,6 milijona m3 (Rman et al., 2014). Povprecni odvzemi termalne podzemne 263 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) 264 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR Sl. 5. Obnovljive kolicine podzemne vode v plitvih vodonosnikih VTPodV v obdobju 1991–2020. Fig. 5. Renewable groundwater quantity in shallow aquifers of GWBs in the period 1991–2020. vode so bili v obdobju 2014–2019 približno 2,5 milijona m3 letno, kar predstavlja 44 % z modelom naravnega stanja ocenjenih letno obnovljivih kolicin termalne podzemne vode (Andjelov et al., 2021a). Kasnejši model (Rman & Šram, 2019) je bil umerjen na dostopne podatke iz obdobja 2009– 2016 in validiran s podatki gladin iz vrtin Do-1, V-66 in Fi-5 (v Renkovcih) v obdobju 2017–2018. Pokazal je bolj omejeno napajanje, ki se kaže kot izcejanje iz okoliških kamnin v geotermalni vodonosnik v višini približno 2,3 milijona m3 termalne vode na leto. Ker je bil šele po letu 2017 vzpostavljen zanesljiv obratovalni monitoring, je negotovost numericnega modela Murske formacije še vedno velika, vendar se z novimi vsakoletnimi meritvami in kalibracijo stalno zmanjšuje. Analiza obratovalnih monitoringov je hkrati pokazala, da je v 15–20 % objektov vsako leto ugotovljena sprememba kemijske sestave termalne vode, ki presega odstopanje ± 20 % za relevantne parametre (Lapanje et al., 2018; Tancar & Vižintin, 2021). Rezultati preizkusa vpliva odvzemov podzemne vode na ekološko stanje površinskih voda (preizkus 2) kažejo, da pri nobenem obravnavanem vodnem telesu površinskih voda odvzemi podzemne vode ne povzrocajo slabega ekološkega stanja. Delež vseh odvzemov od srednjega pretoka površinske vode (Qs) je na 19 obravnavanih vodnih telesih pod mejno vrednostjo za dobro stanje, ki je pri 10 % (Andjelov et al., 2021a). Mejna vrednost je presežena le v primeru VT Hudinja povirje – Nova Cerkev (SI1688VT1), kjer je delež odvzemov 265 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Tabela 1. Razmerja med crpanimi kolicinami podzemne vode (2014–2019) in razpoložljivo kolicino podzemne vode (1991–2020) v plitvih vodonosnikih VTPodV Slovenije. Table 1. Rate of groundwater abstraction (2014–2019) in relation to available groundwater quantity (1991–2020) in shallow aquifers of GWBs in Slovenia. Vodno telo podzemne vode (šifra in ime) Razpoložljiva kolicina podzemne vode v obdobju 1991–2020 (m3/leto) Crpane kolicine podzemne vode v obdobju 2014–2019 (m3/leto) Kolicine umetnega napajanja vodonosnikov v obdobju 2014–2019 (m3/leto) Crpane kolicine podzemne vode / razpoložljiva kolicina podzemne vode (%) Groundwater body (code and the name) Available groundwater for the period 1991–2020 (m3/year) Groundwater abstraction for the period 2014–2019 (m3/year) Aquifer artificial recharge for the period 2014–2019 (m3/year) Groundwater abstraction / available groundwater (%) 1001 Savska kotlina in Ljubljansko Barje 221.403.160 49.600.836 - 22,4 1002 Savinjska kotlina 20.164.080 2.847.899 - 14,1 1003 Krška kotlina 19.678.974 2.603.761 13,2 1004 Julijske Alpe v porecju Save 338.492.669 1.510.625 - 0,5 1005 Karavanke 125.820.501 682.520 - 0,5 1006 Kamniško-Savinjske Alpe 262.596.713 6.765.793 - 2,6 1007 Cerkljansko, Škofjeloško in Polhograjsko hribovje 212.960.161 3.534.514 - 1,7 1008 Posavsko hribovje do osrednje Sotle 245.263.218 6.794.722 - 2,8 1009 Spodnji del Savinje do Sotle 156.813.961 7.503.786 - 4,8 1010 Kraška Ljubljanica 303.755.271 2.355.408 - 0,8 1011 Dolenjski kras 670.405.039 8.616.673 - 1,3 3012 Dravska kotlina 77.966.028 21.367.493 4.624.071 25,9 3013 Vzhodne Alpe 170.109.873 2.129.343 - 1,3 3014 Haloze in Dravinjske gorice 55.736.483 2.350.677 - 4,2 3015 Zahodne Slovenske gorice 44.999.217 612.698 - 1,4 4016 Murska kotlina 50.701.290 10.609.688 - 20,9 4017 Vzhodne Slovenske gorice 14.811.330 683.197 - 4,6 4018 Goricko 16.740.011 231.843 - 1,4 5019 Obala in Kras z Brkini 235.464.524 3.452.254 - 1,5 6020 Julijske Alpe v porecju Soce 426.824.855 115.482 - 0,03 6021 Goriška brda in Trnovsko-Banjška planota 371.034.890 545.106 - 0,2 Slovenija 4.041.742.249 134.914.318 4.624.071 3,3 266 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR Sl. 6. Razmerje med crpanimi kolicinami podzemne vode (2014–2019) in razpoložljivo kolicino podzemne vode (1991–2020), na karti tudi obnovljive kolicine podzemne vode (GROWA-SI). Fig. 6. Rate of groundwater abstraction (2014–2019) in relation to available groundwater quantity (1991–2020) in shallow aquifers of GWBs in Slovenia, together with renewable groundwater quantity (GROWA-SI). 12,8 %. Na tem vodnem telesu prevladuje odvzem površinske vode, tako da odvzem podzemne vode ni razlog za slabo stanje tega telesa. Rezultati preizkusa vpliva odvzemov podzemne na KEOPV (preizkus 3) kažejo, da so odvzemi evidentirani na 4 KEOPV, znotraj 4 VTPodV in sicer na: Sava Medvode – Kresnice v VTpodV 1001 Savska kotlina in Ljubljansko Barje, Krakovski gozd v VTPodV 1011 Dolenjski kras, Boreci v VTpodV 4017 Vzhodne Slovenske Gorice in Mura 1 v VTpodV 4016 Murska kotlina. Odstotek odvzemov glede na povprecne obnovljive kolicine podzemne vode v obdobju 1991–2020 je na obmocju ekosistema in njegovem zaledju za obmocje Sava Medvode – Kresnice 0,1 %, za Krakovski gozd 0,5 %, za obmocje Boreci 2 % in za obmocje Mura 1,3 %. Crpane kolicine ne presegajo meje 5 %, kar glede na analizo pritiskov predstavlja zanemarljiv vpliv na KEOPV (Andjelov et al., 2021a). Podzemna voda se na teh KEOPV rabi najvec za namakanje kmetijskih zemljišc, sledi oskrba s pitno vodo in raba za tehnološke namene, nekaj se je porabi tudi za lastno oskrbo s pitno vodo. Rezultati analize odvzemov podzemne vode na vdore slane vode ali vode slabše kakovosti (preizkus 4) kažejo, da razmerje med odvzemi (povprecje obdobja 2014–2019) podzemne vode v crpališcu Klarici (VTPodV 5019 Obala in Kras z Brkini) in z modelom GROWA-SI ocenjeno povprecno obdobno obnovljivo kolicino podzemne vode ne presega 1 %, kar je pod mejno vrednostjo 10 % za dobro kolicinsko stanje. Po podatkih ARSO monitoringa kakovosti podzemnih voda (sl. 8), je v crpališcu Klarici povprecna vrednost SEP v obdobju 2008–2019 451 µS/cm in ne presega mejne vrednosti SEP naravnega ozadja (519 µS/cm) in mejne vrednosti SEP za pitno vodo (2.500 µS/cm), ki sta pogoja dobrega kolicinskega stanja (Andjelov et al., 2021a). Trend casovne vrste obdobja 2008– 2019 za specificno elektricno prevodnost, kloride in natrij je statisticno neznacilen. Razmerje med crpanimi odvzemi in obnovljivo kolicino podzemne vode (povprecje obdobja 2014– 2019) na obmocju VTPodV 3012 Dravska kotlina v crpališcih komunale Ptuj in Slovenska Bistrica, znaša približno 5 % in je pod mejno vrednostjo 10 % za dobro kolicinsko stanje. Povprecna vrednost SEP je v obdobju 2008–2019, na izbranem merilnem mestu Skorba VG-3, ki je v upravljanju komunalnega podjetja Ptuj, 480 µS/cm in je pod SEP naravnega ozadja (802 µS/cm) (Andjelov et al., 2021a). Povprecna vsebnost nitrata, 37 mg/l na tem merilnem mestu presega naravno ozadje nitrata v podzemni vodi (2 mg/l) (Mihorko & Gacin, 2019). Trend casovne vrste obdobja 2008– 2019 za SEP in nitrat je statisticno znacilno narašcajoc (sl. 9). 267 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Sl. 7. Mesecna povprecja piezometricne gladine podzemne vode v opazovalnih vrtinah Do-1 (Dobrovnik) in V-66 (Petanjci) v obdobju 2009– 2019 (Andjelov et al., 2021b). Fig. 7. Monthly averages of the piezometric groundwater level in piezometers Do-1 (Dobrovnik) and V-66 (Petanjci) for the period 2009– 2019 (Andjelov et al., 2021b). Sl. 8. Nihanje specificne elektricne prevodnosti vode (µS/cm), kloridov (mg/l) in natrija (mg/l) v obdobju 2008–2019 v crpališcu Klarici v VTPodV 5019 Obala in Kras z Brkini. Fig. 8. Oscillation of specific electrical conductivity (µS/cm), chloride(mg/l) and sodium (mg/l) ions for the period 2008–2019 in pumping station Klarici in GWB 5019 Obala in Kras z Brkini. Sl. 9. Nihanje indikativnih parametrov NO3 - in SEP na merilnem mestu Skorba, (merilno mesto VG-3) v obdobju 2008–2019. Fig. 9. Oscillation of indicative parameters NO3- and SEC at monitoring site Skorba, (measuring station VG-3) in the period 2008– 2019. Razprava Analiza trendov gladin podzemnih voda (Andjelov et al., 2021a) je za vodna telesa s prevladujoco medzrnsko poroznostjo v plitvih aluvialnih vodonosnikih izpostavila nekatere statisticno znacilne upadajoce trende letnih povprecij gladin podzemnih voda v obdelovalnem obdobju 1990– 2019 na VTpodV 1001 Savska kotlina in Ljubljansko Barje, 1002 Savinjska kotlina, 1003 Krška kotlina in VTpodV 3012 Dravska kotlina (sl. 4). Delež merilnih mest z zniževanjem gladin podzemne vode v plitvih vodonosnikih v napovedovalnem obdobju do leta 2027 sicer nikjer ne presega praga 25 % obravnavanih merilnih mest na danem VTPodV, kar je eden od pomembnih kriterijev za doseganje dobrega kolicinskega stanja (Uradni list RS, 2009a, 2012, 2016; Andjelov et al., 2021a). Stanje gladin ostaja primerljivo razmeram analiziranim v NUV II (Andjelov et al., 2015). Izjema je VTpodV 1003 Krška kotlina, kjer so se razmere z izgradnjo akumulacijskega bazena in tesnilne zavese za HE Brežice izboljšale in na vecini merilnih mest beležimo trend zviševanja gladin podzemne vode. Analiza trendov malih pretokov v povirnih obmocjih vodnih teles s kraško, razpoklinsko ali mešano poroznostjo ni zaznala zmanjšanja malih letnih pretokov do leta 2027 pod mejno vrednost referencnega obdobja. Kljub nekaterim ugotovljenim statisticno znacilnim trendom zmanjševanja letnih in sezonskih malih pretokov izvirov oziroma vodotokov lahko zakljucimo, da so trendi posledica naravne spremenljivosti podnebja in ne prekomerne rabe podzemne vode. Glede na rezultate analize trendov gladin in pretokov v obdobju 1990–2019 kolicinsko stanje podzemnih voda plitvih odprtih vodonosnikov vseh vodnih teles podzemnih voda ocenjujemo kot »dobro« z visoko stopnjo zaupanja. V plitvih vodonosnikih VTPodV je v obdobju 1990–2020 razpoložljive kolicine podzemne vode 4.042 milijonov m3. Letni odvzemi (crpane kolicine) v treh VTPodV, 3012 Dravska kotlina, 1001 Savska kotlina in Ljubljansko Barje in 4016 Murska kotlina, presegajo mejno vrednost 20 %, ki jo Evropska okoljska agencija uporablja kot zacetno opozorilo kolicinskega pritiska na vodne vire (Evropska okoljska agencija, 2005). Delež odvzemov v primeru nobenega od treh VTPodV ni vecji kot 65 %, kar kot mejno vrednost kolicinskega pritiska povzema evropski projekt GENESIS (Preda et al., 2014). Crpanje vode iz vodonosnikov na obmocju Slovenije v skupni povprecni letni kolicini 135 milijonov m3 predstavlja 3,3 % skupne razpoložljive kolicine podzemne vode. Kolicinsko stanje podzemnih voda plitvih odprtih vodonosnikov, glede na rezultate vodne bilance z modelom GROWA-SI v obdobju 1991–2020 (Andjelov et al., 2016b, 2021b), tako ocenjujemo kot »dobro« z visoko stopnjo zaupanja za vsa vodna telesa podzemne vode. V primerjavi z oceno kolicinskega stanja podzemnih voda za NUV II (Andjelov et al., 2015), novejša ocena NUV III podaja nekoliko nižje skupne razpoložljive kolicine podzemne vode (razpoložljive kolicine NUV II: 4.285 milijonov m3) in nekoliko višje kolicine odvzema podzemne vode (NUV II: 132,815 milijonov m3 oziroma 3,1 % razpoložljivih kolicin podzemne vode). Raba podzemne vode se je v zadnjem ocenjevalnem obdobju NUV III v primerjavi z NUV II povecala v 17 od skupno 21 vodnih telesih podzemne vode. Najvecje povecanje odvzemov zaradi crpanja je bilo ugotovljeno v vodnih telesih podzemne vode VTPodV 1003 Krška kotlina, za 1,288 milijonov m3/leto, in v VTPodV 1002 Savinjska kotlina, za 1,119 milijonov m3/leto. Nižje kolicine kot v NUV II so bile v NUV III ugotovljene v 4 od skupno 21 vodnih teles podzemne vode. Najvecje zmanjšanje crpanih odvzemov beležimo v VTPodV 1009 Spodnji del Savinje do Sotle, za 2,731 milijonov m3/leto, in v VTPodV 3012 Dravska kotlina, za 1,335 milijonov m3/leto. Za ocenjevanje kolicinskega stanja termalnih voda v Mursko-Zalskem bazenu se od leta 2014 v sodelovanju med Agencijo RS za okolje in Geološkim zavodom Slovenije razvija matematicni model toka podzemne vode in prenosa toplote (Rman & Šram, 2019), ki služi kot podpora oceni kolicinskega stanja podzemne vode in odlocanju za podeljevanje novih in podaljševanje obstojecih vodnih pravic. Kljub indikacijam o zniževanju piezometricne gladine podzemne vode v opazovalnih vrtinah je kolicinsko stanje podzemne vode v globokem vodonosniku vodnega telesa VTPodV 4016 268 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR Murska kotlina opredeljeno kot »dobro« s srednjo stopnjo zaupanja. Pri tem smo upoštevali podatke obeh opazovalnih vrtin in obratovalnega monitoringa, pri cemer so zanesljive meritve obratovalnega monitoringa na obmocju celotnega bazena porocane šele po letu 2017, kar vpliva na vecjo negotovost ocene. Isto dejstvo vpliva tudi na negotovost vodne bilance matematicnega modela (Rman & Šram, 2019), ki opozarja, da so kolicine odvzema termalne vode verjetno že dokaj blizu obnovljivih kolicin. K nižji stopnji zaupanja ocene prispeva tudi dejstvo, da državni monitoring stanja podzemnih voda globokih vodonosnikov še ni vzpostavljen. Predstavljena ocena vkljucuje le podatke do vkljucno leta 2019, ker je bila izdelana za NUV III. Za tem obdobjem smo v letih 2020–2021, v casu epidemije korona virusa, opazili izrazit vpliv zacasnega zaprtja nekaterih crpališc termalne vode na gladine podzemne vode. Takrat je na številnih lokacijah prišlo do obrata trenda - gladine so se bodisi stabilizirale bodisi zvišale (sl. 10). Ker je bil skupni odvzem termalne vode v letu 2022 še vedno opazno nižji, kot je bil v letu 2019 in pred tem (Rajver et al., 2023), torej kot je bil uporabljen za oceno stanja za NUV III, so trendi trenutno ugodni. V letu 2023 se je takšen obrat trenda prvic zaznal tudi v opazovalni vrtini v Dobrovniku. Kolicinsko stanje podzemne vode je po preizkusu vpliva odvzemov podzemne vode na ekološko stanje površinskih vodnih teles ocenjeno kot »dobro« s srednjo stopnjo zaupanja. Pri nobenem obravnavanem vodnem telesu površinskih voda odvzemi podzemne vode ne povzrocajo slabega ekološkega stanja. Stopnja zaupanja rezultatov preizkusa je ocenjena kot srednja predvsem zaradi nezadostnega poznavanja hidravlicnih odnosov med površinskimi in podzemnimi vodami. Izdelava ocene je izpostavila potrebo po pregledu metodološkega pristopa tega preizkusa. Potrebno je preveriti metodologijo na obmocju kraških vodnih teles in aluvialnih vodonosnikov, saj zaradi posebnih hidrogeoloških znacilnosti lahko pri interpretaciji prihaja do napacnega razumevanja rezultatov. Ocena preizkusa vpliva odvzemov podzemne vode na kopenske ekosisteme, odvisne od podzemne vode, ne odkriva znatnega vpliva crpanja podzemne vode na obravnavane kopenske ekosisteme, kar zagotavlja oceno kolicinskega stanja kot »dobro«. Preizkus ima srednjo stopnjo zaupanja, predvsem zaradi pomanjkanja informacij o mejnih vrednostih gladine podzemne vode za ohranjanje habitata in zaradi pomanjkanja podatkov o gladini podzemne vode na nekaterih obmocjih KEOPV. Preizkus vpliva odvzemov podzemne vode na vdore slane vode je bil opravljen za vodonosni sistem 50621 Brestovica – Timava (VTPodV 5019 Obala in Kras z Brkini), ki je domnevno v stiku z morsko vodo, obenem pa predstavlja strateško pomemben vir regionalne oskrbe s pitno vodo (Urbanc, 2020). Ugotovljeno je bilo, da crpanje podzemne vode ne povzroca vdora slane vode, kar so potrdili tudi raziskovalni rezultati 30-dnevnega crpalnega poskusa na štirih vrtinah vodnega vira Brestovica – Klarici v letu 2008 (Urbanc et al., 2012) ter rezultati raziskav s ciljem izboljšanja konceptualnega modela in transporta podzemne vode v zahodnem delu kraškega vodonosnika Krasa (Petric et al., 2018, 2019, 2020, 2021, 2022). Preizkus vpliva odvzemov podzemne vode na vdore vode slabše kakovosti je bil opravljen tudi za VTpodV 3012 Dravska kotlina, za katerega je bilo kolicinsko stanje podzemne vode opredeljeno kot »slabo«. Že v NUV II na vodnem obmocju Donave iz leta 2016 (Vlada RS, 2016a) je opredeljeno, 269 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Sl. 10. Mesecna povprecja piezometricne gladine podzemne vode v opazovalnih vrtinah Do-1 (Dobrovnik) in V-66 (Petanjci) v obdobju 2009– 2023 z opaznim obratom trenda (Rman et al., 2023). Fig. 10. Monthly averages of the piezometric groundwater level in piezometers Do-1 (Dobrovnik) and V-66 (Petanjci) for the period 2009–2023 with evident trend reversal (Rman et al., 2023). da okoljski cilji glede kolicinskega stanja v vodnem telesu podzemne vode VTPodV Dravska kotlina do leta 2021 morda ne bodo doseženi. Na osnovi NUV II iz leta 2016 je Racunsko sodišce RS v porocilu »Ucinkovitost dolgorocnega ohranjanja virov pitne vode« ugotovilo, da do leta 2021 obstaja