# Formiranje potenciala pred ravno elektrodo, ki oddaja elektrone

Tomaž Gyergyek<sup>1,2</sup>, Jernej Kovačič<sup>2</sup>, Iñaki Gomez<sup>2</sup>

<sup>1</sup>Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška 25, 1000 Ljubljana, Slovenija <sup>2</sup> Institut Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia E-pošta: tomaz.gyergyek@fe.uni-lj.si

## Potential formation in front of an electron emitting collector planar electrode

Abstract. Formation of a virtual cathode in front of an electron emitting floating collector that terminates a bounded plasma system is studied with a particle-in-cell (PIC) computer simulation. As the electron emission from the collector is increased the depth of the potential well increases also. As long as the emission is below approximately 40 times the critical emission level the depth of the potential well follows very well a simple logarithmic formula that is derived. For larger emissions the depth of the virtual cathode increases faster than predicted by the formula. The reasons for this discrepancy remain to be further investigated.

#### 1 Uvod

Modeliranje plazemskih diod, kjer so hitrostne porazdelitvene funkcije nabitih delcev odrezane Maxwellove je precej živahno področje [1,2] predvsem zaradi praktičnih aplikacij (na primer emisijske sonde [3], v zadnjem času pa tudi fuzijske aplikacije [4]) Krajši pregled literature je v [5]. V tem delu preučujemo formiranje tako imenovane virtualne katode, ki nastane pri zelo močni emisiji elektronov iz elektrode.

#### 2 Model

Eno dimenzionalna plazemska dioda je omejena z dvema zelo velikima planarnima elektrodama, ki se nahajata na mestih x = 0 (na levi) in x = L (na desni) – slika 1. Desna elektroda je ozemljena in njen potencial vzamemo za ničlo merjenja potenciala. Ta elektroda (izvir) v sistem vbrizgava protone (indeks i) in elektrone (indeks 1). Hitrostna porazdelitev obeh vrst vbrizganih delcev je polmaksvelska z različnima temperaturama  $T_i$ in  $T_{e}$ . Levo elektrodo imenujemo kolektor, ker absorbira vse delce, ki jo zadenejo. Obenem pa ta elektroda emitira elektrone (indeks 2), ki izstopajo iz nje s polmaxwellsko hitrostno porazdelitvijo s temperaturo  $T_2$ . Leva elektroda je električno izolirana od desne in se glede na njo nabije na potencial lebdenja, ki je odvisen od tega koliko pozitivnih in negativnih delcev jo zadene oziroma zapusti na časovno enoto. Predpostavljamo, da v prostoru med elektrodama delci ne trkajo med seboj in da se torej skupna kinetična in potencialna energija vsakega delca ohranja. Ion, ki desno elektrodo zapusti z ničelno začetno hitrostjo ima na mestu *x* hitrost:

$$v_{mi} = -\sqrt{-\frac{2e_0\Phi(x)}{m_i}},\qquad(1)$$

v smeri proti kolektorju. Zato ima ta hitrost negativen predznak. Pri tem je  $m_i$  masa iona,  $e_0$  je osnovni naboj,  $\Phi(x)$  pa je potencial na mestu x. Potencial desne elektrode postavimo na ničlo,  $\Phi(x=L) = 0$  kot referenčni potencial, potencial na katerem lebdi kolektor pa je  $\Phi_C$ . Ker so elektroni mnogo bolj gibljivi, kot protoni, lahko pričakujemo, da je potencial  $\Phi_C$  negativen glede na potencial desne elektrode. Zanimajo nas samo takšni potencialni profili  $\Phi(x)$ , ki monotono pojemajo od desne proti levi. Potencial  $\Phi(x)$  je torej povsod v sistemu negativen. Porazdelitveno funkcijo za ione zapišemo takole:

$$f_{i} = n_{Si} \sqrt{\frac{m_{i}}{2\pi k T_{Si}}} \exp\left(-\frac{e_{0} \Phi(x)}{k T_{Si}}\right) \exp\left(-\frac{m_{i} v^{2}}{2k T_{Si}}\right) H(-v + v_{mi}).$$
(2)

Pri tem je  $n_{Si}$  gostota,  $T_{Si}$  temperatura ionov tik ob izviru, v pa hitrost. Boltzmannova konstanta je k in H je Heavisideova funkcija enotske stopnice.