tveganje, da bo v drugem, pliocenskem vodonosniku prišlo do poslabšanja kolicinskega stanja podzemne vode (RSRS, 2019a). Na podlagi Revizijskega porocila je Ministrstvo za okolje in prostor predlagalo popravljalne ukrepe v odzivnem porocilu, ki so opisani v Porevizijskem porocilu (RSRS, 2019b). Tveganje za slabo kolicinsko stanje v tem vodnem telesu je opredeljeno tudi v osnutku NUV III na vodnem obmocju Donave za obdobje 2022–2027 (MNVP, 2021). »Slaba« ocena kolicinskega stanja za VTpodV 3012 Dravska kotlina pritrjuje ugotovitvam racunskega sodišca o vdoru onesnažene vode iz zgornjega, kvartarnega vodonosnika v spodnji, pliocenski vodonosnik, povzrocenega s prekomerno rabo podzemne vode. V prihodnje bo potrebna izvedba raziskav za nadaljnji razvoj konceptualnega modela pliocenskega vodonosnika, ki vkljucujejo natancno opredelitev napajalnega zaledja vodnega telesa in napajalnega zaledja obmocij crpanja podzemne vode, natancno opredelitev dinamike toka in gladine podzemne vode tako zgornjega kvartarnega kot tudi spodnjega pliocenskega vodonosnika in poglobitev znanja o geološki zgradbi vodonosnika, ki zajema analizo prisotnosti slabše prepustnih plasti nad obravnavanim vodonosnikom. Za potrditev tehnicne primernosti crpalnih objektov bi bil, z namenom doseganja dobrega stanja vodnega telesa podzemne vode, potreben tudi ustrezen tehnicni pregled objektov in sanacija le-teh v primeru neprimernega stanja. Podnebni scenariji do konca 21. stoletja za Slovenijo kažejo na pozitiven trend narašcanja povprecne letne temperature zraka, medtem ko pri kolicini padavin signali sprememb niso tako enoznacni (Bertalanic et al., 2018). Najvecje spremembe v skupni kolicini padavin bodo v zimskem casu, ko se pricakuje vec padavin in s tem tudi vecje kolicine napajanja podzemne vode (Draksler, 2019). Ker se bo temperatura zraka zviševala, se v prihodnje pricakuje povecan pojav zimskih padavin v obliki dežja. V poletnem casu vecjih sprememb v skupni kolicini padavin do sredine stoletja ne pricakujemo, zmanjšalo pa se bo število padavinskih dni, kar pomeni, da bo vecina padavin padla v zelo kratkem casu. Zato lahko pricakujemo mocnejše in pogostejše nalive ter neurja, pogosteje pa se bomo srecevali tudi z vmesnimi sušnimi obdobji, na kar kažejo tudi kazalci hidrološke suše podzemne vode v zadnjih desetletjih (Pavlic, 2023). Zakljucek Ocena kolicinskega stanja podzemnih voda za NUV III je celovit in standardiziran obdobni pregled rezultatov monitoringa ter analize kolicinskega stanja podzemnih voda. Usmerjena je v podporo nacrtovanju ukrepov za izboljšanje oz. dolgorocno ohranjanje dobrega stanja podzemnih voda v Sloveniji. Na podlagi rezultatov izvedenih preizkusov se kolicinsko stanje v ocenjevalnem obdobju 2014– 2019 v vecini vodnih teles podzemne vode v Sloveniji ocenjuje s skupno oceno »dobro« s srednjo do visoko stopnjo zaupanja. Izjema je vodno telo podzemne vode VTpodV 3012 Dravska kotlina, kjer je bilo zaradi neizpolnjevanja kriterijev dobrega kolicinskega stanja, s preizkusom vpliva odvzemov podzemne vode na vdore slane vode ali vode slabše kakovosti, stanje ocenjeno kot »slabo« s srednjo stopnjo zaupanja. V prihodnosti lahko pricakujemo mocnejše in pogostejše nalive ter neurja, pogosteje pa se bomo srecevali tudi z vmesnimi sušnimi obdobji, zato se bo potrebno v prihodnjem nacrtu upravljanja z vodami resneje in celostno osredotociti na prihodnje izzive spopadanja z ekstremnimi hidrološkimi pojavi, ki jih povzroca spremenjeno podnebje ter se nanje ustrezno prilagoditi. Vecjo pozornost bo v prihodnje potrebno nameniti tudi vzdržni rabi podzemne vode v globokem geotermalnem vodonosniku na severovzhodu države (vodno telo podzemne vode VTPodV 4016 Murska kotlina). Zahvala Razvoj metodologije za oceno kolicinskega stanja podzemnih voda je plod vecletnega dela sodelavcev ARSO, kjer izpostavljamo strokovni prispevek bivših kolegov Nika Trišica in dr. Jožeta Uhana. Za njun doprinos se iskreno zahvaljujemo. Zahvala gre tudi recenzentoma revije za hiter in strokoven pregled clanka ter konstruktivne pripombe. Literatura Andjelov, M., Gale, U., Kukar, N., Trišic, N. & Uhan, J. 2006: Groundwater quantitative status assessment in Slovenia. Geologija, 49/2: 383–391. https://doi.org/10.5474/geologija. 2006.027 Andjelov, M., Frantar, P., Mikulic, Z., Pavlic, U., Savic, V., Souvent, P. & Trišic, N. 2015: Kolicinsko stanje podzemnih voda v Sloveniji - Osnove za NUV 2015–2021. Agencija RS za okolje, Ljubljana: 64 p. Internet: https://meteo. arso.gov.si/uploads/probase/www/hidro/wa 270 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR tercycle/text/sl/publications/monographs/Kolicinsko_ stanje_podzemnih_voda_v_Sloveniji_ OSNOVE_ZA_NUV_2015_2021_2015.pdf (19.9.2023) Andjelov, M., Frantar, P., Mikulic, Z., Pavlic, U., Savic, V., Souvent, P. & Uhan, J. 2016a: Groundwater quantitative status assessment for River Basin Management Plan 2015-2021 in Slovenia. Geologija, 59/2: 205–219. https:// doi.org/10.5474/geologija.2016.012 Andjelov, M., Mikulic, Z., Tetzlaff, B., Uhan, J. & Wendland, F. 2016b: Groundwater recharge in Slovenia: results of a bilateral German- Slovenian Research project. Schriften des Forschungszentrums Jülich. Reihe Energie & Umwelt, 339: 138 p. Internet: https://meteo. arso.gov.si/uploads/probase/www/hidro/ watercycle/text/sl/publications/monographs/ Groundwater_recharge_in_Slovenia_Energie_ Umwelt_339_2016.pdf (19.9.2023) Andjelov, M., Draksler, A., Frantar, P., Pavlic, U., Rman, N. & Souvent, P. 2019: Kolicinsko stanje podzemnih voda v Sloveniji. Porocilo o monitoringu v letu 2017. Agencija RS za okolje, Ljubljana: 103 p. Internet: https://www.arso.gov. si/vode/podzemne%20vode/publikacije%20in%20poro%c4%8dila/Kolicinsko_stanje_ podzemnih_voda_v_Sloveniji_Porocilo_o_ monitoringu_2017.pdf (27.11.2023) Andjelov, M., Frantar, P., Pavlic, U., Rman, N. & Souvent, P. 2021a: Kolicinsko stanje podzemnih voda v Sloveniji - Osnove za NUV 2022– 2027. Agencija RS za okolje, Ljubljana: 95 p. Internet: https://meteo.arso.gov.si/uploads/ probase/www/hidro/watercycle/text/sl/ publications/monographs/Kolicinsko_stanje_ podzemnih_voda_v_Sloveniji_OSNOVE_ ZA_NUV_2022_2027.pdf (19.9.2023) Andjelov, M., Frantar, P., Pavlic, U., Rman, N. & Souvent, P. 2021b: Kolicinsko stanje podzemnih voda v Sloveniji. Porocilo o monitoringu v letu 2019. Agencija RS za okolje, Ljubljana: 110 p. Internet: https://meteo.arso.gov. si/uploads/probase/www/hidro/watercycle/ text/sl/publications/periodic_publications/ gw_monitoring_reports/Kolicinsko_stanje_ podzemnih_voda_v_Sloveniji_Porocilo_o_ monitoringu_2019.pdf (19.9.2023) Bertalanic, R., Dolinar, M., Draksler, A., Honzak, L., Kobold, M., Kozjek, K., Lokošek, N., Medved, A., Vertacnik, G., Vlahovic, Ž. & Žust, A. 2018: Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja. Sintezno porocilo – prvi del. Agencija RS za okolje, Ljubljana: 156 p. Internet: https://meteo.arso.gov.si/uploads/ probase/www/climate/text/sl/publications/ OPS21_Porocilo.pdf (19.9.2023) Direktiva, 2000: Direktiva 2000/60/ES Evropskega parlamenta in Sveta z dne 23. oktobra 2000, ki doloca okvir za delovanje Skupnosti na podrocju vodne politike. Internet: https:// eur-lex.europa.eu/legal-content/SL/TXT/PDF/? uri=CELEX:32000L0060 (19.9.2023) Draksler, A. 2019: Analiza vplivov podnebnih sprememb na vodne in energetske vire. Ocena kolicinskega stanja podzemne vode v spremenjenem podnebju. Koncno porocilo izvedbe »Ocene kolicinskega stanja podzemne vode v spremenjenem podnebju«, Strokovne storitve, Andrej Draksler s.p., Ljubljana: 21 p. Evropska okoljska agencija 2005: The European environment – State and outlook 2005. Copenhagen : 570 p. Internet: 2af330fead51c0d5e7cd0aad6e54243a (19.9.2023) Evropska komisija, Directorate-General for Environment 2009: Guidance on groundwater status and trend assessment. Guidance document No 18. Publications Office, Luxembourg: 82 p. Internet: https://data.europa.eu/ doi/10.2779/77587 (19.9.2023) Evropska komisija 2016: Common Implementation Strategy for the Water Framework Directive and the Floods Directive. Guidelines on Integrating Water Reuse into Water Planning and Management in the context of the WFD, Amsterdam: 93 p. Internet: https://suwanu-europe. eu/wp-content/uploads/2019/05/Guidelines_ on_water_reuse.pdf (19.9.2023) Frantar, P., Draksler, A., Herrmann, F. & Wendland, F. 2019: Climate change impact on groundwater recharge in Slovenia in the period 2011–2100. In: Gomez Hernandez, J. & Andreo Navarro, B. (eds.): Proceedings of the 46th Annual Congress of the International Association of Hydrogeologists (Groundwater management and governance: coping with uncertainty), Málaga: p. 172. Höller, C. 2004: Erstabschätzung der vervübaren Grundwasserressource für Enzelgrundwasserkörper mit unzureichenader Datenlage. Gem. EU-WRRL, September 2004. Methodenbeschreibung für strategiepapier des BMLFUW. Technisches Büro für Kulturtechnik & Wasserwirtschaft, Güssnig: 89 p. Janža, M., Šram, D., Mezga, K., Andjelov, M. & Uhan, J. 2016: The assessment of the required groundwater quantity for the conservation of ecosystems and the achievement of a good ecological status of surface waters. Geologija, 59/2: 221– 232. https://doi.org/10.5474/geologija.2016.013 271 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) Lapanje, A., Rman, N., Serianz, L., Adrinek, S. & Vengust, A. 2018: Analiza programov in porocil monitoringa odvzemov podzemne vode po koncesijskih pogodbah za leto 2018. Geološki zavod Slovenije, Ljubljana: 55 p. Mezga, K., Janža, M., Šram, D. & Koren, K. 2015: Priprava strokovnih podlag in strokovna podpora pri izvajanju vodne direktive za podrocje podzemnih voda (Direktiva 2000/60/EC), 2. UKREP DDU26: Analiza razpoložljivih zalog podzemne vode in površinske vode ter obstojece in predvidene rabe vode za obdobje do 2021 – Pregled ekosistemov odvisnih od stanja podzemnih vod (koncno porocilo). Geološki zavod Slovenije, Ljubljana: 77 p. Mihorko, P. & Gacin, M. 2019: Kemijsko stanje podzemne vode v Sloveniji. Porocilo za leto 2018. Agencija RS za okolje, Ljubljana: 48 p. Internet: http://www.arso.gov.si/vode/ podzemne%20vode/publikacije%20in%20poro%c4%8dila/Porocilo_podzemne_2018_ splet.pdf (13.11.2023) MNVP 2021: Osnutek nacrta upravljanja voda na vodnem obmocju Donave za obdobje 2022– 2027. Gradivo za javno obravnavo, Ministrstvo za naravne vire in prostor. Internet: https://www.gov.si/assets/ministrstva/MOP/ Javne-objave/Javne-obravnave/NUV_III/nuvIII_ osnutek_Donava.pdf (15.9.2023) Pavlic, U. 2023: Hidrološka suša podzemnih vod: [PP13]. Kazalci okolja v Sloveniji. Internet: http://kazalci.arso.gov.si/sl/content/hidroloska- susa-podzemnih-vod (10.9.2023) Petric, M., Viršek Ravbar, N., Blatnik, M., Gabrovšek, F. & Mulec, J. 2018: Hidrogeološke analize za potrebe razvoja konceptualnega modela na obmocju meddržavnega podzemnega toka vode na Krasu – aktivnosti v letu 2018. ZRC-SAZU: Inštitut za raziskovanje krasa, Postojna: 11 p. Petric, M. & Viršek Ravbar, N. 2019: Hidrogeološke analize za potrebe razvoja konceptualnega modela na obmocju meddržavnega podzemnega toka vode na Krasu – aktivnosti v letu 2019. ZRC-SAZU: Inštitut za raziskovanje krasa, Postojna: 14 p. Petric, M. & Viršek Ravbar, N. 2020: Hidrogeološke analize za potrebe razvoja konceptualnega modela na obmocju meddržavnega podzemnega toka vode na Krasu – aktivnosti v letu 2020. ZRC-SAZU: Inštitut za raziskovanje krasa, Postojna: 17 p. Petric, M. & Ravbar, N. 2021: Hidrogeološke analize za potrebe razvoja konceptualnega modela na obmocju meddržavnega podzemnega toka vode na Krasu – aktivnosti v letu 2021. ZRC- SAZU: Inštitut za raziskovanje krasa, Postojna: 14 p. Petric, M., Ravbar, N., Kogovšek, B., Mulec, J., Frantar, P. & Pavlic, U. 2022: Hidrogeološke analize za potrebe razvoja konceptualnega modela na obmocju meddržavnega podzemnega toka vode na Krasu – aktivnosti v letu 2022. ZRC-SAZU: Inštitut za raziskovanje krasa, Postojna: 27 p. Preda, E., Klřve, B., Kvćrner, J., Lundberg, A., Siergieiev, D., Boukalova, Z., Wachniew, P., Postawa, A., Witczak, S., Balderacchi, M., Trevisan, M., Ertürk, A., Gonenc, E., Rossi, P., Muotka, T., Ilmonen, J., Stefanopoulos, K. & Vadineanu, A. 2014: New indicators for assessing GDE vulnerability, deliverable D4.3, GENESIS project: 108 p. Rajver, D., Pestotnik, S., Rman, N., Hribernik, K., Srša, A., Lapanje, A., Prestor, J. & Adrinek, S. 2023: Pregled rabe geotermalne energije v Sloveniji v letu 2022 in nacin pridobivanja podatkov o trgu geotermalnih toplotnih crpalk. Mineralne surovine v letu 2022, 19/1: 154–173. Rman, N., Lapanje, A., Šram, D., Janža, M., Rižnar, I., Rajver, D., Koren, K. & Hribernik, K. 2014: Hidrogeološki matematicni model toka podzemne vode in prenosa toplote. Geološki zavod Slovenije, Ljubljana: 36 p. Rman, N., Lapanje, A., Prestor, J. & O‘Sullivan, M. 2016: Mitigating depletion of a porous geothermal aquifer in the Pannonian sedimentary basin. Environmental Earth Sciences, 75: 237. https://doi.org/10.1007/s12665-016-5634-1 Rman, N. & Šram, D. 2019: Hidrogeološki matematicni model toka podzemne vode in prenosa toplote v globokem geotermalnem telesu podzemne vode severovzhodne Slovenije – novelacija v letu 2019. Geološki zavod Slovenije, Ljubljana: 54 p. Rman, N., Adrinek, S. & Lapanje, A. 2023: Hidrogeološki matematicni model prenosa toplote v globokem geotermalnem telesu podzemne vode severovzhodne Slovenije –– novelacija modela v letu 2023. Geološki zavod Slovenije, Ljubljana: 50 p. RSRS – Racunsko sodišce Republike Slovenije 2019a: Revizijsko porocilo, Ucinkovitost dolgorocnega ohranjanja virov pitne vode. Številka: 320-7/2017/30. Internet: http://www. rs-rs.si/fileadmin/user_upload/Datoteke/ Revizije/2019/PitnaVoda/PitnaVoda_RSP.pdf (10. 9. 2023) RSRS – Racunsko sodišce Republike Slovenije 2019b: Porevizijsko porocilo, Popravljalni 272 Petra SOUVENT, Urška PAVLIC, Mišo ANDJELOV, Nina RMAN & Peter FRANTAR ukrepi pri reviziji ucinkovitosti dolgorocnega ohranjanja virov pitne vode. Številka: 320- 7/2017/35. Internet: http://www.rs-rs.si/fileadmin/ user_upload/Datoteke/Revizije/2019/ PitnaVoda_porev/PitnaVoda_RSP_PorevizijskoP. pdf (10.9.2023) Tancar, M. & Vižintin, G. 2021: Analiza letnih porocil in programov koncesionarjev geotermalne rabe vode in proizvodnje pijac za leto 2020. HGEM, Ljubljana: 37 p. Uradni list RS 2003: Pravilnik o metodologiji za dolocanje vodnih teles podzemnih voda. Uradni list RS, št. 65/2003. Internet: http://www.pisrs.si/Pis.web/pregledPredpisa? id=PRAV5074 (15.9.2023) Uradni list RS 2005, 2018: Pravilnik o dolocitvi vodnih teles podzemnih voda. Uradni list RS, št. 63/2005 in 8/2018. Internet: http://www.pisrs.si/Pis.web/pregledPredpisa? id=PRAV6945 (15.9.2023) Uradni list RS 2009a, 2012, 2016: Uredba o stanju podzemnih voda. Uradni list RS, št. 25/2009, 68/2012 in 66/2016. Internet: http://www.pisrs.si/Pis.web/pregledPredpisa? id=URED5121 (15.9.2023) Uradni list 2009b: Pravilnik o monitoringu podzemnih voda. Uradni list RS, št. 31/2009. Internet: http://pisrs.si/Pis.web/pregledPredpisa? id=PRAV9521 (15.9.2023) Urbanc, J., Mezga, K. & Zini, L. 2012: An assessment of capacity of Brestovica - Klarici karst water supply (Slovenia). Acta Carsologica, 41/1: 89–100. https://doi.org/10.3986/ac. v41i1.50 Urbanc, J. 2020: Klarici pri Brestovici – prezrti vir pitne vode, Blog 11.11.2020. Internet: https:// sdzv-drustvo.si/novice/klarici-pri-brestovici- prezrti-vir-pitne-vode/ (8.11.2023) Vlada RS 2016a: Nacrt upravljanja voda na vodnem obmocju Donave za obdobje 2016–2021. Internet: https://www.gov.si/assets/ministrstva/ MOP/Dokumenti/Voda/NUV/63dbe4066b/ NUV_VOD.pdf (15.9.2023) Vlada RS 2016b: Nacrt upravljanja voda na vodnem obmocju Jadranskega morja za obdobje 2016-2021. Internet: https://www.gov. si/assets/ministrstva/MOP/Dokumenti/ Voda/NUV/4195091b63/NUV_VOJM.pdf (18.9.2023) WFD Ireland 2005: WFD pressures and Impact Assessment Methodology: Guidance on the Assessment of the impact of groundwater abstractions, Paper by the Working Group on Groundwater, 23 p. Internet sources: Internet 1: https://vode.arso.gov.si/hidarhiv/ pod_arhiv_tab.php (6.10.2023) Internet 2: https://vode.arso.gov.si/hidarhiv/pov_ arhiv_tab.php (7.11.2023) Internet 3: https://meteo.arso.gov.si/met/sl/archive/ (7.11.2023) 273 Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) © Author(s) 2023. CC Atribution 4.0 License GEOLOGIJA 66/2, 275-283, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.013 Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor Uporaba georadarja (GPR) za zaznavo kripte pod tlakovanimi tlemi cerkve Marjana ZAJC1 & Alojzij GREBENC2 1Geological Survey of Slovenia, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenia; e-mail: marjana.zajc@geo-zs.si 2Priest at Church of St. Margaret, Dol pri Ljubljani 1f, SI–1262 Dol pri Ljubljani, Slovenia Prejeto / Received 1. 12. 2023; Sprejeto / Accepted 15. 12. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Key words: Ground Penetrating Radar (GPR), church Sv. Marjeta, crypt, underground chamber, Baron Erberg, Dol pri Ljubljani Kljucne besede: georadar (GPR), cerkev Sv. Marjete, kripta, podzemni prostor, baron Erberg, Dol pri Ljubljani Abstract After the discovery of an archive document regarding an underground crypt beneath the floors of the Church of St. Margaret (Sv. Marjeta) in Dol pri Ljubljani, Slovenia, further research was carried out to confirm its presence. An area filled with construction waste was discovered during a recent small-scale renovation of the church floor. This finding suggested the potential underground chamber may have been partly filled in during one of the previous restorations. A non-invasive GPR study was carried out along eight profiles inside the church to prove the existence of an underground crypt. Results show the presence of an air-filled chamber, confirmed later by a hole drilled in the floor. Additional findings in the church archive and pictures taken by a camera, lowered through a drilled hole, revealed three previously unknown caskets in the crypt. According to the archives, two of them belong to Baron Wolf Daniel Erberg and his wife who died in 1783 and 1774, respectively. Izvlecek Po odkritju uradnega dokumenta o obstoju podzemne kripte pod tlemi cerkve Sv. Marjete v Dolu pri Ljubljani v Sloveniji so bile za njeno potrditev izvedene nadaljnje raziskave. Med nedavno manjšo prenovo tal v cerkvi so odkrili obmocje, zapolnjeno z gradbenimi odpadki. Ta ugotovitev nakazuje, da je bil morebiten podzemni prostor verjetno zasut med eno od prejšnjih obnov. Da bi zagotovili vec dokazov o obstoju kripte na neinvaziven nacin, so bile v notranjosti cerkve izvedene georadarske meritve v osmih profilih. Rezultati kažejo na obstoj kripte, napolnjene z zrakom, kar je bilo kasneje potrjeno z izvrtano luknjo v tleh. Novi dokumenti, najdeni v arhivu in posnetki kamere, spušcene skozi luknjo v tleh, so razkrili tri prej neznane krste v kripti. Glede na arhivske podatke, dve od njih pripadata baronu Wolfu Danielu Erbergu ter njegovi ženi, ki sta umrla v letih 1783 in 1774. Introduction The Church Sv. Marjeta (St. Margaret), located in Dol pri Ljubljani, Slovenia, was first mentioned in 1262 (Grebenc, 2012) and again in 1427, as a Gothic building. Under the leadership of architect Mihael Perski, the church underwent extensive reconstruction in 1753 (Grebenc, 2012). Since then, there has been no major reconstructions apart from the re-paving of the church floor in 1886. We (priest Alojzij Grebenc serving at this church), have been researching the history of the church for many years and also written two books on the subject (Grebenc, 2012, 2013). While searching through the church archives, we came across a document issued in 1836 by the diocese to the Erberg Barons, a local noble family. The document was a permit for building an underground crypt on the church premises, however all further correspondence between the Erberg family and the diocese has been lost in the destruction of the rectory in 1944. During a recent small-scale renovation, one of the floor stones beneath the wooden benches (pews), was removed (black line in Fig. 1). This revealed an area filled with construction waste material, suggesting that an underground chamber could have existed in the past and has been partly filled in at the time of the last paving of the church floor in 1886. In the search for more evidence of an underground chamber, a Ground Penetrating Radar (GPR) study was carried out. By using this non-invasive geophysical method, we wanted to determine whether such an underground chamber does exist beneath the church floor, and if so, is there any part of it left that has not been filled-in with waste material. The GPR study was conducted inside the church where there was enough space for the profiles to be recorded. This method has been successfully applied in studies researching known underground chambers/crypts (e.g. Leucci et al., 2021) as well as previously unknown underground chambers (e.g. Barilaro et al., 2007). GPR has been widely used in numerous surveys to date for researching both natural air-filled subsurface voids (Lago et al., 2022; Lan et al., 2022; Zajc et al., 2015) and manmade subsurface air-filled structures (Mendoza et al., 2023; Obrocki et al., 2019). Methodology Location of GPR Profiles The GPR profiles were recorded inside the church, along the stone paved floor in all the areas where the internal layout permitted the passing of a GPR cart in a straight line (Fig. 1). Longitudinal profiles were recorded along the aisle between pews about 1 m apart and on each side of the pews. A transverse profile (P4) was recorded in front of the pews, parallel to the steps leading to the altar (Fig. 1). At the time of the measurements, an electrical cable was laid out diagonally along the aisle. The location where profiles P1-P3 crossed the cable was marked during recording. 276 Marjana ZAJC & Alojzij GREBENC Fig. 1. Left – GPR measurements with GPR cart inside the church; right – GPR profiles (blue lines), electrical cable (orange line), location of removed floor stone (black line). Equipment Used For the recording of the profiles, a MALĹ ProEx control unit and antennas mounted on a cart (Fig. 1) with two different frequencies, 500 MHz and 800 MHz were used. This ensured a sufficient depth penetration through the church floor and enabled a comparison of results with different resolutions. Data Processing The GPR profiles were processed using ReflexW, v. 8.5 by Sandmeier Software. The procedures and parameters of the processing flow are shown in Table 1. Due to the presence of different types of sediments, as well as fills of construction waste beneath the church floor, the subsurface is extremely heterogeneous. When the signal passes through the different types of materials, its velocity changes and therefore varies significantly with depth. The velocity also changes laterally as the profiles are recorded over different mediums, e.g. waste material, sediments and air-filled chambers. Figure 2 shows an example of different signal velocities within the profile P3, determined with the hyperbola fitting procedure. Consequently, an average signal velocity of 0.09 m/ns was used for the time-to-depth conversion across all GPR profiles. High velocity variation along the profiles was also the reason that data migration could not be successfully applied. As the purpose of the study was to find a potential air-filled chamber and no exact depths needed to be extracted from the GPR data, a rough estimation of the signal velocity was sufficient for determining the depth scale. Results By comparing profiles recorded with the 500 and 800 MHz antennas, it is evident that the same features can be identified in both. An example of the comparison is shown for profile P2 (Fig. 3), which was recorded along the church aisle in the direction from the entrance to the steps in front of the altar. A continuous linear boundary (yellow line) indicates the thickness of the church paved floor at the depth of approx. 30 to 40 cm. Chaotic reflections and anomalies indicate the presence of subsurface voids, which represent underground air-filled chambers (red frames). Such patterns in GPR profiles are caused by multiple signals that reflect off walls and other objects inside the air- filled voids. When the diameters of the voids are significantly larger than the GPR frequency wavelength, they produce irregular reverberation patterns (Kofman et al., 2006; Luo & Lai, 2020) or so-called chaotic reflections (Thitimakorn et al., 2016). These areas appear closer to the church entrance and are not present at the location of the previously removed floor stone (black line in Fig. 3), which revealed the area filled in with construction waste. Here, the penetration depth is hindered due to a higher signal attenuation and signal scattering (green frames), caused by the presence of heterogeneous materials. A strong anomaly can also be seen at the point of crossing an electrical cable on the floor of the church (blue frames). By analysing the 500 MHz parallel longitudinal GPR profiles that show the presence of chaotic reflections, it is evident that these appear in the same area of the church (red areas in Fig. 4) and therefore indicate the location of the air-filled underground chamber. 277 Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor Fig. 2. Examples of different signal velocities, determined with hyperbola fitting. Processing steps Parameter 500 MHz 800 MHz DC Shift 60 – 68 ns 30 – 36 ns Time-zero correction - 5.5 ns - 3.3 ns Background removal Whole line Whole line Gain Energy decay Energy decay Bandpass filtering 240/350/600/850 (MHz) 350/550/1000/1300 (MHz) Time-depth conversion (hyperbola fitting) 0.09 m/ns 0.09 m/ns Table 1. GPR data processing steps applied. 278 Marjana ZAJC & Alojzij GREBENC Fig. 3. Comparison of 500 MHz (top) and 800 MHz (bottom) radargrams for P2 profile with marked floor boundary (yellow line), area with chaotic reflections (red frames), area of high signal attenuation (green frames) and effects from crossing an electric cable (blue frames). See Fig. 1 for the location of the profile. 279 Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor Fig. 4. Longitudinal 500 MHz GPR profiles P1 to P3, P5 and P6, showing the location of chaotic reflections (red area), high signal attenuation (green area), effect from crossing an electric cable (blue area) and linear reflections (yellow lines). See Fig. 1 for location of GPR profiles. 280 Marjana ZAJC & Alojzij GREBENC Fig. 5. Plan sketch based on GPR results from Fig. 3, depicting the area of underground air-filled chamber (red polygon) and location of drilled hole (black circle). Fig. 6. Last will and testament of Baron Wolf Daniel Erberg, where he states he wishes to be buried next to his late wife in the crypt of the St. Margaret church in Dol pri Ljubljani (Lustall) (from the Archives of the Republic of Slovenia). Discussion Based on the GPR results, the plan sketch in Figure 5 was created. It shows the areas of chaotic reflections seen on individual GPR profiles linked into a connected area (red polygon). This area represents the part of the subsurface chamber not filled in with construction waste material. Similar chaotic reflections have been linked to the presence of subsurface voids in other GPR studies (e.g. Thitimakorn et al., 2016). Due to the low number of profiles and lack of data below the pews it is not possible to exactly determine the spatial extent of the crypt using these GPR results. We can only provide a rough estimation of its spatial occurrence. For a more detailed analysis, pews would need to be removed and a dense 3D GPR survey would need to be performed. For the purpose of verifying the existence of the crypt, we found the recorded eight profiles were sufficient. These GPR results were presented at an international conference (Zajc, 2023) and prompted a more thorough investigation of the church register of burials as well as the archdiocesan archive. Two more documents mentioning the church crypt were found. The first was a last will and testament from the Baron Wolf Daniel Erberg from 1775 (Fig. 6), written in German, where he states that he wishes to be buried alongside his late wife in the crypt of the Church of St. Margaret in Lustall (German name for Dol pri Ljubljani). Since his wife died in 1774, a year before this last will was written, it provides proof that the crypt does exists somewhere on the church premises and at least one person was buried in it. The second written record found after the GPR survey was completed, was the entry in the church death records (Fig. 7), where it states that in May of 1783, Baron Wolf Daniel Erberg has died aged 69 and is buried in the crypt of the Church of St. Margaret in Dol pri Ljubljani (entry written by priest Sebastian Bradaška). This provided even more evidence on the existence of the crypt and encouraged to continue with the investigation. First, a small hole was drilled into the church floor in the area where the GPR results show signs of an underground chamber. The telescopic inspection camera lowered into the hole revealed an underground air-filled room with an arched ceiling, thus confirming GPR results. However, the low resolution of the camera and insufficient lighting made it impossible to determine the size of the room or to define any other objects inside. Therefore, in 281 Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor Fig. 7. Entry in the death records of the Church of St. Margaret in Dol pri Ljubljani, where it states that Baron Wolf Daniel Erberg has died aged 69 and is buried in the church crypt (NŠAL, 2023). November 2023, a larger hole of approx. 10 cm in diameter was drilled in the same area (black circle in Fig. 5) and a light source was lowered into the chamber to investigate its contents with a higher resolution camera. The video recordings showed a room about 3 × 4 m in size and about 2 m deep, located beneath the church aisle, containing three wooden caskets. The caskets are partially uncovered, revealing the body remains underneath the wooden lids (Fig. 8). There are also inscriptions written on the sides of the caskets, however, due to the poor resolution of the images, they are not fully readable. Based on the existing records, it is assumed that the crypt was built by the Baron Erberg family during the last extensive reconstruction of the church in 1753 and the entry was most likely filled up by construction waste material during the last renovation of the church floor in 1886. Currently, it is not yet known who the remains in the third casket belong to. Conclusion The GPR results provided proof of the existence of an underground crypt, mentioned in the archives of the Church of Sv. Marjeta (St. Margaret) in Dol pri Ljubljani. Moreover, by carrying out the GPR study, we were able to precisely locate the crypt. Based on the GPR results, further investigation of the church archives prompted an underground camera inspection, which confirmed its presence in this exact area. This confirmation is of great cultural and historical importance, therefore further investigations will be carried out in the future. Acknowledgments The authors acknowledge the financial support from the Slovenian Research and Innovation Agency (research core funding No. P1-0011). The GPR study was financed by the parish of Dol pri Ljubljani. We would like to thank the Vitrum laser company for permitting the use of their 800 MHz antenna and Janez Iglicar for performing the video inspection of the underground area. References Barilaro, B., Branca, C., Gresta, S., Imposa, S., Leone, A. & Majolino, D. 2007: Ground penetrating radar (G.P.R.) surveys applied to the research of crypts in San Sebastiano’s church in Catania (Sicily). Journal of Cultural Heritage, 8/1: 73–76. https://doi.org/10.1016/j.culher. 2006.10.003 Grebenc, A. 2012: Tam v Dolu roža rase, Naša župnija: 1262–2012: 750 let. Salve, Ljubljana: 429 p. Grebenc, A. 2013: Tam v Dolu roža rase, Naša naselja: 1262–2012: 750 let: župnija Dol pri Ljubljani. Salve, Ljubljana: 528 p. Kofman, L., Ronen, A. & Frydman, S. 2006: Detection of model voids by identifying reverberation phenomena in GPR records. Journal of Applied Geophysics, 59/4: 284–299. https:// doi.org/10.1016/j.jappgeo.2005.09.005 Lago, A.L., Borges, W.R., Barros, J.S. & Amaral, E. de S. 2022: GPR application for the characterization of sinkholes in Teresina, Brazil. Environ Earth Sci 81: 132. https://doi.org/10.1007/ s12665-022-10265-4 282 Marjana ZAJC & Alojzij GREBENC Fig. 8. Still photographs taken from the recordings of the crypt with an arched ceiling. Left – three partially uncovered caskets; right – inscription on one of the caskets (author: J. Iglicar). Lan, R., Liu, Z., Liu, M., Guan, Q., Yan, Y., Sun, H. & Zhou, D. 2022: Detection of karst caves during tunnel construction using ground-penetrating radar and advanced drilling: A case study in Guangxi Province, China. Near Surface Geophysics, 20: 265–278. https://doi. org/10.1002/nsg.12207 Leucci, G., De Giorgi, L., Ditaranto, I., Miccoli, I. & Scardozzi, G. 2021: Ground-Penetrating Radar Prospections in Lecce Cathedral: New Data about the Crypt and the Structures under the Church. Remote Sensing, 13/9: 1692. https:// doi.org/10.3390/rs13091692 Mendoza, R., Marinho, B. & Rey, J. 2023: GPR and Magnetic Techniques to Locate Ancient Mining Galleries (Linares, Southeast Spain). International Journal of Geophysics, 2023: 6633599. https://doi.org/10.1155/2023/6633599 NŠAL, ŽA (Nadškofijski arhiv Ljubljana, Župnijski arhiv) Dol pri Ljubljani, Maticne knjige, Mrliška knjiga 1774-1785, str. 16v. https://data. matricula-online.eu/en/slovenia/ljubljana/ dol-pri-ljubljani/00424/?pg=20 (pridobljeno: 30.11.2023) Obrocki, L., Eder, B., Gehrke, H.