Elektron, ki zapusti kolektor z ničelno začetno hitrostjo, ima na mestu *x* hitrost

$$v_{me} = \sqrt{\frac{2e_0\left(\Phi(x) - \Phi_c\right)}{m_e}},\qquad(3)$$

v smeri proti izviru in ta hitrost je torej pozitivna. Porazdelitveno funkcijo elektronov, ki so prišli z izvira torej zapišemo takole:

$$f_{1} = n_{S1} \sqrt{\frac{m_{e}}{2\pi k T_{S1}}} \exp\left(\frac{e_{0} \Phi(x)}{k T_{S1}}\right) \exp\left(-\frac{m_{e} v^{2}}{2k T_{S1}}\right) H(-v + v_{me}).$$
(4)

Tu je  $n_{SI}$  gostota,  $T_{S1}$  pa temperatura elektronov ob izviru. Masa elektrona je  $m_e$ . Porazdelitvena funkcija elektronov, ki jih emitira kolektor, je:

$$f_{2} = n_{C2} \sqrt{\frac{m_{e}}{2\pi k T_{C2}}} \exp\left(\frac{e_{0}(\Phi(x) - \Phi_{C})}{k T_{C2}}\right) \exp\left(-\frac{m_{e} v^{2}}{2k T_{C2}}\right) H(v - v_{me}).$$
(5)

Podobno, kot prej je  $n_{C2}$  gostota,  $T_{C2}$  pa temperatura emitiranih elektronov ob kolektorju.

Vse zgoraj povedano velja, dokler je potencialni profil v sistemu monoton. Če pa emisija elektronov iz kolektorja močneje narase, lahko potencialni profil postane nemonoton. Znano je, da potencial lebdenja elektrode, ki emitira elektrone narašča, če narašča emisija. V nekem trenutku dosežemo tako imenovano kritično emisijo elektronov, ko električno polje ob elektrodi doseže ničlo. Če pa emisijo elektronov še povečamo, nastane pred elektrodo potencialna jama, ki ji pogosto pravimo virtualna katoda. Električno polje pred elektrodo takrat spremeni predznak v pozitivnega in začne pospeševati emitirane elektrone nazaj proti elektrodi. Tiste elektrone, ki zapustijo elektrodo s premajhno začetno hitrostjo, celo vrne nazaj na elektrodo. Ti profili potenciala in električnega polja so shematično prikazani na sliki 1. Pri tem  $j_2$  pomeni gostoto toka emitiranih elektronov iz leve elektrode,  $j_c$  pa kritično emisijo, pri kateri je električno polje ob kolektorju enako 0.



Slika 1: Shematični prikaz modela. Izvor se nahaja pri x = L, kolektor pa pri x = 0. Ko emisija postane kritična, je električno polje ob kolektorju enako nič. Ko pa emisija še narase, nastane pred kolektorjem potencialna jama – virtualna katoda.

Označimo vrednost minimuma potencialne jame  $\Phi_M$ . Ta minimum se nahaja na mestu  $x_M > 0$ . Radi bi ocenili, kolikšen delež emitiranih elektronov lahko pride skozi potentialno bariero v področje  $x > x_M$ , če je njihova porazdelitvena funkcija podana z izrazom (5). Tik ob kolektorju je  $v_{me} = 0$ , ker je  $\Phi = \Phi_C$ . Porazdelitvena funkcija (5) torej dobi naslednjo obliko:

$$f_{2M} = n_{C2} \sqrt{\frac{m_e}{2\pi k T_{C2}}} \exp\left(-\frac{m_e v^2}{2k T_{C2}}\right) H(v).$$
(6)

Gre torej za enodimenzionalno polmaxwellsko porazdelitev, ki je shematično prikazana na sliki 2. Samo elektroni, ki imajo hitrost večjo kot

$$v_M = \sqrt{\frac{2e_0\left(\Phi_C - \Phi_M\right)}{m_e}},\tag{7}$$

lahko pridejo v področje  $x > x_M$ .