-J., Lang, F., Vött, A., Willershäuser, T., Rusch, K., Wilken, D., Hatzi-Spiliopoulou, G., Kolia, E.I. & Vikatou, O. 2019: Detection and localization of chamber tombs in the environs of ancient Olympia, Peloponnese, Greece, based on a combination of archaeological survey and geophysical prospection. Geoarchaeology: 34: 648–660. https://doi.org/10.1002/gea.21724 Thitimakorn, T., Kampananon, N., Jongjaiwanichkit, N. & Kupongsak, S. 2016: Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand. Geo-Engineering, 7/2. https://doi. org/10.1186/s40703-016-0017-8 Zajc, M., Celarc, B. & Gosar, A. 2015: Structural– geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia). Environ Earth Sci, 73: 8237–8249. https://doi. org/10.1007/s12665-014-3987-x Zajc, M. 2023: Using GPR for Detecting a Potential Crypt Beneath a Paved Church Floor. 12th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Lisbon: 5.–7. July 2023: 1–3. https://doi.org/10.1109/ IWAGPR57138.2023.10329221 283 Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor © Author(s) 2023. CC Atribution 4.0 License GEOLOGIJA 66/2, 285-299, Ljubljana 2023 https://doi.org/10.5474/geologija.2023.014 Impact assessment of the Gajke and Brstje landfills on groundwater status using stable and radioactive isotopes Ocena vpliva odlagališc Gajke in Brstje na stanje podzemne vode z uporabo stabilnih in radioaktivnih izotopov Sonja CERAR1, Luka SERIANZ1, Polona VRECA2, Marko ŠTROK2 & Tjaša KANDUC2 1Geological Survey of Slovenia, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenia; e-mail: sonja.cerar@geo-zs.si, luka.serianz@geo-zs.si 2Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, SI–1000, Ljubljana, Slovenia; e-mail: polona.vreca@ijs.si; marko.strok@ijs.si; tjasa.kanduc@ijs.si Prejeto / Received 17. 11. 2023; Sprejeto / Accepted 20. 12. 2023; Objavljeno na spletu / Published online 21. 12. 2023 Key words: groundwater, monitoring, landfill, stable isotopes, tritium, Gajke, Brstje Kljucne besede: podzemna voda, monitoring, odlagališce odpadkov, stabilni izotopi, tritij, Gajke, Brstje Abstract Waste disposal in landfills represents a severe threat to aquatic environments on the local, regional, and global levels. In Slovenia, there are 69 registered landfills where groundwater is regularly monitored. However, isotope techniques are not regularly employed. Therefore, we employed isotope analysis of hydrogen, carbon, and oxygen in combination with total alkalinity to assess the impact of the selected landfill on groundwater and to evaluate the biogeochemical processes at work. The d18O, d2H, d13CDIC, 3H activity and total alkalinity were determined in October 2020 at 12 sampling points from the surrounding area of the Gajke and Brstje landfills and leachate from the Gajke landfill. The d18O (-9.24 ± 0.3 ‰) and d2H (-64.9 ± 2.7 ‰) in groundwater indicate that the main water source consists in direct infiltration of precipitation, with no significant isotopic fractionation. Total alkalinity in the investigated area ranges from 5.45 to 73 mM and d13CDIC from –14.9 to +6.1 ‰, respectively. Higher values of total alkalinity (up to 73 mM), d13CDIC (up to +6.1 ‰), d18O (-7.64 ‰) and 3H (209.8 TU) are detected in the leachate, indicating biogeochemical process related to CO2 reduction or methanogenesis. Methanogenesis could be present at locations GAP-10/13 (Brstje landfill) and G-2 (Gajke landfill) with d13CDIC values ranging from –8.2 to –7.6 ‰ and with dissolved oxygen values around 0 % and elevated 3H values (from 16 to 18 TU). This study demonstrates the effectiveness of isotopic analysis as a valuable tool for monitoring landfills, revealing shifts in biogeochemical processes within the groundwater there. Izvlecek Odlaganje odpadkov na odlagališcih predstavlja resno grožnjo za vodna okolja na lokalni, regionalni in globalni ravni. V Sloveniji je 69 registriranih odlagališc, kjer se redno izvajajo obratovalni monitoringi kemijskega stanja podzemne vode. Kljub temu izotopske tehnike niso rutinsko uporabljene. Zato smo uporabili analizo izotopov vodika, ogljika in kisika v kombinaciji s skupno alkalnostjo, da bi ocenili vpliv izbranega odlagališca na podzemno vodo in ovrednotili biogeokemicne procese. d18O, d2H, d13CDIC, aktivnost 3H in skupna alkalnost so bile dolocene v oktobru 2020 v 12 vodnjakih v okolici odlagališc Gajke in Brstje in v izcedni vodi iz odlagališca Gajke. Vrednosti d18O (-9,24 ± 0,3 ‰) in d2H (-64,9 ± 2,7 ‰) v podzemni vodi kažejo, da je glavni vir vode neposredna infiltracija padavin, brez bistvene izotopske frakcionacije. Totalna alkalnost na preiskanem obmocju se spreminja od 5.45 do 73 mM, d13CDIC od –14.9 do +6.1 ‰. Višje vrednosti totalne alkalnosti (do 73 mM), d 13CDIC (do +6.1 ‰), d18O (-7.64 ‰) in 3H z 209.8 TU so zaznane v izcedni vodi CERO Gajke (kanal), kar kaže na biogeokemijski proces redukcije CO2 ali metanogeneze. Metanogeneza bi lahko bila prisotna tudi na lokacijah GAP-10/13 (odlagališce Brstje) in G-2 (odlagališce Gajke) z d13CDIC vrednostima od -8.2 do -7.6 ‰ in z vrednostjo raztopljenega kisika okrog 0 % ter povišano vrednostjo 3H (od 16 do 18.2 TU). V tej raziskavi smo dokazali, da so izotopi koristna orodja v monitoring raziskavah odlagališc in kažejo na spremembe biogeokemicnih procesov v podzemni vodi. Introduction Economic development, population growth, and technological developments are resulting in ever-increasing amounts of deposited waste, making the importance of ecological waste management and environmental protection ever more apparent. Landfills, which are potential local sources of pollution, are generally considered minor local inconveniences and can also pose problems in larger areas, especially if the pollution spreads from the landfill to the groundwater and surface waters (Bhalla et al., 2013; Abiriga et al., 2020, 2021). Depending on the nature of the contaminants and their chemical properties, they may remain or decompose in groundwater for decades or even centuries. Once a waste facility is closed, proper functioning of landfill systems must be ensured, so operational monitoring of groundwater status and, in some cases, surface water status monitoring must be conducted to determine the status of groundwater during and after landfill operations have concluded. Operational monitoring of groundwater status is likely to be conducted in the area of the hydrogeologic target zone, which is a lithostratigraphic unit where contamination could be expected due to indirect or direct discharge of contaminants from a source of contamination to groundwater. Operational monitoring includes measurements of hydrogeological and chemical parameters, which we use to assess the impact of a landfill on the status of groundwater. An environmental permit is required to operate the landfill, which specifies the scope and content of monitoring; the content and scope are explained in more detail in the groundwater monitoring programme. In the event that the landfill is determined to have an impact on the status of groundwater based on the chemical analyses performed, it is also necessary to prepare a programme of measures that must include, among other things, an estimate of the discharge of pollutants from the landfill to groundwater and an assessment of the magnitude of the impact on the recipients (Serianz et al., 2017; Cerar et al., 2022). In recent years, several studies have been published on the determination of chemical parameters in landfill leachate (Hussein et al., 2019; Ancic et al., 2020; Baettker, et al., 2020) and their impact on groundwater quality (Kapelewska et al., 2019; Chidichimo et al., 2020). Groundwater quality is usually assessed by defining chemical parameters and comparing the data with standards set in legislation. Such an approach provides information only on specific contaminants and provides little information on overall water quality. As different materials or wastes are introduced into the disposal body, the leachate also has a different chemical composition. As a result, there are also differences in the formation of a groundwater pollution plume along the length of the groundwater stream. An important factor in understanding the occurrence of contaminants in groundwater is also their zonation, which is due to the fact that landfill leachate alters the physicochemical properties of groundwater by creating reduction conditions that affect the behaviour of individual contaminants in groundwater (Abiriga et al., 2021). Hackley et al. (1996) already suggested using the isotopes of hydrogen (d2H), carbon (d13C), and oxygen (d18O) of the major landfill constituents of landfill gas and leachate to identify landfill leachate contamination. Landfill gases (CO2 and CH4) and landfill leached products (water and dissolved inorganic carbon) have a characteristic isotope composition with respect to the surrounding environment (Hackley et al., 1996; Kerfoot et al., 2003, Bakkaloglu et al., 2021, Vavilin & Lokshina, 2023). Recently, several studies (Adeolu et al., 2011; Castańeda et al., 2012; Wimer et al., 2013; Negrel et al., 2017; Lee et al., 2020; Andrei et al., 2021) have observed that stable isotopes found in landfill leachates, such as d13C, d2H and d18O, are influenced by processes within municipal solid waste (MSW) landfills, mainly on the methanogenesis phase of the landfill. In addition, d13C has frequently been used in environmental monitoring studies of landfills and in the determination of the origin of dissolved inorganic carbon in groundwater (DIC) (North et al., 2006; Porowska, 2015; Nigro et al., 2017; de Medeiros Engelmann et al., 2018). Several studies included tritium (3H) analysis as a tool to assess leachate contamination (Nigro et al., 2017; Raco & Battaglini, 2022; Gupta & Raju, 2023). In Slovenia, there are 69 registered landfills where the chemical parameters of groundwater in the area of the landfill is monitored as part of the larger operational monitoring of the status of groundwater, while isotopic studies are not routinely performed. The only known case study in Slovenia applying the stable isotope analysis of oxygen (d18O) and hydrogen (d2H) in water and carbon in the dissolved inorganic carbon (d13CDIC) in combination with 3H activity concentrations were conducted at the Puconci landfill (Brencic et. al., 2013). The combination of techniques used in the investigation of groundwater, surface water, and leakage water proved to be useful in identifying the influence of leakage water on surface and groundwater, the complexity of contamination below the landfill, and also provided a picture of the methane-forming conditions in the landfill. One operational landfill in Slovenia is the Gajke landfill, where in the recharge area about 500 m upstream, there is also the closed Brstje landfill for non-hazardous waste. The results of the operational monitoring of groundwater status at the Brstje landfill showed that it has an impact on groundwater status, as warning levels for pollutants have been exceeded for several years (Cerar et al., 2019). When analysing the spatial distribution of pollutants in groundwater, it should be considered that pollutants in groundwater in the area of the Gajke landfill may originate from leachate or may be the result of contact between groundwater and waste or may already flow into the area of the landfill via groundwater from the Brstje landfill upstream. In such cases, it may be very difficult or even impossible to isolate the individual impacts on the condition of the groundwater. It is therefore essential to consider both landfills simultaneously when analysing pollutants in space and time. In this case study, we hypothesise that a multi- parameter isotope approach could be applied to separate the potential impact of two landfills, Gajke and Brstje on the groundwater in the municipality of Ptuj. By applying in-situ measurements in combination with determination of d18O, d2H, d13CDIC, and 3H in groundwater at all available sampling points and in leachate from Gajke before treatment we characterised the spatial changes of measured parameters in autumn 2020. The results will be useful for improving the management of the landfills and could in future serve as example of improved water monitoring programme, incorporating isotope measurements, for other landfills in Slovenia. Case study area characteristics Gajke landfill The active Gajke landfill for non-hazardous waste is located in an abandoned gravel pit north of the settlement of Spuhija, in the municipality of Ptuj (Fig. 1). The landfill, including the accompanying areas, currently covers 7.5 ha. It is surrounded by agricultural land on all sides. Waste disposal at the Gajke landfill started in 2003. In total, 572.886 t of waste were deposited from 2003 through 2018. Mixed municipal waste was no longer landfilled with the adoption of new regulations in 2016, as the regulations stipulated the need for post-treatment of this waste. Currently, all municipal waste is transported to Ormož for treatment and disposal. According to the environmental permit, the Gajke landfill still has the status of an active repository. The bottom of the landfill is sealed with three layers of mineral clay (each layer 25 cm thick) and a 2.5 mm thick PEHD plastic film on top. A protective layer of geotextile is laid on the ground above the PEHD film, on top of which a 40 cm thick drainage layer of gravel is placed. A separating drainage felt is laid over the drainage layer. The collection and discharge of leachate and precipitation water is regulated. Leachate is collected in the leachate basin, then cleaned by a reverse osmosis treatment plant and discharged into the sewage system to the wastewater treatment plant in Ptuj. Precipitation from road and work areas is collected and discharged into the soil collection basin (lagoon), from where it is pumped into the sewer system to the wastewater treatment plant in Ptuj. Clean precipitation and backwater collect in the earth ditches and canals, from where they lead to subsidence chambers and sink into the ground. Brstje landfill The closed Brstje landfill for non-hazardous waste is located in the municipality of Ptuj, approx. 500 m north-west of the Gajke landfill (Fig. 1). The nearest residential houses are 100 m away from the landfill and are located in the Brstje district. The landfill, including the accompanying areas, covers 6.8 ha. The Brstje landfill consists of the older northern part of the deposition fields and the younger southern part of the deposition fields. The area was filled in several phases and subphases, which employed different ways of disposing of the waste and protection measures used to reduce negative environmental impacts. The exact geometry and area of the deposited waste is not known, nor is the volume and mass of the deposited waste. The beginnings of waste disposal in the area of the Brstje landfill date back to the 1970s. Exact information on the earliest days of waste disposal there is not known. Data on the amount of waste deposited is only available for the southern landfill. Thus, the actual amount of waste deposited in the entire landfill is far higher. A total of 66,818 t of mixed municipal waste was deposited at the southern landfill. The youngest part of the landfill, where waste was deposited between 1996 and 2001, is the southernmost landfill. The landfill is special because it is not located on the embankment, but rather the waste is deposited in the former gravel pit at a depth of 5 to 7 m below the surface. On the eastern side, the gravel pit is recultivated with a poplar plantation. The old and new parts of the landfill are covered with a less permeable top layer of clay, geocomposite and a layer of soil and humus. In the bottom of the new part, an impermeable PEHD foil with a drainage system with suction pipes for pumping out the leachate was installed, which is also a special feature of this landfill. In older deposit fields, the leachate drainage system is not regulated. All water drains gravitationally into the groundwater. Precipitation water is drained through the cover layer into the peripheral subsidence ditch. Geographical and hydrological characteristics of the area The Gajke and Brstje landfills are located in Ptujsko polje, which from the morphological point of view consists of two Drava terraces and is surrounded on all sides by agricultural land. The largest part of the field is occupied by a high terrace with an elevation of 222–224 m, where there are also landfills. In the western part of the field, the terrace is 7–8 m high, in the central part 4.5 m high, and in the eastern part it 2–3 m high. About 500 m upstream northwest of the Gajke landfill is the closed Brstje landfill. The nearest surface water is the Rogoznica stream, which flows into the Drava River southeast of the landfill (Fig. 1) (Cerar et al., 2019). Geological and hydrogeological features in the area of the landfills The Gajke and Brstje landfills are located on the Quaternary aquifer of the Ptujsko polje, which consists in the upper part of alluvial deposits from the Drava, Pesnica, and Rogoznica rivers. These are mainly sediments of medium-grained sandy gravel, between which there are lenses of silt and clay with limited extension. The lower part is dominated by fine- and medium-grained gravels with more sand and silt, as well as sand layers with silt. The base of the Quaternary sediments is formed by fine-grained sediments of Pliocene age (Fig. 2). The first hydrogeological unit in the landfill area is represented by a slightly permeable (K=10-3 m/s), open Quaternary aquifer, with groundwater at a depth of about 8–9 m below the surface, freely fluctuating in the range between 2.5 and 3.2 m, depending on the hydrologic conditions. Fig. 1. Overview map of the area of the Gajke and Brstje landfills. Groundwater flows in the Quaternary aquifer in the NW–SE direction to the Drava River, into which it discharges at 4 to 10 km (Fig. 3). The direction of groundwater flow is approximately the same with respect to the different hydrological conditions, with the largest deviations observed mainly in the south-eastern part of the Gajke deposit, where the flow is directed further to the northeast during floods. The groundwater flow gradient is 0.002 and depends on the intensity of recharge from precipitation. Groundwater velocity is estimated to be 2 to 3 m/day. Depending on the depth of the deposited waste and the groundwater table, it is an indirect input of pollutants since the landfill is in or above the unsaturated zone. During the flood period, the bottom of the deposit body (the outside of the liner system) is occasionally in contact with groundwater (Cerar et al., 2019). Methods and materials Sampling Sampling for isotope analysis was conducted in 27–28 October, 2020, by Javne službe Ptuj d.o.o. in collaboration with the NLZOH (National Laboratory of Health and Food, Maribor), following the prescribed instructions outlined below. Water samples for d18O and d2H analysis were gathered in 60 mL HDPE bottles, which were prewashed twice with the sample and had no headspace. Samples for d13CDIC and total alkalinity (TA) analysis were filtered through a 0.45 µm membrane filter and transferred into two glass ampoules, each with a volume of 12 ml and no headspace, using gas-tight syringes. For 3H analysis, 1 L of unfiltered water was collected in an HDPE container. Prior to stable isotope analysis, the samples were stored in the refrigerator at temperatures ranging from 4 to 6 °C, while samples for 3H analysis were stored at room temperature. Sampling was conducted at a total of 13 locations (Table 1). Groundwater was collected from 12 wells in the Gajke and Brstje landfill areas and leachate was collected from a channel from the Gajke landfill (Fig. 3, Table 1). Sampling of groundwater from seven wells was performed by the NLZOH concurrently with the regular operational monitoring of groundwater conditions in accordance with SIST ISO 5667-11:2010 (referred to as “monitoring” in Table 1). Five other wells and leachate were sampled by the Javne službe Ptuj d.o.o. only for TA and isotope analysis (referred to as “other” in Table 1) and in situ measurements were not conducted. Fig. 2. Simplified hydrogeological cross-section through Gajke and Brstje landfills. Analysis All water samples received were analysed for isotope analysis at the Jožef Stefan Institute laboratories using the procedures described below. Since leachate analysis is not routinely performed, we anticipated problems with the analysis of this water. Ultimately, the only difficulties encountered were in determining the d2H, which could not be eliminated despite repeated analyses, so the result is not reported for this parameter. TA was measured using Gran titration (Gieskes, 1974) with a precision of ±1 % within 24 hours of sample collection. Approximately 8–10 g of the sample was weighted in a plastic HDPE bottle with a magnetic stirrer. The pH electrode of the Mettler toledo Seven compact pH meter S220 was Table 1. Locations of sampling points and time and type of sampling. Sampling point Date and time of sampling Location* N (D96) E (D96) Zground (m) Zwell (m) Type of sampling G-1a 26.10.2020 08:00 upstream 142665 569926 224.70 224.79 monitoring G-2 26.10.2020 08:35 upstream 142842 569978 224.28 224.38 other G-3 26.10.2020 09:00 upstream 142944 570102 224.38 224.23 other G-3a 26.10.2020 10:30 downstream 142556 570352 224.39 224.58 monitoring G-4 26.10.2020 10:00 downstream 142724 570403 223.80 223.97 other G-4b/12 26.10.2020 11:05 downstream 142622 570160 222.48 222.70 monitoring G-5 26.10.2020 09:25 downstream 142388 570332 223.58 223.62 monitoring GAP-7 26.10.2020 13:15 upstream 142911 569273 225.86 226.01 monitoring GAP -8/13 26.10.2020 13:45 upstream 143090 569480 225.69 226.14 other GAP -10/13 26.10.2020 11:45 upstream 142952 569880 224.66 225.19 monitoring V-3/2 26.10.2020 12:15 upstream 142832 569521 225.44 225.44 monitoring cemetery 26.10.2020 12:40 upstream 143094 569409 / 226.03 other leachate 27.10.2020 07:30 laterally 142716 570192 218.30 / other * - according to the direction of groundwater flow in the Gajke landfill area Fig. 3. Sampling points of groundwater and leachate in the Gajke and Brstje landfill area. calibrated using certificate buffers with values of 7.00 and 4.00 ±0.02. With this method we determined the change in pH depending on the volume of added acid with a known concentration, which is added to a solution of unknown concentration (Vreca et al., 2020). d13CDIC was determined using the Europa-Scientific 20-20 with TG preparation module. Approximately 200 µL of phosphoric acid (Sigma-Aldrich p.a., =85 %) was added to a 12 mL vial and purged with helium (He). Subsequently, the water sample (0.5 –5 mL, depending on total alkalinity) was injected into the ampoule, and CO2 was measured from headspace. For one point normalization of samples, a Carlo Erba solution (8 mg/12mL) with a known value of –10.8 ±0.2 was used to calibrate d13CDIC measurements (Spötl, 2005; Vreca et al., 2020). d2H and d18O were determined using the H2- H2O (Coplen et al., 1991) and CO2-H2O (Epstein & Mayeda, 1953; Avak & Brand, 1995) equilibration technique. Measurements were performed on a dual inlet isotope ratio mass spectrometer (DI IRMS, Finnigan MAT DELTA plus, Finnigan MAT GmbH, Bremen, Germany) with an automated H2- H2O and CO2-H2O HDOeq 48 Equilibration Unit (custom built by M. Jaklitsch). All measurements were performed together with laboratory reference materials (LRM) calibrated periodically against primary IAEA calibration standards to VSMOW/ SLAP scale. Samples were measured as independent duplicates and results were normalized to the VSMOW/SLAP scale using the Laboratory Information Management System for Light Stable Isotopes (LIMS) programme (https://water.usgs.gov/ water-resources/software/RSIL-LIMS/). For independent quality control, we used internal LRM and USGS commercial reference materials. The overall measurement uncertainties are estimated to be less than 1 ‰ and 0.05 ‰ for d2H and d18O, respectively (Vreca et al., 2020). The results for d13CDIC, d2H and d18O are expressed in a standard d notation in per mil (‰) relative to international standards (Coplen et al., 1991; Coplen, 1994; IAEA, 2018). For 3H analysis, the samples were distilled prior to tritium enrichment in order to remove dissolved solids and other possible interferences. The 3H was enriched using electrolysis. After electrolysis, the sample was transferred to stainless steel distillation flasks for a second distillation. Then 10 g of sample solution was mixed with 12 mL of Ultima Gold LLT scintillation cocktail and measured in Quantulus 1220 (Perkin Elmer) liquid scintillation counter for 5 h, together with a tritium-free water sample (dead water) to correct for detector noise and background and according to standards used to determine 3H detection efficiency. In the STC 131/20 analytical report (Štrok & Svetek, 2020; Appendix 2), results for 3H activity (As) are expressed in Bqkg-1. Tritium units (TU = tritium unit) are commonly used in isotope hydrology, where 1 TU represents 1 3H atom per 1018 1H atoms. Therefore, the results were converted to TU for interpretation of the results, considering 1 TU = 0.118 BqL-1 (Ingraham, 1998; Gat et al., 2001) and 1 kg = 1 L. Spatial analysis The spatial distribution of individual parameters was carried out using GIS software ESRI® ArcMap™ (v. 10.5.) using the interpolation method of natural neighbours, which uses Thiessen polygons or Voronoi diagrams and weighted averages of neighbouring values to arrive at the most appropriate values. Experientially, this method is most suitable for the given spatial data density. Results and discussion The results of the in-situ measurements (temperature (T), pH, electrical conductivity (EC), redox potential (Eh) and dissolved oxygen (DO)) received from the client and performed by NLZOH, of isotope analysis (d18O, d2H, d13CDIC, 3H) and TA are presented in Table 2. To assess the potential impact of the Gajke and Brstje landfills on groundwater quality status, maps illustrating the spatial distribution of d18O, d2H, d13CDIC, TA, and 3H in groundwater were created for the entire study area. To separate the impacts of the two landfills, isotope groundwater data were compared with analytical results from additional sampling of leachate prior to reverse osmosis at the Gajke landfill. Leachate from the Brstje landfill was not analysed due to the unregulated drainage system. These leachates are collected at the bottom of the protected deposit field through pipes to the leachate where no changes have been observed for years, as leachate has not been detected since 2005. Monthly inspections of the leachate shaft and meter inventory are carried out, which is also performed several times a year by a representative of the Javne službe Ptuj d.o.o. Only the older parts of the landfill, where there are poplars and plateau, have no soil protection, although there is upper protection in the form of asphalt and poplars. Field measurements Groundwater temperatures at the Brstje landfill are lower compared to the measured groundwater temperatures in the Gajke area. The groundwater temperature in the Brstje landfill area is between 13.9 °C and 14.9 °C, while in the Gajke landfill area it is between 13.6 °C and 19 °C (Table 2). The G-3a (16.3 °C) and G-4b/12 (19 °C), which are located downstream (Fig. 3) of the Gajke landfill, are outstanding. Variable temperatures are result of different thickness and position of wastes which influences the heat-generating (exothermic) reactions. The pH of the groundwater in the area of the Gajke landfill is constant at all sampling points (between 7.0 and 7.1). In the area of the Brstje landfill, the pH value varies between 6.9 and 7.1, and the pH value of the groundwater is comparable to that of the groundwater in the area of the Gajke landfill. EC values in the entire study area fall in the interval from 750 to 977 µS/cm, deviating from the sampling point GAP-10/13 (977 µS/cm), which is located on the eastern edge (downstream) of the old deposition field of the Brstje landfill and about 200 m northwest (upstream) of the Gajke landfill (Fig. 3). The reason for the deviating values of the electrical conductivity on GAP-10/13 are the additional pressures on the groundwater caused by the Brstje landfill, which were already identified in the study by Cerar et al. (2019). According to the measured contents of DO in the groundwater in the area of the Gajke and Brstje landfills, constant suboxic conditions prevail at the G-3a and GAP-10/13 sampling points. The measured DO content at these two sites is below the lower limit of quantification (LOQ = 0.5 mg/L). Somewhat higher values were obtained at V-3/2, where they are 1.73 mg/L. At the other monitoring points, DO values are higher, ranging from 5.51 to 7.63 mg/L (Table 2). The Eh indicates the prevailing oxidation to transient oxidation-reduction conditions, expressed as values of 309–343 mV, with the upstream monitoring point GAP-7 standing out with a value of 426 mV, indicating higher aeration of the groundwater (7.63 mg/L), which is also confirmed by the highest concentration of DO. Isotope composition of oxygen and hydrogen Values for d18O in groundwater in the vicinity of the two landfills vary from -9.69 to -8.56 ‰ (Fig. 4). The lowest d18O values are observed at locations around the Gajke landfill, while the highest values were detected at locations northwest of Brstje and at G-3a in the south-eastern part of the study area downstream from the Gajke landfill. In leachate, the measured value for d18O is -7.64 ‰ and is slightly higher than in groundwater samples, indicating the influence of secondary processes on the d18O (Tazioli, 2011), as confirmed by positive d13CDIC and higher TA values (Table 2). Table 2. Results of in-situ measurements (T, pH, EC, Eh, DO), isotope analysis (d18O, d 2H, d 13CDIC, 3H) and TA from 27–28 October, 2020 are summarised from Vreca et al. (2020) and Štrok & Svetek (2020). Sampling point T (°C) pH EC (µS/cm) Eh (mV) DO (mg/L) DO (%) d18O (‰) d2H (‰) d13CDIC (‰) TA (mM) 3H (TU) G-1a 13.9 7.1 788 342 6.59 65.9 -9.57 -67.0 -14.9 7.72 5.9 G-2 n.d. n.d. n.d. n.d. n.d. n.d. -9.22 -65.3 -8.2 7.12 18.8 G-3 n.d. n.d. n.d. n.d. n.d. n.d. -9.30 -65.1 -10.6 7.70 11.8 G-3a 16.3 7.1 778 309 0.12 1.3 -8.87 -62.1 -14.3 7.85 5.9 G-4 n.d. n.d. n.d. n.d. n.d. n.d. -9.60 -67.5 -13.4 7.83 7.3 G-4b/12 19 7.0 790 335 5.51 61.3 -9.69 -68.6 -14.4 7.74 4.6 G-5 13.6 7.1 752 343 7.16 71.1 -9.47 -66.5 -13.4 8.11 4.4 GAP-7 14.9 7.1 794 426 7.63 77.8 -9.17 -65.1 -14.7 7.84 5.2 GAP -8/13 n.d. n.d. n.d. n.d. n.d. n.d. -8.81 -61.3 -14.8 5.5 6.0 GAP -10/13 14.4 6.9 977 329 0.06 0.6 -9.24 -65.2 -7.6 9.84 16.2 V- 3/2 14.2 7.1 750 331 1.73 17.4 -9.37 -65.9 -14.6 7.08 6.6 cemetery n.d. n.d. n.d. n.d. n.d. n.d. -8.56 -59.3 -14.4 6.07 7.5 leachate CERO Gajke (canal) n.d. n.d. n.d. n.d. n.d. n.d. -7.64 n.d. +6.1 73 209.8 n.d. - not determined The values for d2H in groundwater in the two landfills follow the changes in d18O and vary between -68.6 and -59.3 ‰ (Table 2, Fig. 5). In the leachate, d2H was not measured due to technical problems. All measured d18O and d2H values in groundwater indicate that the main water source consists in direct infiltration of local precipitation and does not indicate the considerable influence of evaporation or other secondary processes. The isotope composition was monitored in the period 2016–2018 at Murska Sobota and Sv. Urban, i.e., locations NE and SW of the investigated area (Vreca et al., 2022). The average d18O and d2H values amounted –9.28 ‰ and –65.8 ‰ for Murska Sobota and –8.53 ‰ and –59.2 ‰ for Sv. Urban. The d18O values vary as a function of temperature and are lowest at sites where temperatures are lowest. Unfortunately, water temperature was not measured at all sites where samples were collected. Only G-4b/12 deviates, where water temperature was relatively high (19 °C) and d18O was lowest (-9.69 ‰). The result indicates different water properties at this site (d2H and 3H activity are also the lowest) and is due to the location of G-4b/12, which is at the edge of the storage field and has a higher temperature compared to the other points. Values for d18O and d2H in groundwater indicate that the main source of water is direct infiltration of precipitation, with no significant isotopic fractionation, and that the isotope composition depends on water temperature, which was determined at only 7 sampling points. It is estimated that the d18O and d2H values in groundwater downstream of the Brstje landfill decrease, while they increase again slightly at the G-3a. This indicates that the impact of the Gajke landfill cannot be completely excluded. Total alkalinity The TA values in groundwater around the two landfills range from 5.45 to 8.11 mM, deviating GAP-10/13 with slightly higher values of 9.84 mM (Fig. 6). In the leachate the measured value is 73 mM. The spatial distribution shows that the highest values (9.84 mM) appear at the downstream