Uvedemo naslednje spremenljivke:



Slika 2: Porazdelitvena funkcija emitiranih elektronov ob kolektorju je polmaxwellska. Samo tisti elektroni, ki imajo hitrost večjo od  $v_M$  lahko pridejo v področje  $x > x_M$ .

S spremenljivkami (8) zapišemo porazdelitveno funkcijo (6) takole:

$$F_2 = \frac{\varepsilon}{\sqrt{\pi \sigma}} \exp\left(-\frac{u^2}{\sigma}\right) H(u).$$

Porazdelitvena funkcija  $F_2$  je normirana na  $n_{S1}$  takole:

$$n_{s_1} \sqrt{\frac{m_e}{2\pi k T_{s_1}}} \int_{-\infty}^{\infty} \exp\left(-\frac{m_e v^2}{2k T_{s_1}}\right) dv = n_{s_1} \equiv 1$$

Zapišimo še brezdimenzijske hitrosti:

$$\begin{split} u_{mi} &= \frac{v_{mi}}{v_0} = -\sqrt{-\mu \Psi}, \ u_{mc} = \frac{v_{me}}{v_0} = \sqrt{\Psi - \Psi_c}, \\ u_M &= \frac{v_M}{v_0} = \sqrt{\Psi_c - \Psi_M}. \end{split}$$

Gostoto toka emitiranih elektronov  $J_{2a}$  podaja izraz:

$$J_{2a} = \int_{-\infty}^{\infty} uF_2(u) du = \frac{\varepsilon}{2} \sqrt{\frac{\sigma}{\pi}}.$$
 (9)

Gostoto toka elektronov  $J_{2b}$ , ki pridejo v področje  $x > x_M$  pa podaja integral:

$$J_{2b} = \int_{\sqrt{\Psi_c - \Psi_M}}^{\infty} uF_2(u) du = \frac{\varepsilon}{2} \sqrt{\frac{\sigma}{\pi}} \exp\left(-\frac{\Psi_c - \Psi_M}{\sigma}\right). (10)$$

Ko med seboj delimo izraza (9) in (10) dobimo:

$$\frac{J_{2a}}{J_{2b}} = \exp\left(\frac{\Psi_C - \Psi_M}{\sigma}\right), \quad \Psi_C - \Psi_M = \sigma \ln\left(\frac{J_{2a}}{J_{2b}}\right). \tag{11}$$

Izraz (11) razumemo takole. Če poznamo gostoto toka elektronov, ki jih oddaja kolektor  $J_{2a}$  (na primer iz znane temperature kolektorja in Richardsonove formule) in če predpostavimo, da je  $J_{2b}$  enaka kritični gostoti toka  $J_c$ , pri kateri je elektično polje ob kolektorju enako 0, potem lahko formulo (11) uporabimo za oceno globine potencialne jame, če seveda poznamo temperaturo emitiranih elektronov. Eksperimentalno je te podatke zelo težko izmeriti. V delčni simulaciji pa je to mnogo preprosteje. Zato v naslednjem razdelku primerjamo rezultate delčne simulacije s formulo (11).

### **3** Delčne simulacije

Plazemsko diodo, ki smo jo opisali v prejšnjem razdelku simularamo z delčno kodo XPDP1 [6]. Za pozitivne ione izberemo protone, njihovo temperaturo pa postavimo  $kT_{si} = 0.1$  eV. Temperaturo elektronov izberemo  $kT_{s1} = 20$  eV. Pri emitiranih elektronih izberemo več različnih temperatur  $kT_{c2}$ . Dolžino diode nastavimo na 6 cm. Vbrizgavanje elektronov z desne elektrode nastavimo na  $j_1 = 60$  A/m<sup>2</sup>, vbrizgavanje emitiranih elektronov z leve strani  $j_2$  pa počasi povečujemo. Pri vsakem paru  $j_1 = 60$  A/m<sup>2</sup> in  $j_2$  nato nastavimo vbrizgavanje ionov  $j_i$  tako, da je električno polje  $E_s$  ob desni elektrodi enaki nič. To električno polje določamo iterativno s strelsko metodo, kar je časovno zelo zamudno.