sampling point of GAP-10/13 and then decrease at sampling points: G-1a and G-4b/12 (around 7.7 mM) downstream of the Gajke landfill. The lowest values (5.45 mM) are located upstream (GAP-8/13) from the Brstje landfill. Fig. 4. Spatial distribution of d18O (‰) in groundwater in the Gajke and Brstje landfill area. Fig. 5. Spatial distribution of d2H (‰) in groundwater in the Gajke and Brstje landfill area. Fig. 6. Spatial distribution of TA (mM) in groundwater in the area of the Gajke and Brstje landfill area. Isotope composition of carbon from dissolved inorganic carbon The d13CDIC values in groundwater in the two landfills vary from -14.9 to -8.2 ‰ (Table 2, Figs. 7 and 8). The spatial distribution of d13CDIC shows that the lowest values were measured upstream of the Brstje landfill at GAP-8/13 (-14.8 ‰), where the impact of the landfill leachate is not expected. Slightly higher d13CDIC values are observed at downstream monitoring point G-4 (-13.4 ‰) and G-5 (-13.4 ‰) from Gajke landfill compared to G-4b/12 with d13CDIC of –14.4 ‰. To confirm the influence of leachate, measurements should be repeated several times during the hydrological year. The measured d13CDIC value in the leachate from the Gajke landfill is +6.1 ‰ (Table 2, Figs. 7 and 8). This value characterizes degradation of organic matter, including methanogenesis under anoxic conditions in landfills. Leachate becomes enriched with a heavier carbon isotope (13C) during this process (Fig. 8). The highest positive d13CDIC values in groundwater at locations GAP-10/13 (-7.6 ‰) and G-2 (-8.2 ‰) indicate a significant impact on the carbon cycle in groundwater (see Table 2, Figs. 7 and 8). Furthermore, at GAP-10/13, recorded dissolved oxygen concentrations around 0 % (Table 2) could suggest the presence of methanogenesis in groundwater (North et al., 2006). However, this presence isn’t as pronounced as in the leachate. North et al. in 2006 found d13CDIC ranged from +2.8 to +15.8 ‰ in all analysed leachate samples, indicating the presence of methanogenesis. The maximum values of d13CDIC, TA, and 3H were detected at monitoring points GAP-10/13 (-7.6 ‰, 9.84 mM, 16.2 TU) and G-2 (-8.2 ‰, 7.12 mM, 18.8 TU) and gradually decreased toward monitoring points G-4b/12 and G-4 downstream of the Gajke landfill. This indicates that no significant impact is expected downstream of the Gajke landfill but occurs in the north-central part of the Gajke landfill. Similar results have already been observed during “benchmarking”. Fig. 7. Spatial distribution of d13CDIC (‰) in groundwater in the Gajke and Brstje landfill area. Tritium Groundwater 3H activities in the surrounding area of two landfills range from 4.4 to 18.7 TU (Figs. 8 and 9). The highest activities of 3H occur in wells GAP-10/13 (16.2 TU), G-2 (18.8 TU), and G-3 (11.8 TU), all of which are upstream of the Gajke landfill and may be attributed to the influence of the Brstje landfill, whose leachate was not sampled. The lowest activities were found upstream of the Brstje landfill and downstream of the Gajke landfill. Downstream of Gajke, 3H deviates at G-4 (7.3 TU), and the southward changes show the same trend as the change in boron concentration (Cerar et al., 2019). The spatial distribution of 3H in groundwater shows similar characteristics to TA and d13CDIC (Figs. 6, 7 and 8). 05010015020025001020304050607080-20-15-10-505103H (TU) TA (mM) dd13CDIC(‰) methanogenesis, enrichment with 13C isotopeleachate CERO Gajke (canal) GAP-10/13G-2G-3G-4, G-5G-1aG-3a, G-4b/12GAP8/13GAP-7, V-3/2, cemetery Fig. 8. TA and 3H versus d13CDIC with associated locations. Fig. 9. Spatial distribution of 3H (TU) in groundwater in the Gajke and Brstje landfill area. In the leachate of the Gajke landfill, the measured activity is significantly higher than in the groundwater and is 209.8 TU (Fig. 8). High 3H activities are characteristic of leachate and can be as high as 1,000 TU (Tazioli, 2011). In monthly precipitation over Slovenia, 3H activity rarely exceeds 20 TU (Internet 1) and amounts to an annual average of less than 10 TU over the past decade (Kern et al., 2020; Vreca et al., 2022), making the 3H parameter a very good indicator of pollution from landfills. Raco and Battaglini (2022) found 3H values in leachate ranging from 55 to 923 TU, while Gupta and Raju (2023) found in their study of landfill leachate and groundwater sample 3H value from 8.11 TU and 3.03 TU, respectively. We could conclude that higher measured activity in GAP-10/13 is the result of pollution from the Brstje landfill. Conclusions The results of the present study show that isotope analysis is a valuable tool for monitoring landfills, revealing shifts in biogeochemical processes within groundwater and allowing prediction of contamination plumes in the potential impact area. The results will further improve the picture of the spatial distribution of conservative contaminants, while also identifying possible scenarios for the input of leachate from the Gajke Landfill into the aquifer. Tritium, which demonstrates high activity in leachate, proved to be the most reliable parameter for such a prediction. The analyses performed proved to be an effective method to determine the dispersion of loads from landfills, especially in terms of predicting the spatial distribution of the loads and possible scenarios of the load of the aquifer by leachate. However, it should be noted that this paper summarises the results of a single sampling. For a more reliable assessment, we suggest repeating the same analyses in different water conditions (low, medium, high) or establishing monthly monitoring of d18O, d2H, d13CDIC, and 3H in the groundwater at all 12 sampling points in order to allow for adequate isotopic characterization of the water. In addition, we propose including sampling of the Rogoznica stream upstream and downstream of the Brstje landfill in the monitoring, as knowledge of surface water infiltration and surface/groundwater interactions are also important in any evaluation of the results. Further, systematic research is necessary due to climate extremes that can significantly impact the flow of groundwater, thus affecting the spread of pollution clouds. Acknowledgments This research was funded by Javne službe Ptuj d.o.o., the Slovenian Research Agency, and Innovation (ARIS), under the Research Programmes Groundwater and Geochemistry (No. P1-0020) and Cycling of Substances in the Environment, Mass Balances, Modelling of Environmental Processes, and Risk Assessment (No. P1-0143). The authors would also like to express gratitude to Barbara Svetek, Klara Žagar, and Stojan Žigon for their valuable help with isotope analysis. References Abiriga, D., Vestgarden, L.S. & Klempe, H. 2020: Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Science of The Total Environment, 737: 140307. https://doi. org/10.1016/j.scitotenv.2020.140307 Abiriga, D., Vestgarden, L.S. & Klempe, H. 2021: Long-term redox conditions in a landfill-leachate- contaminated groundwater. Science of The Total Environment, 755: 143725. https:// doi.org/10.1016/j.scitotenv.2020.143725 Adeolu, A.O., Ada, O.V., Gbenga, A.A. & Adebayo, O.A. 2011: Assessment of groundwater contamination by leachate near a municipal solid waste landfill. African Journal of Environmental Science and Technology, 5/11: 933-940. Andrei, F., Barbieri, M. & Sappa, G. 2021: Application of 2H and 18O isotopes for tracing municipal solid waste landfill contamination of groundwater: Two Italian case histories. Water, 13/8: 1065. https://doi.org/10.3390/ w13081065 Ancic, M., Hudek, A., Rihtaric, I., Cazar, M., Bacun-Družina, V., Kopjar, N. & Durgo, K. 2020: PHYSICO chemical properties and toxicological effect of landfill groundwaters and leachates. Chemosphere, 238: 124574. https:// doi.org/10.1016/j.chemosphere.2019.124574 Avak, H. & Brand, W.A. 1995: The Finning MAT HDO-Equilibration—A fully automated HO/ gas phase equilibration system for hydrogen and oxygen isotope analyses. Thermo Electron. Corp. Appl. News, 11: 1–13. Bakkaloglu S., Lowry D., Fisher R.E., France J.L. & Nisbet E.G. 2021: Carbon isotopic characterization and oxidation of UK landfill methane emissions by atmospheric measurements. Waste management, 132: 162–175. https://doi. org/10.1016/j.wasman.2021.07.012 Baettker, E.C., Kozak, C., Knapik, H.G. & Aisse, M.M. 2020: Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere, 251: 126414. https://doi. org/10.1016/j.chemosphere.2020.126414 Bhalla, B., Saini, M.S. & Jha, M.K. 2013: Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. International Journal of Research in Engineering and Technology, 2/8: 223–232. http:// www.ijret.org Brencic, M., Ivanuša-Šket, H., Torkar, A. & Vreca, P. 2013: Influences of sanitary landfill on groundwater under the complex hydrogeological conditions. In: Cossu, R. (ed.): 14th International waste management and landfill symposium, 30 September - 4 October 2013, Forte Village, S. Margherita di Pula, Cagliari, Sardinia, Italy. Cagliari: CISA, cop. 2013. 10 p. Castańeda, S.S., Sucgang, R.J., Almoneda, R.V., Mendoza, N.D. S. & David, C.P.C. 2012: Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in Metro Manila, Philippines. Journal of environmental radioactivity, 110, 30-37. https://doi.org/10.1016/j.jenvrad.2012.01.022 Cerar, S., Serianz, L., Koren, K. & Lapajne, S. 2019: Carrying out a comparative analysis of basic and indicative parameters in groundwater and water balance in the Gajke landfill area. Ljubljana: Geological Survey of Slovenia. Cerar, S., Serianz, L., Koren, K., Prestor, J. & Mali, N. 2022: Synoptic Risk Assessment of Groundwater Contamination from Landfills. Energies, 15/14: 5150. https://doi.org/10.3390/ en15145150 Chidichimo, F., De Biase, M. & Straface, S. 2020: Groundwater pollution assessment in landfill areas: Is it only about the leachate? Waste Management, 102: 655–666. https://doi. org/10.1016/j.wasman.2019.11.038 Coplen, T.B., Wildman, J.D. & Chen, J. 1991: Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope- ratio analysis. Analytical Chemistry, 63/9: 910–912. https://doi.org/10.1021/ ac00009a014 Coplen, T.B. 1994: Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report). Pure and applied chemistry, 66/2: 273–276. https://doi.org/10.1351/ pac199466020273 de Medeiros Engelmann, P., Dos Santos, V.H.J.M., Barbieri, C.B., Augustin, A.H., Ketzer, J.M.M. & Rodrigues, L.F. 2018: Environmental monitoring of a landfill area through the application of carbon stable isotopes, chemical parameters and multivariate analysis. Waste Management, 76/591–605. https://doi.org/10.1016/j.wasman. 2018.02.027 Epstein, S. & Mayeda, T. 1953: Variation of 18O content of waters from natural sources. Geochimica et cosmochimica acta, 4/5: 213–224. https://doi.org/10.1016/0016-7037(53)90051-9 Gat, J.R., Mook, W.G. & Meijer, H.A. 2001: Atmospheric water. In: Environmental Isotopes in the Hydrological cycle. Edited by W.G. Mook, IAEA and UNESCO, Technical documents in Hydrology, 39/II, UNESCO Paris: 63–74. Gieskes, J.M. 1974: The alkalinity – tool carbon dioxide system in seawater. Marine chemistry, 5 (The Sea). Edited by Goldberg E.D. New York: John Wiley and Sons: 123–151. Gupta, S. & Raju, N.J. 2023: Potential environmental pollution study by leachate generation and health risk assessment in the vicinity of bandhwari landfill disposal site, National Capital Region, India. Groundwater for sustainable development 23: 101032. https://doi. org/10.1016/j.gsd.2023.101032 Hackley, K.C., Liu, C.L. & Coleman, D.D. 1996: Environmental isotope characteristics of landfill leachates and gases. Groundwater, 34/5: 827-836. https://doi. org/10.1111/j.1745-6584.1996.tb02077.x Hussein, M., Yoneda, K., Zaki, Z.M. & Amir, A. 2019: Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environmental Nanotechnology, Monitoring & Management, 12: 100232. https://doi.org/10.1016/j.enmm.2019.100232 Ingraham, N.L. 1998: Isotopic variations in precipitation. In: Kendall C. & McDonnell, J.J. (eds.): Isotope tracers in catchment hydrology. Elsevier, 87–118. IAEA - International Atomic Energy Agency 2018: Reference Sheet for VSMOW2 and SLAP2 International Measurement Standards. IAEA, Vienna, Austria: 8 p. Lee, K.S., Ko, K.S. & Kim, E.Y. 2020: Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination. Environmental geochemistry and health, 42: 1387–1399. https://doi.org/10.1007/s10653- 019-00427-y Kerfoot, H.B., Baker, J.A. & Burt, D.M. 2003: The use of isotopes to identify landfill gas effects on groundwater. Journal of Environmental Monitoring, 5/6: 896–901. https://doi.org/10.1039/ B310351J Kapelewska, J., Kotowska, U., Karpinska, J., Astel, A., Zielinski, P., Suchta, J. & Algrzym, K. 2019: Water pollution indicators and chemom etric expertise for the assessment of the impact of municipal solid waste landfills on groundwater located in their area. Chemical Engineering Journal, 359: 790–800. https://doi. org/10.1016/j.cej.2018.11.137 Kern, Z., Erdélyi, D., Vreca, P., Krajcar Bronic, I., Fórizs, I., Kanduc, T., Štrok, M., Palcsu, L., Süveges, M., Czuppon, G., Kohán, B. & Gábor Hatvani, I. 2020: Isoscape of amount-weighted annual mean precipitation tritium (3H) activity from 1976 to 2017 for the Adriatic–Pannonian region – AP3H_v1 database, Earth Syst. Sci. Data, 12, 2061–2073. https://doi.org/10.5194/ essd-12-2061-2020 Negrel, P., Ollivier, P., Flehoc, C. & Hube, D. 2017: An innovative application of stable isotopes (d2H and d18O) for tracing pollutant plumes in groundwater. Science of the Total Environment, 578: 495–501. https://doi.org/10.1016/j. scitotenv.2016.10.214 Nigro, A., Sappa, G. & Barbieri, M. 2017: Application of boron and tritium isotopes for tracing landfill contamination in groundwater. Journal of geochemical exploration, 172: 101–108. https://doi.org/10.1016/j.gexplo.2016.10.011 North, J.C., Russel, D.F. & Van Hale, R. 2006: Can stable isotopes be used to monitor landfill leachate impact on surface waters? Journal of geochemical exploration, 88: 49–53. https://doi. org/10.1016/j.gexplo.2005.08.003 Porowska, D. 2015: Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Management, 39: 216–225. https://doi.org/10.1016/j.wasman. 2015.01.044 Raco, B. & Battaglini, R. 2022: Tritium as a tool to assess leachate contamination: An example from Conversano landfill (Southern Italy), Journal of geochemical exploration, 235: 106939. https://doi.org/10.1016/j.gexplo. 2021.106939 Serianz, L., Cerar, S., Koren, K., Prestor, J., Mali, N. & Mladenovic, B. 2017: Evaluation of the impact of landfills on groundwater status, Water Congress, Podcetrtek 19.–20. 4. 2017. Spötl, C. 2005: A robust and fast method of sampling and analysis of d13C of dissolved inorganic carbon in ground waters. Isotopes in Environmental and Health Studies, 41/3: 217–221. https://doi.org/10.1080/10256010500230023 Štrok, M. & Svetek, B. 2020: Determination of tritium. AP STC 131/20: Client of Public Service Ptuj d.o.o. Ljubljana: Jožef Stefan Institute, Department of Environmental Sciences, 3 p. Tazioli, A. 2011: Landfill investigation using tritium and isotopes as pollution tracers. Acquae Mundi, 18: 83–92. Vavilin, V.A. & Lokshina, L.Y. 2023: Carbon and hydrogen dynamic isotope equations are used to describe the dominant processes of waste biodegradation: effect of aeration in methanogenic phase of landfill. Waste management, 166: 280–293. https://doi.org/10.1016/j.wasman. 2023.04.027 Vreca, P., Kanduc, T., Žigon, S. & Nagode, K. 2020: Determination of the isotope composition of oxygen and hydrogen, carbon from dissolved inorganic carbon and total alkalinity according to Gran in water. AP GEO 25/2020: Client of Public Service Ptuj d.o.o. Ljubljana: Jožef Stefan Institute, Department of Environmental Sciences, 5 p. Vreca, P., Pavšek, A. & Kocman, D. 2022: SLONIP–A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water, 14/13: 2127. https://doi. org/10.3390/w14132127 Wimmer, B., Hrad, M., Huber-Humer, M., Watzinger, A., Wyhlidal, S. & Reichenauer, T.G. 2013: Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste. Waste Management, 33/10: 2083-2090. https://doi.org/10.1016/j. wasman.2013.02.017 Internet source: Internet 1. SLONIP: Slovenian Network of Isotopes in Precipitation. Jožef Stefan Institute. Available online: https://slonip.ijs.si/ (accessed on 13 November 2023). GEOLOGIJA 66/2, 301-311, Ljubljana 2023 Porocila in ostalo - Reports and More Porocilo o aktivnostih Slovenskega geološkega društva v letu 2022 Branka BRACIC ŽELEZNIK JP VOKA SNAGA d.o.o., Vodovodna cesta 90, SI–000 Ljubljana, Slovenija; e-mail: branka.bracic.zeleznik@vokasnaga.si V letu 2022 je bil veliki del casa in energije usmerjen v organizacijo 6. slovenskega geološkega kongresa, ki je potekal v soorganizaciji SKIAH-a (Slovenski komite za hidrogeologijo) od 3.–5. 10. 2022 v Rogaški Slatini. Razvoj Rogaške Slatine je neposredno povezan z izviri mineralne vode, ki so posledica geoloških struktur in procesov in zato je bila izbrana za lokacijo osrednjega dogodka slovenskih geologov. Sl. 1. Graficna podoba 6. slovenskega geološkega kongresa. Graficna podoba kongresa, ki je sestavljena iz delckov razlicnih oblik in barv, ponazarja posamezne veje geologije in združeni v celoto dajo celovito sliko okolja, v katerem živimo, tako tisto na površju, ki jo vidimo, kakor tisto pod površjem, ki nam je skrita. To je ubesedil tudi slogan kongresa »Vedeti (ne) vidno – vloga geologije v naši družbi «. Kongresa se je udeležilo 115 udeležencev, ki so svoje dosežke, raziskave in aktivnosti predstavili v 63 predavanjih in 25 posterjih. Pomemben dogodek kongresa je bila okrogla miza, z naslovom slogana kongresa in na kateri smo opozorili na aktualne družbene izzive, kot so ekstremni vremenski dogodki, varnostni konflikti, samooskrba, odpornost, zeleni prehod, krožno gospodarstvo, geo- in bio diverziteta, aktiven snovni krog in kako lahko geologi pripomoremo k rešitvi trenutne krize in izoblikujemo optimisticno vizijo za prihodnost. Šest panelistov pod vodenjem ga. Renate Dacinger, se je osredotocilo na problematiko vode, hrane, raznolikost narave, ekstremne dogodke, surovine, energijo in našo družbo. Razpravljavci na okrogli mizi so bili mag. Joerg Prestor (GeoZS), doc. dr. Matjaž Glavan (UL Biotehnicna fakulteta), Ervin Vivoda ( Ministrstvo za okolje in prostor Sektor za zmanjševanje posledic naravnih nesrec), izr. prof. dr. Maja Turnšek (UM Fakulteta za turizem), Tina Zajc Benda (EIT RawMaterials) in Simona Kaligaric (Zavod RS za naravo, obmocna enota Maribor), najprej izpostavilo aktualne izzive, nato pa skušalo poiskati rešitve in sinergije med razlicnimi aktivnostmi, potrebami in stališci. Najbolj izstopajoc obkongresni dogodek je bila foto razstava »Geopestrost pred domacim pragom «, ki je bila namenjena promociji in pocastitvi prvega mednarodnega dneva geopestrosti. Na natecaj je prispelo 37 fotografij 9 avtorjev. Razstava je bila na ogled obiskovalcem zdraviliškega parka še po zakljucenem kongresu. Sl. 2. Razstava izbranih fotografij v zdraviliškem parku. Sl. 3. Zmagovalna fotografija foto natecaja »Korita pri Klužah« avtorja Boruta Stojilkovica. 20221003_135154 C:\Branka\SGD\6.slovenski geološki kongres\Foto natecaj\Foto_natecaj\IZbor\BStojilkovic\1. Korita pri Klužah.JPG Obrazložitev izbora: barvna in oblikovna dovršenost ter pogled iz perspektive, obicajno skrite cloveškim ocem, razkriva lepoto moci in povezanosti hidroloških in geomorfoloških pojavov, ki so objeti z bujnim zelenilom žive narave. Zanimiva centralna kompozicija, prevladujoca zelena barva in nenavaden pogled, na drugace poznan motiv, naredijo to fotografijo izstopajoco. Kongres se je zakljucil s strokovnimi ekskurzijami, ki so udeležence kongresa popeljale na razlicne konce Slovenije in jih seznanile z aktualnimi geološkimi problematikami. Pohorje je bilo predstavljeno kot ekstenzijski kompleks, ki pripada najzahodnejšemu delu Panonskega bazena. Obiskali smo litostratigrafske formacije med Rogaško Slatino in Bocem ter geološko pot v Kozjanskem krajinskem parku, ogledali smo si gradnjo vzhodne cevi Karavanškega cestnega predora in se seznanili z upravljanjem ranljivih teles podzemne vode na Dravskem polju. Podrobnosti o kongresu in spremljajocih dogodkih, spletno obliko kongresnih povzetkov in opis ekskurzij so dosegljivi na spletni strani (6. slovenski geološki kongres 2022). V januarju 2022 je izšla knjiga »Obrazi geologije «, v kateri so geologi izpostavili do tri besede, ki jih oznacujejo kot geologe pri njihovem delu ali kaj za njih je geologija. Knjiga je izšla v nakladi 700 izvodov in jo je mogoce kupiti na društvu ali pa si jo ogledati v nekaterih knjižnicah. Sodelovali smo pri pripravi slovenskega logotipa Dneva geopestrosti, ki ga je oblikovala Nataša Kastelic iz Designa studio in se bo uporabljal ob mednarodnem logotipu na vseh dogodkih posvecenih geopestrosti. Sl. 4. Slovenski logotip geopestrosti. Opis logotipa: logotip v graficnih potezah in barvah združuje vse glavne elemente geopestrosti. V linijah logotipa so skriti osnovni geološki pojavi – fosili in minerali kot gradniki kamnin. Oblika spirale ponazarja tudi geološki cas. Geomorfološke znacilnosti predstavljajo linije (izohipse), ki rišejo osnovno obliko logotipa. Hidrogeološke znacilnosti so predstavljene s kapljicami in modro barvo. Oranžna in rjava barva zastopata tla. Osnovna oblika logotipa je lahko korozijska votlinica ali kraška jama, eden najpomembnejših geoloških pojavov v Sloveniji. V notranjosti jame je stilizirana oblika Slovenije s silhueto cloveka, ki sobiva z naravo in njeno geopestrostjo. Ob prvi obeležitvi Mednarodnega dneva geopestrosti, ki je potekalo 6. oktobra 2023 v Dovžanovi soteski v Tržicu je bilo društvo, posredno preko svojih clanov, vkljuceno v organizacijo dogodka in izvedbo terenskega ogleda znamenitosti soteske. Dogodek je bil medijsko zelo odziven. Tudi v letu 2022 so bili clani skupine za promocijo geološke znanosti zelo aktivni in delovni. Na sestanku s predstavniki Zavoda za šolstvo (skrbniki za geografijo in biologijo) so predstavili ideje glede spremembe geoloških vsebin v ucnih nacrtih, ki so jih pripravili v okviru sekcije. Clani sekcije so sodelovali na konferencah s prispevki: - Geološki stolpi spregovorijo skozi interaktivnost in digitalno pripovedništvo. - Slovenska geološka pot med Tolminom in Stržišcem – le kaj je želel prof. Buser pokazati? - Geologija v vzgoji in izobraževanju prihodnosti, da ali ne? - Educational challenge on the value chain of raw materials from a geological perspective. Izvedli so delavnice in dogodke: - Geologija okoli nas? : naravoslovni dan za 9. razrede OŠ Železniki, 20. 10. 2022, OŠ Železniki. - Termalna voda: geološko-geotermalne delavnice za ucence petih razredov OŠ Sticna, 13. 9. 2022, Terme Catež. - Termalna voda: geološko-geotermalne delavnice za ucence petih razredov OŠ Zagradec, 22. 9. 2022, Terme Catež. Ter izobraževanja: - Interaktivno poucevanje in ucenje o mineralih in kamninah v ucilnici in naravi: geološke vsebine v obstojecih ucnih nacrtih: ucni pripomocki in geološke ucne zbirke: prepoznavanje glavnih kamninotvornih mineralov z uporabo interaktivnih ucil in ucnih pripomockov: PPU: Programi profesionalnega usposabljanja. - Interaktivno poucevanje in ucenje o mineralih in kamninah v ucilnici in naravi: prepoznavanje glavnih kamninotvornih mineralov z uporabo interaktivnih ucil in ucnih pripomockov: PPU: Programi profesionalnega usposabljanja. Clani sekcije za geokemijo so v preteklem letu nadaljevali z delom zacrtanim že v preteklih letih. Še vedno je v ospredju geokemija okolja. Raziskujejo kemicne procese, vsebnosti in porazdelitve na zemeljskem površju, torej v našem okolju. 302 geopestrost-slo-logo-color S podatki, ki jih pridobijo s študijami, prepoznavajo razlicne geokemicne razmere in tista okolja, ki so obremenjena. Še posebno jih zanimajo tista, ki so obremenjena predvsem zaradi clovekovih dejavnosti, ki so se dogajale v preteklosti ali se dogajajo danes. Raziskujejo torej spremembe v okolju zaradi vpliva antropogenizacije. Na 6. slovenskem geološkem kongresu je bila geokemija zelo dobro zastopana, v sekciji geokemija okolja smo poslušali kar 10 predavanj. Stratigrafska komisija je zacela z izdelavo tabelaricnega pregleda slovenskih litostratigrafskih enot, ki bo tvoril osnovo za nadaljnje kriticno vrednotenje obstojece litostratigrafske razdelitve in njeno reambulacijo. Slovensko geološko društvo, kot clan Evropske zveze, je v letu 2022 sodeloval v petih evropskih projektih Obzorje 2020 (Horizon 2020). Nadaljevale in zakljucile so se aktivnosti na projektu ENGIE – vzpodbujanje deklet za izbiro poklica geoznanstvenice (Empowering Girls to become the geoscientists of tomorrow). V okviru projekta ENGIE smo v letu 2022 sodelovali na treh delovnih paketih. Organizirali smo vec dejavnosti; terenske dneve, znanstvene klube in dneve odprtih vrat. Na dogodkih je bilo udeleženih vec kot 500 udeležencev. Sodelovali smo z aktivnostmi na Evropski noci raziskovalcev. Dejavnosti projekta ENGIE smo izvajali v okviru projekta Humanities rocks!, kjer je bila tema dejavnosti »Žival v cloveku«. Namen aktivnosti Žival in clovek je bil predstaviti evolucijsko zgodovino cloveškega telesa, znacilnosti dolocenih organov in s pomocjo multisenzoricne izkušnje razumeti njihove funkcije. Za delavnico je izdelana brošura, plakat in razlicni izzivi. V slovenski jezik sta bila prevedena tudi publikacija GEAS Ženske, ki proucujejo Zemljo (izvirnik v španšcini GEAS Mujeres que estudian la Tierra). Publikacija bo izdana elektronsko, predvidena pa je tudi tiskana verzija (GEAS: Women who study the Earth - ENGIE Project). Projekt je se zakljucil 31. 12. 2022. Projekt CROWDTHERMAL – Sodelovanje družbe pri razvoju geotermalnih projektov z uporabo alternativnih virov financiranja (Community- based development schems for geothermal energy) je trajal od septembra 2019 do decembra 2022. Cilj projekta je spodbujati družbo pri neposrednem sodelovanju v geotermalnih projektih s pomocjo alternativnih financnih shem in drugih orodij za vkljucevanja družbe. Zato smo se v letu 2022 udeležili nekaj spletnih seminarjev, pripravili vec obvestil o napredku projekta, sodelovali v anketi za izboljšanje uporabniške izkušnje pri rabi Core service projekta (https://www.crowdthermalproject. eu/crowdthermal-core-services/) ter pregledali objavljena gradiva. Nova Core service storitev naj bi predstavljala enotno vstopno tocko za povpraševanje o povecanju moci v geotermalnih projektih preko financiranja skupnosti alternativnega financiranja, vkljucevanja družbe in zmanjševanja tveganj pri geotermalnih projektih, ki vkljucujejo okoljske študije, upoštevanje ekonomskih vidikov, zmanjševanje financnega tveganja in vkljucevanje dejavnika družbenega sprejemanja. Obsega Drevo odlocanja, Interaktivni vodnik za integrirano financiranje geotermalne energije, Orodja za oceno in blažitev tveganj, Izvedbeni okvir za razvoj geotermalne energije v skupnosti, Podatkovni katalog za samostojno ucenje, Pogosta vprašanja in Meta- podatkovno bazo geotermalnih projektov. Projekt se je zakljucil v letu 2022. V sklopu aktivnosti na projektu ROBOMINERS – Razvoj bio-navdihnjenega robotskega rudarja (Resilient Bio-Inspired Modular Robotic Miner) je bil narejen prevod tretjega obvestila za javnost (https://www.slovenskogeoloskodrustvo.si/images/ pdf_dokumenti/Projektna_dok/20220612_ ROBOMINERS_PR3_May_2022_final_SLO_ prevod.pdf) z naslovom »Raziskovalci pri projektu ROBOMINERS so testirali prototip robota za izkorišcanje mineralnih surovin z majhnih ali težko dostopnih nahajališc». V letu 2023 se bodo diseminacijske aktivnosti nadaljevale – obvešcanje slovenske javnosti o poteku projekta, prevodi obvestil za javnost in posredovanje vseh obvestil; aktivnosti bo vec, saj se projekt v letu 2023 zakljucil. Projekt REFLECT - Redefiniranje lastnosti geotermalnih tekocin v ekstremnih pogojih (Redifining geothermal fluid properties at exreme conditions to optimiza future geothermal energy extraction) je bil podaljšan do junija 2023. Cilj projekta REFLECT je prepreciti težave povezane s kemijo geotermalnih tekocin še preden nastanejo, tako v geosferi, vrtini in sestavnimi deli sistemov rabe toplote (izmenjevalci in elektrarne). Zato je bil v 2022 objavljen Evropski atlas geotermalnih tekocin v razlicnih naravnih sistemih (https://www. reflect-h2020.eu/efa/) in objavljeno novo orodje za geokemicno modeliranje (porousMedia4Foam) ter priporocila za preprecevanje obratovalnih težav. V letu 2022 smo se udeležili in promovirali vec spletnih seminarjev, dopolnili smo podatke za Slovenijo za podatkovno bazo ter na petem IAG-CEG Kongresu v Rogaški Slatini predstavili poster European Geothermal Fluid Atlas elaborated within the project REFLECT. 303 V letu 2023 nacrtujemo nadaljnjo diseminacijo rezultatov. CRM-geothermal – Surovine iz geotermalnih fluidov: Pojav, obogatitev in pridobivanje projekt se izvaja od julija 2022 in bo potekal do maja 2027. V novembru 2022 smo šele pristopili k projektu, zato se vsebinske aktivnosti še niso izvajale. Projekt CRM-GEOTHERMAL se ukvarja z razvojem inovativne tehnološke rešitve, ki združuje pridobivanje kriticnih surovin in energije iz geotermalnih tekocin. Ta bo pomagala Evropi izpolniti strateške cilje Zelenega dogovora EU in Agende za trajnostni razvoj, hkrati pa zmanjšala odvisnost od uvoženih CRM-jev. Kombinirano pridobivanje toplote in mineralov iz geotermalnih rezervoarjev ponuja vrsto prednosti: maksimiranje donosnosti naložbe, minimaliziranje vpliva na okolje, izogibanje dodatni rabi zemljišc, ne pušca rudarske dedišcine, dosega skoraj nicelni ogljicni odtis in omogoca domaco dobavo kriticnih surovin. Naša naloga bo predvsem zagotoviti podatke o potencialu geotermalnih tekocin v Sloveniji. V letu 2023 nacrtujemo udeležbo na spletnih sestankih in seminarjih, izpolnitev vprašalnikov o sprejemanju javnosti za geotermalne in rudarske projekte, pripravo seznama deležnikov in diseminacijo projektnih aktivnosti in rezultatov. V sklopu Slovenskega geološkega društva deluje Slovenski nacionalni odbor INQUA (SINQUA), ki povezuje raziskovalce kvartarja ter skrbi za pretok informacij med slovensko in mednarodno kvartarno znanstveno sfero. Glavni cilj je napredek na podrocju kvartarnih znanosti, pri cemer si prizadevamo za interdisciplinarno zastopanost clanov in vecje medsebojno sodelovanje. Vpeti smo v aktivnosti INQUA komisij in fokusnih skupin, sodelujemo pri organizaciji znanstvenih srecanj in delavnic. V letu 2022 smo sodelovali v aktivnostih INQUA komisij in fokusnih skupin. Predstavnik SINQUA je sodeloval na spletnih sestankih, volitvah in pri odlocanju mednarodnega Sveta INQUA. Kot clani INQUA smo nadaljevali sodelovanje pri oblikovanju skupnih aktivnosti v okviru razlicnih komisij. Clani SINQUA smo vpeti v aktivnosti komisij CMP (Coastal and Marine Processes), PALCOM (Paleoclimates), SACCOM (Stratigraphy and Chronology) in TERPRO (Terrestrial Processes, Deposits and History). Clani so sodelovali pri organizaciji »XXI Congress of the International union for Quaternary Research ”Time for Change”1 1 Spletna stran INQUA kongresa: https://inquaroma2023.org/ «, ki se bo odvijal julija 2023 v Rimu. Clana SINQUA sta bila vpeta v »Scientific Advisory Committee«, dve clanici sta sodelovali pri predlogu dveh sekcij »Millennial paleo-landscape reconstructions of coastal areas - From field data to modelling approaches« ter »Quaternary Mediterranean Glaciers«, vec clanov je skupaj prijavilo dve kongresni ekskurziji: »Life with geohazard at the contact of the Alps, the Dinarides and the Pannonian Basin« in »Quaternary archives in the Northeastern Adriatic karst environments «. Sodelovali so tudi pri pripravi vsebin za INQUA novicnik »Quaternary Perspectives«2 2 Spletna stran novicnika »Quaternary Perspectives«: https:// www.inqua.org/publications/quaternary-perspectives . V okviru CMP komisije so v 2022 nadaljevali z vodenjem aktivnosti v okviru štiriletnega projekta NEPTUNE3 3 Spletna stran projekta NEPTUNE: http://dist.altervista.org/neptune/ index.html , kjer clanica SINQUA sodeluje kot ena od vodij projekta. V okviru projekta so v 2022 izvedli serijo šestih mesecnih spletnih seminarjev „NEPTUNE talks“, kjer so uveljavljeni znanstveniki predavali na temo spreminjanja morskih in priobalnih okolij. V septembru so v Neaplju izvedli 3. NEPTUNE srecanje s številcno mednarodni udeležbo. Novembra so izdali dvojno posebno številko INQUA znanstvene revije »Quaternary International«4 4 Spletna stran posebne številke »Quaternary International«: https://www.sciencedirect.com/journal/quaternary-international/ vol/638/suppl/C , kjer so uspeli zbrati 15 izvirnih znanstvenih clankov na temo poznopleistocenskih sprememb obalnih in priobalnih okolij. Prijavili so NEPTUNE sekcijo za kongres v Rimu, na katero je bilo prijavljenih preko 40 povzetkov. Clani SINQUA so pripravljali posebno številko revije »Quaternary« z naslovom »Seas, Lakes and Rivers in the Adriatic, Alpine, Dinaric and Pannonian Regions during the Quaternary: Selected Papers from “6th RMQG”«5 5 Spletna stran posebne številke »Quaternary«: https://www. mdpi.com/journal/quaternary/special_issues/6th_RMQG , ki je sledila mednarodnemu znanstvenemu srecanju v organizaciji SINQUA s partnerji v predhodnem letu in bo zakljucena v letu 2023. V letu 2023 bodo nadaljevali sodelovanje pri organizaciji INQUA kongresa v Rimu, izvedli vodenje dveh prijavljenih sekcij in predkongresnih ekskurzij ter se v vecjem številu udeležili kongresa. Udeleževali se bodo tudi ostalih znanstvenih srecanj in delavnic v organizaciji INQUA in njenih fokusnih skupin. Namen imajo organizirati in izvesti 2. SINQUA srecanje. Zakljucili bodo pripravo posebne številke »Quaternary«. 