Slika 3: Dva primera profilov potenciala  $\Phi(x)$  (levo) in električnega polja E(x) (desno), ki ju dobimo iz simulacij za parametre  $kT_{S1} = 20$  eV,  $kT_{C2} = 1$  eV,  $kT_i = 0.1$  eV,  $j_1 = 60$  $A/m^2$  in pri 2 vrednostih  $j_2$ .

Na sliki 3 vidimo dva primera profilov potenciala in električnega polja, ki ju dobimo iz simulacij pri:  $kT_{Si} =$ 0.1 eV,  $kT_{S1} = 20$  eV in  $kT_{C2} = 1$  eV. Gostota toka vbrizganih elektronov je  $j_1 = 60$  A/m<sup>2</sup>, izberemo pa tudi 2 vrednosti za  $j_2$  in sicer  $j_2 = 9.84$  A/m<sup>2</sup> in  $j_2 = 300$ A/m<sup>2</sup>. Pri vsakem  $j_2$  poiščemo takšno vbrizgavanje ionov  $j_i$ , da je električno polje  $E_S$  ob desni elektrodi kolikor je le mogoče blizu ničle. Vidimo, da je pri  $j_2 =$ 9.84 A/m<sup>2</sup> tudi električno polje ob levi elektrodi zelo blizu ničle, zato to vrednost emisije proglasimo za kritično emisijo  $j_c$ . Na spodnji levi sliki je formiranje virtualne katode zelo dobro vidno. Potencial lebdenja je  $\Phi_C = -27.7$  V potencial virtualne katode pa  $\Phi_M = -31.3$ V. Globina potencialne jame je 3.6 V.

Na podoben način izvedemo še mnogo simulacij, kjer spreminjamo  $j_2$  parametrov  $kT_{Si} = 0.1$  eV,  $kT_{S1} = 20$ eV,  $kT_{C2} = 1$  eV in  $j_1 = 60$  A/m<sup>2</sup> pa seveda ne. Emisijo  $j_2$  spreminjamo med 20 A/m<sup>2</sup> in 1100 A/m<sup>2</sup>. Vse te vrednosti krepko presegajo kritično emisijo  $j_c = 9.84$ A/m<sup>2</sup>. Pri vsaki vrednosti  $j_2$  izmerimo potenciala  $\Phi_C$  in  $\Phi_M$ . Tako dobimo sliko 4. Z naraščajočim  $j_2$  oba potenciala naraščata, narašča pa tudi razlika med njima spodnji graf na sliki 4. Emisijo povečujemo do  $j_2 =$ 1100 A/m<sup>2</sup>. Pri večji emisiji začne potencial v sistemu oscilirati in pride tudi do povratnega toka ionov proti desni elektrodi.



Slika 4: Potencial lebdenja kolektorja  $\Phi_C$  in potencial virtualne katode  $\Phi_M$  dobljena iz delčnih simulacij v odvisnosti od  $j_2$  pri:  $kT_{S1} = 20$  eV,  $kT_{C2} = 1$  eV,  $kT_i = 0.1$  eV in  $j_1 = 60$  A/m<sup>2</sup>.