304 Na pobudo ProGEO – The European Association for the Conservation of the Geological Heritage je UNESCO dolocil 6. oktober za mednarodni dan geopestrosti. Slovensko geološko društvo je v sodelovanju s ProGEO in ob koordinaciji Zavoda Republike Slovenije za varstvo narave izvedlo obeležitev prvega mednarodnega dneva geopestrosti in sodelovanje v projektu UNESCO 737 SMART GEOLOGY. EMU in IMA – European Mineralogical Union in International Mineralogical Association. V preteklem letu je bila med 20 in 24 junijem v okviru EMU v Torinu organizirana šola z naslovom „Minerals in wastes“. Mednarodna šola EMU o mineralnih sestavinah odpadkov, njihovi karakterizaciji, predelavi in ravnanju. Dogodek je bil delno financiran, a žal ni bilo odziva pri študentih. V letu 2023 se študentom sofinancira obisk na Goldschmidt konferenci v Lyonu v primeru aktivne udeležbe na konferenci. V letu 2022 je Slovensko geološko društvo štelo 91 clanov. Clanarino za leto 2022 smo povecali, tako je sedaj za clane 20 evrov, za študente pa 10 evrov. Vabljeni, da podaljšate clanstvo oziroma postanete clan. 305 306 Porocilo o drugi mednarodni poletni geotermalni šoli v Ljubljani, 3.–8. julij 2023 Nina RMAN1 & Mihael BRENCIC1,2 1Geološki zavod Slovenije, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenija, e-mail: nina.rman@geo-zs.si 2Oddelek za geologijo, Naravoslovnotehniška fakulteta, Univerza v Ljubljani, Aškerceva cesta 12, SI–1000 Ljubljana, Slovenija, e.-mail: mihael.brencic@ntf.uni-lj.si Vecja raba geotermalne energije in hitrejša vpeljava inovativnih tehnicnih rešitev za postavitev sistemov rabe plitve geotermije, termalne vode ali geotermalnih elektrarn je možna le z ustreznim prenosom znanja, ki zajema tudi formalno izobraževanje. Na Oddelku za geologijo Naravoslovnotehniške fakultete Univerze v Ljubljani (NTF UL) smo v okviru predmeta Termogeologija na magistrski stopnji že drugic organizirali mednarodno poletno geotermalno šolo, tokrat z naslovom »Napredki pri razvoju rabe geotermalne energije za ogrevanje, hlajenje in proizvodnjo elektrike«. Potekala je med 3. in 8. julijem 2023 v Ljubljani v organizaciji Geološkega zavoda Slovenije (GeoZS) in Naravoslovnotehniške fakultete s podporo Islandske šole za energijo iz Reykjavika ter sofinanciranjem s projektov INFO-GEOTHERMAL ter Geothermal-DHC. Na dogodku je sodelovalo deset predavateljev iz sedmih držav: prof. dr. Mihael Brencic (NTF UL, Slovenija), doc. dr. Nina Rman (GeoZS, Slovenija), dr. Hrvoje Dorotic (Energetski institut Hrvoje Požar, Hrvaška), izr. prof. María Sigríđur Guđjónsdóttir (Reykjavik University, Islandija), dr. Juliet Newson (Iceland School of Energy, Islandija), dr. Bjarni Palsson (Landsvirkjun, Islandija), prof. dr. Rao Martand Singh (Norwegian University of Science and Technology, Norveška), doc. dr. Alexandros Daniilidis (Delft University of Technology, Nizozemska), Jeff Birkby (Hot Springs Association, ZDA) in Nicholas Fry (University of Calgary, Kanada). Sodelujoce smo seznanili z nacini razvoja novih geotermalnih projektov, z dobro prakso raziskav, tehnologijo rabe in nacini upravljanja s plitvo geotermalno energijo ter rabo termalne vode in pare. V predavanjih je bila pozornost posvecena tudi možnostim optimizacije delovanja z namenom, da je vpliv rabe geotermalnih sistemov na okolje in cloveka cim manjši in dolgorocno sprejemljiv. Poleg predavanj na NTF UL je v torek potekala ekskurzija v severovzhodno Slovenijo, kjer smo obiskali proizvodnjo toplotnih crpalk KRONOTERM v Trnavi; sistem daljinskega ogrevanja Lendave z geotermalnim dubletom v upravljanju Petrol d.d.; sedež Petrol Geo d.o.o. in opušceno plinsko vrtino Pg-8, na kateri Dravske elektrarne Maribor, Petrol Geo d.o.o., Univerza v Mariboru in GeoZS v okviru projekta Si-Geo-Electricity testirata pilotno geotermicno elektrarno; geotermalne vrtine in sistem kaskadne rabe termalne vode v Termah 3000 Moravske Toplice. Ob povratku v Ljubljano smo si ogledali vrtanje geosond za ogrevanje Dijaškega doma Vic v izvedbi podjetja Vrtine Palir d.o.o. V cetrtek 6. julija so na GeoZS potekale terenske vaje s prikazom uporabe karotažne opreme, meritev gladine in dolocanja fizikalno-kemijskih lastnosti podzemne vode, geotermalnega in hidrogeološkega laboratorija ter opreme za izvajanje testa toplotnega odziva tal (TRT). Na Agenciji RS za okolje so nam predstavili državno mrežo spremljanja kemijskega in kolicinskega stanja podzemne vode. Vsi udeleženci so na študentski konferenci predstavili svoje delo - knjiga povzetkov je dostopna na spletu https://www.geo-zs.si/?option=com_content&view= article&id=1119, sodelovali pri izvedbi projektnega dela in opravili izpit za pridobitev 3 kreditnih (ECTS) tock. Program je uspešno zakljucilo 24 udeležencev, od tega 18 študentov (1 diplomskega študija, 7 magistrskega in 10 doktorskega študija) ter 6 mlajših zaposlenih. Predstavnic ženskega spola je bilo 11, kar znaša le nekaj manj kot polovico vseh udeležencev. Udeleženci so prihajali iz 15 držav: Egipta, Francije, Hrvaške, Indije, Indonezije, Italije, Kanade, Kitajske, Kameruna, Libanona, Madžarske, Nepala, Pakistana, Poljske in Slovenije. Približno petina izhaja iz podrocij energetike, strojništva in gradbeništva. V anketi zadovoljstva so prav vsi udeleženci potrdili, da bodo priporocili sodelovanje na mednarodni poletni šoli svojim kolegom. Priporocili so vec vsebin o tehnologiji rabe in klimatizaciji, skladišcenju energije, numericnem modeliranju in uporabi znanja na prakticnih primerih. Naslednjo mednarodno poletno geotermalno šolo nacrtujemo cez dve leti, poleti 2025. Zahvala Poletna šola je bila organizirana in financirana v okviru vec projektov. Projekt INFO-GEOTHERMAL -Podpiranje ucinkovite kaskadne uporabe geotermalne energije z dostopom do uradnih in javnih informacij financirajo Islandija, Lihtenštajn in Norveška s sredstvi Financnega mehanizma Evropskega gospodarskega prostora (EGP) 2014-2021 v višini 1.073.529,41 €. Projekt COST Action CA18219 Geothermal-DHC - Raziskovalna mreža za vkljucitev geotermalne tehnologije v sisteme razogljicenja ogrevanja in hlajenja je podprt s strani programa Obzorje 2020 oziroma COST European Cooperation in Science and Technology. Del aktivnosti je bil podprt z delom v okviru ARIS programske skupine P1-0020 Podzemne vode in geokemija. 307 Sl. 2. Udeleženci poletne šole na ekskurziji pri vrtini Pg-8. Sl. 1. Terenske vaje z meritvami v vrtini v Ljubljani. 308 Slovesnost ob 70-letnici izhajanja revije Geologija Urška ŠOLC Geološki zavod Slovenije, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenija; e-mail: urska.solc@geo-zs.si Geološki zavod Slovenije, izdajatelj revije Geo- logija in uredništvo revije sta organizirala slovesnost ob 70 letnici izhajanja revije. Dogodek je potekal v petek, 29. septembra 2023 v Cankarjevem domu v Ljubljani. Slovesnost je bila posvecena pomenu revije Geologija za razvoj geoznanosti v Sloveniji in tudi splošnemu pomenu znanstvenih revij za razvoj znanstvenega okolja. V uvodnem nagovoru je direktor Geološkega zavoda Slovenije, dr. Miloš Bavec, spregovoril o pomenu revije za razvoj geoznanosti in za uveljavljanje slovenskih raziskovalcev na tem podrocju. Pogled uglednega raziskovalca in profesorja o pomenu znanstvene periodike za napredek znanosti, družbe in posameznika je z udeleženci slovesnosti delil predsednik Znanstvenega sveta Javne agencije za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije, akademik, prof. dr. Peter Križan, ki je v svojem nagovoru poudaril, da so znanstvene revije temeljna sestavina razi- skovalnega ekosistema in nadvse pomembne za razširjanje znanja, preverjanje kakovosti in verodostojnosti informacij ter povezovanje znanstvenikov. Glavna in odgovorna urednica revije Geologija dr. Mateja Gosar nas je v svojem govoru popeljala prek sedem desetletij dolgo zgodovino revije Geologija. Prvo obdobje izhajanja revije je bilo zaznamovano z obdobjem po drugi svetovni vojni, ko so bile potrebe po mineralnih surovinah precejšnje in je bila želja po surovinski samozadostnosti velika. Zato so v zacetnem obdobju objavljali vecinoma dela o raziskovanju nahajališc mineralnih surovin. V kasnejšem obdobju vsebine clankov v Geologiji pokrivajo podrocja regionalne geologije, stratigrafije, geomorfologije, paleontologije, sedimentologije, petrologije, mineralogije, mineralnih surovin, geofizike, seizmologije, hidrogeologije, geokemije okolja, geološko pogojenih nevarnosti in drugih tem s podrocja znanosti o Zemlji. Poudarila je, da je objavljanje v znanosti nujno potrebno saj z objavo raziskovalnemu okolju omogocimo, da presodi znanstveno vrednost objavljenih raziskav. Opozorila je, da so se tudi motivi za objavljanje clankov skozi zgodovino spreminjali. Prvotno je bila osnovna želja predstaviti rezultate lastnega izvirnega raziskovalnega dela drugim raziskovalcem ali narediti pregled raziskav dolocene teme. V novejšem casu so prišli v ospredje tudi drugi motivi, kot na primer pridobiti izkušnje pri pisanju clankov, interes za razvoj znanstvenega podrocja in izpolnitev raznovrstnih pogojev. Povedala je, da so v zadnjih desetih letih med avtorji prevladovali zaposleni na Univerzi v Ljubljani in na Geološkem zavodu Slovenije. Zahvalila se je pregledovalcem, ki vestno opravljajo recenzije in poudarila njihov izjemen pomen pri ustvarjanju kvalitetne revije. V zakljucnem delu nagovora je poudarila pomen celotne raziskovalne skupnosti podrocja geo- znanosti za dobro delovanje revije, saj je dela, ki ga je potrebno opraviti veliko. Izjemno pomembno je tako dobro delovanje uredništva, kot tudi vloga avtorjev in recenzentov, brez katerih revija ne more obstajati. Pozvala je vse zbrane, da naj v bodoce še bolj intenzivno sodelujejo z revijo v vseh naštetih vlogah. Uredništvo revije Geologija je na slovesnosti podelilo priznanja izjemnim posameznikom, ki so s svojim delom v zadnjih desetih letih prispevali k razvoju revije in geološke znanosti: • red. prof. dr. Mihaelu Brencicu za najaktivnejšega clana uredniškega odbora • doc. dr. Luki Galetu za najaktivnejšega avtorja • dr. Poloni Vreca, prvi avtorici najveckrat citiranega clanka objavljenega v reviji Geologija v podatkovni zbirki Scopus. Izdajatelj revije Geologija Geološki zavod Slovenije je na slovesnosti podelil zahvale sodelavkam in sodelavcem, ki so dnevno vpeti v uredniško delo in so najbolj zaslužni, da revija redno izhaja in se neprestano razvija: • dr. Mateji Gosar za odlicno vodenje uredništva in predanost razvoju revije Geologija • ga. Bernardi Bole za skrbno, vestno in uspešno delo tehnicne urednice revije Geologija • ga. Vidi Pavlica za oblikovanje revije Geologija • g. Maksu Šinigoju za tehnicno podporo pri digitalizaciji in indeksaciji arhivskih izvodov revije Geologija. 309 Foto: Arhiv GeoZS 310 European Geosciences Student Network meeting in Slovenia, Avgust 2023, Zavrh pri Borovnici Valentina PEZDIR1, Teja POLENŠEK2, Jernej LOBODA2, Luna GRUM VERDINEK3, Sebastian FARISELLI4, Marko ŠTERN5, Lea DVORŠCAK6 & Anže TESOVNIK7 1Geological Survey of Slovenia, Dimiceva ulica 14, SI–1000 Ljubljana, Slovenia; e-mail: valentina.pezdir@geo-zs.si 2IRGO Consulting d.o.o., Slovenceva 93, SI–1000 Ljubljana, Slovenia; e-mail: teja.polensek@irgo.si, jernej.loboda@irgo.si 3Škrilje 104, SI–1292 Ig, Slovenia; e-mail: luna.grumverdinek@gmail.com 4Mestni trg 9, SI–3210 Slovenske Konjice, Slovenia; e-mail: fariselli.sebastian@gmail.com 5Kidriceva cesta 61, 4000 Kranj Slovenia, e-mail: marko15stern@gmail.com 6Ljubljanska cesta 25, 6230 Postojna, Slovenia; e-mail: lea.dvorsca52@gmail.com 7Slovenian national building and civil engineering institute, headquarters, Dimiceva ulica 12, SI–1000 Ljubljana, Slovenia; e-mail: anze.tesovnik@zag.si This year we organized the 26th European Geosciences Student Network (EUGEN) meeting from 7 – 13th of August in Zavrh pri Borovnici. Originally, the EUGEN was to happen in Ljubno ob Savinji. During the last year we were preparing for the event and spent a productive weekend at the Kamp na Otoku in Ljubno ob Savinji. Previous two EUGEN meetings in Slovenia happened in 2003 and 2014, both located in western Slovenia. Therefore, we focused on eastern Slovenia, where we prepared field trips to present mining in this part of Slovenia, igneous and metamorphic rocks of Pohorje massive, as well as karst geology and geomorphology in Logar valley and Snežna cave. Unfortunately, due to the heavy flooding in the beginning of August we had to change locations on very short notice. With great help of the local fire department (PGD Zavrh, Pokojišce, Padež) we moved to Zavrh pri Borovnici. With quick thinking we provided and arranged food, drinks and transport. With help from field trip organizers there was also no lack of interesting and diverse field trips, more focused on the Central Slovenia. Even with news of the floods spreading to other countries, there were still more than 90 participants from 16 different countries (Austria, Croatia, Finland, France, Germany, Great Britain, Italy, Luxemburg, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland). During the week we organized three field trip days with total of six different topics. The participants had the option to learn about the local geology of Borovnica and its surroundings and paleontology of central Slovenia, as they visited outcrops Fig. 1. Palaeontology field trip. for the Toarcian anoxic event. They also had the option to learn about the tunnel construction sites in Slovenia and flysch deposits as part of the field trip to the Slovenian coast. To learn more about the karst in Slovenia, we visited a karst cave (Križna jama), followed by a visit to Cerknica lake. As mining is an important part of Slovenian heritage, we organized visits to Sitarjevec mine and Velenje coal mine. Additionally, the participants learned more about geothermal water in Slovenia and operation of the Slovenian thermal baths in Dobrna. We also visited the Ljubljana Marshes nature park. Many researchers and professors from the Faculty of Natural Sciences and Engineering and the Geological Survey of Slovenia (GeoZS) showed great help in performing and execution Geological Survey of Slovenia (GeoZS) showed great help in performing and executing the field trips. During the week, various lectures were held in the evenings, where the participants learned about the geology of the whole of Slovenia, the operation of GeoZS and PhD Baltic Teach project. The participants also had the opportunity to participate and present their works in the field of geology. We had the opportunity to learn about Kyrgyzstan summer school and Diagenesis, porosity and reservoir potential of the Karchowice and Diplopora Beds in Upper Silesia. As part of the last lecture, EUGEN e.V. presented their organization and their international cooperation. Of course, there was no shortage of fun during EUGEN’s time. Wednesday was dedicated to the Geolympic games, where participants get to mingle and compete with each other. On Saturday 12.8. we concluded the event with a cultural and geological tour of Ljubljana. Even though we struggled with reorganization of the event, facing the possibility of cancelation, we managed to organize a successful event, that attracted many new student participants from all over Europe. At the end of EUGEN week, the participants decided that the 27th EUGEN meeting in 2024 will happen in France. The event was sponsored by IRGO Consulting d.o.o., Geological Survey of Slovenia, Bo-Ra- tec GmbH, Javno podjetje Vodovod Kanalizacija Snaga d.o.o., Združeni NTF, Slovensko geološko društvo, Študentski svet Naravoslovnotehniške fakultete, GIH, geologija in hidrogeologija, Judita Crepinšek s.p. and Pharsol d.o.o. 311 Fig. 2. Participants of EUGEN 2023 (photo: Jernej Loboda). 66/2 GEOLOGIJA št.: 66/2, 2023 www.geologija-revija.si 205 Scherman, B., Rožic, B., Görög, Á., Kövér, S. & Fodor, L. Upper Triassic–to Lower Cretaceous Slovenian Basin successions in the northern margin of the Sava Folds 229 Brencic, M. Pisma Johanna Jacoba Ferberja - Geološki opisi Slovenije iz druge polovice 18. stoletja 247 Czernielewski, M. Prospalax priscus jaw from the site of Weze 2 (southern Poland, Pliocene) 257 Souvent, P., Pavlic, U., Andjelov, M., Rman, N. & Frantar, P. Ocena kolicinskega stanja podzemnih voda za Nacrt upravljanja voda 2022–2027 (NUV III) 275 Zajc, M. & Grebenc, A. Using Ground Penetrating Radar (GPR) for detecting a crypt beneath a paved church floor 285 Cerar, S., Serianz, L., Vreca, P., Štrok, M. & Kanduc, T. Impact assessment of the Gajke and Brstje landfills on groundwater status using stable and radioactive isotopes ISSN 0016-7789