Da bi mogli primerjati rezultate delčnih simulacij s formulo (11), moramo rezultate s slike 4 najprej normirati. Potencial normiramo na  $kT_{S1}/e_0 = 20$  V. Temperaturi  $kT_{S1} = 20$  eV in  $kT_{C2} = 1$  eV data  $\sigma = 0.05$ , emisijo  $j_2$  pa normiramo s kritično emisijo  $j_c = 9.84$  $A/m^2$ , – glej sliko 3. Normirane rezultate simulacij prikazujemo z majhnimi kvadratki na sliki 5. Polna črta na sliki 5 pa kaže napoved formule (11). Vidimo, da je do  $j_2/j_c \approx 40$  ujemanje med simulacijami in računskim modelom skoraj popolno. Pri večji emisiji pa formula (11) napoveduje manjšo globino potencialne jame  $\Psi_c - \Psi_M$ , kot jo dobimo iz simulacij. Razloga za to razhajanje zaenkrat še ne poznamo.



Slika 5: Normirana globina potencialne jame pred elektrodo v odvisnosti od normirane gostote toka emitiranih elektronov pri istih parametrih kot na sliki 4. Polna črta prikazuje rezultat formule (11), kvadratki pa rezultat delčne simulacije.

#### 4 Sklep

S kinetičnim računskim modelom in delčnimi simulacijami smo preučevali nastanek virtualne katode pred električno lebdečo elektrodo, ki emitira elektrone. Za simulacije smo uporabili kodo XPDP1 [6]. Ko elektronska emisija preseže kritično vrednost pride do nastanka potencialne jame – virtualne katode. Izpeljali smo preprosto formulo, ki povezuje emisijske parametre z globino potencialne jame pred elektrodo. Njene napovedi smo primerjali z rezultati delčnih simulacij. Dokler emisija elektronov ne preseže približno 40kratne kritične emisije, je ujemanje med simulacijami in napovedjo formule (11) skoraj popolno, pri večji emisij pa formula (11) napoveduje manjšo globino potencialne jame, kot jo pokažejo delčne simulacije. Razlage za to razliko zaenkrat še nimamo.

Simulacije pokažejo še en zanimiv rezultat. Ko narašča emisija, narašča tudi potencial lebdenja in ni opaziti nobenega nasičenja potenciala lebdenja ob veliki emisiji. Pri emisijskih sondah [3] namreč praviloma pride do nasičenja potenciala lebdenja ob naraščajočem gretju sonde, ko se potencial lebdenja dovolj približa potencialu plazme.

### Zahvala

Zahvaljujemo se za finančno podporo ARRS v okviru programa P2-0073 in projekta BI-FR/CEA/17-19-002.

#### Literatura

- L. A. Schwager and C. K. Birdsall, "Collector and sorce sheaths of a finite ion temperature plasma", *Phys. Fluids B*, vol. 2, no. 5, o. 1057-1068, 1990.
- [2] L. A. Schwager, "Effects of secondary and thermionic electon emission on the collector and source sheaths of a finite ion temperature plasma using kinetic theory and numerical simulation", *Phys. Fluids B*, vol. 5, no. 2, p. 631-645, (1993).
- [3] J. P. Sheehan, N. Hershkowitz, "Emissive probes", *Plasma Sources Sci. Techol.* vol. 20, no. 6, p. 063001, (22 pages), 2011.
- [4] J.P. Gunn, S. Carpentier-Chouchana, F. Escourbiac, T. Hirai, S. Panayotis, R.A. Pitts, Y. Corre1, R. Dejarnac, M. Firdaouss, M. Kočan, M. Komm, A. Kukushkin, P. Languille, M. Missirlian, W. Zhao and G. Zhong, "Surface heat loads on the ITER divertor vertical targets" Nucl. Fusion vol. 57, p. 046025 (35 pages), 2017.
- [5] T. Gyergyek, B. Jurčič-Zlobec, M. Čerček, "Potential formation in a one-dimensional bounded plasma system containing a two-electron temperature plasma: Kinetic model and PIC simulation", *Phys. Plasmas*, vol. 15, no. 6, p. 063501 (28 pages), 2008.
- [6] J. P. Verboncoeur, M. V. Alves, V. Vahedi and C. K. Birdsall, "Simultaneous Potential and Circuit Solution for 1d bounded Plasma Particle Simulation Codes," J. Comput. Phys., vol 104, no 2, p. 321-328, 1993.