
IMFM
Institute of Mathematics, Physics and Mechanics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series
Vol. 49 (2011), 1161
ISSN 2232-2094

THE INDEX OF A BINARY
WORD

Aleksandar Ilić Sandi Klavžar
Yoomi Rho

Ljubljana, September 27, 2011

The index of a binary word

Aleksandar Ilić

Faculty of Sciences and Mathematics

University of Nǐs, Serbia

e-mail: aleksandari@gmail.com

Sandi Klavžar

Faculty of Mathematics and Physics

University of Ljubljana, Slovenia

and

Faculty of Natural Sciences and Mathematics

University of Maribor, Slovenia

e-mail: sandi.klavzar@fmf.uni-lj.si

Yoomi Rho

Department of Mathematics

University of Incheon, Korea

e-mail: rho@incheon.ac.kr

Abstract

A binary word u is f -free if it does not contain f as a factor. A word f is d-good if
for any f -free words u and v of length d, v can be obtained from u by complementing
one by one the bits of u on which u and v differ, such that all intermediate words are
f -free. We say that f is good if it is d-good for any d ≥ 1. A word is bad if it is not
good. The index β(f) of f is the smallest integer d such that f is not d-good, so that
β(f) < ∞ if and only if f is bad.

It is proved that β(f) < |f |2 holds for any bad word f . In addition, β(f) < 2|f |
holds for almost all bad words f and it is conjectured that the same holds for all bad
words. An infinite family of words such that each member of it is bad, but 2-good, is
constructed. It is conjectured that the words of this family are all the words that are
bad and 2-good among those with exactly two 1s. These conjectures are supported
by computer experiments.

Keywords: binary words, combinatorics on words, good words, index of a word, algo-
rithm, generalized Fibonacci cube.

AMS Subject Classification (2010): 68R15, 68W32.

1Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

1 Introduction

Let f be a finite binary word. Then a binary word u is called f -free if it does not contain
f as a factor. For instance, 110100110 is 111-free but not 1001-free.

Let d be a positive integer. Then f is called d-good if for any f -free words u and v of
length d, the following holds: u can be transformed into v by complementing one by one
all the bits on which u differs from v, such that all of the new words we obtain in this
process are f -free. Such a transformation will be called an f -free transformation of u to v.
Clearly, if there is an f -free transformation of u to v, there is also an f -free transformation
of v to u. Now, we say that f is good if it is d-good for any d ≥ 1. The word f is bad if it
is not good, that is, if there exist words u and v (of the same length) for which no f -free
transformation of u to v exists.

A motivation for the present study comes from isometric embeddings of graphs, as we
will describe below, but the concepts and problems are of general nature which we follow
here. Good and bad words were introduced in [7] as follows. For a finite binary word
f , the generalized Fibonacci cube, Qn(f), is the graph obtained from Qn by removing all
vertices that contain f as a factor [5]. The classical Fibonacci cubes Γn [4, 6] can be thus
defined with Γn = Qn(11), and the subclass Qn(1s) of generalized Fibonacci cubes was
studied in [8, 11] (also under the name generalized Fibonacci cubes). Now, it is easy to
see that a binary word f is good if and only if Qd(f) is an isometric subgraph of Qd for
any d ≥ 1.

To test (say, using a computer) if a given word f is good or bad, it would be utmost
useful to know whether there is a function β such that f is good as soon as f is d-good
for d < β(f). We therefore introduce the index of a word f , denoted β(f), as the smallest
integer d for which f is not d-good. If no such integer exists we set β(f) = ∞. Clearly,
β(f) < ∞ if and only if f is bad.

To the best of our knowledge, these concepts and problems were not studied earlier,
except in [7]. However, numerous other operations on (binary) words have been inves-
tigated. One such operation is a prefix reversal, see [3], where it has been in particular
proved that the prefix reversal distance between two arbitrary binary strings is NP-hard.
Another example is the paper [2] where operations are presented that preserve primitivity
of words. For the general theory on combinatorics on words and their applications, see
the books [9] and [10], respectively.

We proceed as follows. In the rest of this section remaining necessary definitions are
given. In the next section we first prove that the index of any bad word f is smaller than
|f |2. Then we demonstrate that the index of almost all bad words f is smaller than
2|f | and conjecture that this is eventually true for all bad word. Then, in Section 3, we
consider the words that are 2-good but are not good. An infinite family of such words is
constructed. Each of these words contains exactly two 1s and we conjecture that among
such words, the constructed are the only words that are bad and 2-good. Computer
support for the two conjectures is also provided.

Let B = {0, 1} and call elements of B bits. An element of Bd is called a binary word
(or simply a word) of length d. A word u ∈ Bd will be written in the coordinate form
as u = u1u2 . . . ud. The i-th unit word, that is, the word with 1 in coordinate i and 0
elsewhere, will be denoted with e(i). We will use the product notation for words meaning
concatenation, for example, 1d means 11 . . . 1, the word of length d. A word f is a factor
of a word x if f appears as a sequence of |f | consecutive bits of x. For a word f , bk(f)
denotes the prefix of f of length k and ek(f) its suffix of the same length k.

2Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

2 Bounding the index of a word

As announced, we first prove that the index of a word can be bounded by the square of
its length:

Theorem 2.1 Let f be a bad word. Then β(f) < |f |2.

Proof. Let d = β(f) and let u and v be words of length d such that there is no f -free
transformation of u to v. We may assume that u and v are different in the smallest
number, say r, of bits among all such pairs of words.

Consider the following directed graph Df = (V (Df), A(Df)):

V (Df) = {f + e(i) | i = 1, . . . , |f |}

and
A(Df) = {(f ′, f ′′) | ek(f

′) = bk(f
′′) for some k ≥ 1} .

As an example, Fig. 1 shown for the digraph D1100. For instance, since 1110 ends with
110 which is at the same time the beginning of 1101, there is an arc from 1110 to 1101.

0100

1110

10001101

Figure 1: Digraph D1100

Let i1, . . . , ir be the coordinates in which u and v differ. The word u+ e(ij) contains f
as a factor for j = 1, . . . , r. Indeed, otherwise u + e(ij) ∈ Qd(f) and dQd(f)(u + e(ij), v) >

dQd
(u + e(ij), v) = r − 1, a contradiction to the minimality of r.
For j = 1, . . . , r, let f (ij) be a copy of f that appears as a factor in u + e(ij) and let

̂f (ij) be the subword of u from which f (ij) is obtained by complementing the i-th bit.
Note that each f (ij) has a common coordinate with at least one f (ij′), where j′ 6= j,

because otherwise v would contain f as a factor. Observe also that u is covered with

∪r
j=1

̂f (ij), that is, in each coordinate u intersects with at least one of the ̂f (ij). Indeed,
otherwise d would not be the index of f .

Consider now the subdigraph X of Df induced by vertices ̂f (ij), j = 1, . . . , r. For
example, for f = 1100 and vertices u = 1110100 and v = 1101000, the subdigraph is
induced by vertices 1110, 1101, and 0100.

Suppose first that the words ̂f (ij), j = 1, . . . , r, are pairwise different. Then r ≤ |f |

and since u is covered with the ̂f (ij)’s, d < r · |f | ≤ |f |2.

Assume next that two among the words ̂f (ij) are equal. Then X contains a directed
cycle, say C = f1 → f2 → · · · → fs → f1. Construct new vertices u′ and v′ with smaller
length by removing the path f2 → · · · → fs → f1. Clearly, u′ and v′ differ in less bits
than u and v, which is a contradiction. Therefore, X does not contain directed cycles and
d < r · |f | ≤ |f |2. �

3Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

We could define also the edge weights in digraph: the weight of the directed edge
(f ′, f ′′) is the largest number k such that ek(f

′) = bk(f
′′). Since each vertex is represented

by the path in digraph Df , for each bad word f its index corresponds to the directed path
lengths in Df . We also remark that we could further refine the β(f) < |f |2 bound by
considering the intersection of every two consecutive vertices from D, but it would be still
quadratic. On the other hand, we can do much better with high probability:

Theorem 2.2 For almost all bad words, β(f) < 2|f |.

Proof. If bk(f) and ek(f) agree in all but r positions, then f has an r-error overlap of
length k. If f has an r-error overlap for some length k then we simply say that f has an
r-error overlap. We also say that f is a stutter if f has an r-error overlap of length k,
where r ≤ 2 and k ≥ n

2 . In [7] it was proved that the proportion of stutters among all
words of length n tends to zero when n → ∞. Moreover, asymptotically close to 92% of
all words are bad. It follows from these two facts that the proportion of stutters among
all bad words of length n also tends to zero when n → ∞. Hence, the theorem will be
proved if we show that the index of any bad word f that is not a stutter is less that 2|f |.

Suppose therefore that f is a bad word but not a stutter. Since f is bad, a theorem
of [7] guarantees that f has a 2-error overlap. Let k be the length of a 2-error overlap and
let bk(f) disagree from ek(f) in positions i and j of bk(f), where i < j, see Fig. 2.

f :

u :

u :

v :

v :

f :f :

f

f

f

f

f

f

f

f

f

f

f

f

n-k k

i

i

i

i

i

i

j

j

j

j

j

j

Figure 2: 2-error overlap when f is not a stutter

Set d = 2n − k and define words u, v ∈ Bd as follows. Let u be the concatenation of
bn−k(f) and the word f + e(i), and let v be the concatenation of bn−k(f) with f + e(j), see
Fig. 2 again. Clearly, u and v disagree in positions n− k + i and n− k + j. Now consider
the words u′ = u + e(n−k+i) and v′ = u+ e(n−k+j). Observe that u′ contains f as its suffix
of length n and that v′ contains f as its prefix of length n. Because f is not a stutter and
k < n/2 we conclude that none of u′ and v′ is f -free. Hence v cannot be obtained from u
by an f -free transformation. Since d < 2n, we conclude that β(f) < 2n. �

We note that Theorem 2.2 is implicit in [7]. Based on this theorem and computer
experiments we close the section with:

Conjecture 2.3 For any bad word f , β(f) < 2|f |.

4Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

3 On words that are bad and 2-good

Another look at the proof of Theorem 2.2 reveals that in the case when f is not a stutter,
there exist words w and w′ of length d = 2|f | − k (where k is the length of a 2-error
overlap) demonstrating that f is not 2-good. In other words, any bad word that is not a
stutter is not even 2-good. In view of Conjecture 2.3 one might be tempted that this is
the case for all bad words, that is, as soon as a word is bad, it is not 2-good. That this is
not the case is demonstrated with the following result:

Theorem 3.1 Let r ≥ 0. Then

f = 02r+1

102r−1102r−1

is a 2-good, bad word.

Proof. We first show that f is not 3-good. Set d = 7(2r − 1) and consider the words

u = (002r−1)2002r−1102r−1002r−1(102r−1)2

and
v = (002r−1)2102r−1002r−1102r−1(102r−1)2 .

Note that both u and v are f -free and that they differ in three bits. The three words
obtained from u by complementing the bits in which u differs from v are

(002r−1)2102r−1102r−1002r−1(102r−1)2 ,

(002r−1)2002r−1002r−1002r−1(102r−1)2 ,

and
(002r−1)2002r−1102r−1102r−1(102r−1)2 .

None of these three words is f -free, hence f is not 3-good. So f is bad.
To complete the proof we need to show that f is 2-good. Assume on the contrary that

there exist two f -free words u and v of length at least |f | = 2r+2 that differ in two bits,
but there is no f -transformation of u to v. Let i and j be the positions in which u and v
differ, where i < j. It follows that both words u′ = u + e(i) and u′′ = u + e(j) contain f
as a factor. Denote the factor f of u′ with f ′ and the factor f of v′ with f ′′. Let factors
f ′ and f ′′ start from positions k′ and k′′, respectively. Assume that k′ < k′′, the case
when k′′ < k′ is treated analogously. Note that f ′ and f ′′ must have some common indices
because otherwise v would contain f as a factor. In other words, k′ < k′′ ≤ k′ + 2r+2.
Note that the common indices of f ′ and f ′′ are from the segment S = [k′′, k′ + 2r+2 − 1].

Both indices i and j belong to the segment S. Indeed, if i is not from S, then v would
contain f ′′ = f as a factor. Similarly, u would contain f ′ = f as a factor if j would not
be from S.

Consider the word f = 02r+1

102r−1102r−1; its first half is composed of 0s and its two
1s are on the positions |f |

2 + 1 and 3|f |
4 + 1. Since f ′ = f and f ′′ = f differ in exactly two

positions from the segment S, namely in positions i and j, this is possible only when k′′,
the first bit of f ′′, is under the position |f |

2 + 1 of f ′. Here is an example for r = 2:

0000000010001000

0000000010001000

5Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

But now u contains the factor 02r+1

002r−1

102r−1102r−1102r−1, a contradiction since we
assumed that u is f -free. �

For the special case r = 0 (that is, f = 0011) of Theorem 3.1 it was earlier [5] proved
that 0011 is a bad word.

The 2-good (and bad) words from Theorem 3.1 contain precisely two 1s. On the other
hand, many such words are not 2-good:

Proposition 3.2 Let r, s, t ≥ 0 and t ≥ r + s + 3. Then the word 0r10s10t in not 2-good.

Proof. Let k = r + 1. Then k ≤ t − s − 2 since we have assumed that t ≥ r + s + 3. Let
d ≥ 2r + 2s + t + 5 and consider the words

u = 0d−r−2s−t−k−40r10s10k00s10t

and
v = 0d−r−2s−t−k−40r10s10k10s00t .

Note first u and v differ in two bits. In addition, we claim that they are f -free. Indeed,
If u would contain f as a factor, then the factor must contain the first two 1s, but this is
impossible as k ≤ t − s − 2. Similarly, suppose v contains f as a factor. As we already
know that u does not contain f as a factor, the factor f in v cannot contain the first two
1s. But the factor also cannot contain the last two 1s since k 6= s. This proves the claims.

The words that differ from u in the two bits in which u differs from v are

w = 0d−r−2s−t−k−40r10s10k00s00t

and
w′ = 0d−r−2s−t−k−40r10s10k10s10t .

Clearly, w contains f . Moreover, the same also holds for w′ because k ≥ r. (Actually w′ is
not f -free if and only if k ≥ r because if w′ contains f as a factor, then the factor contains
the last two bits of 1 of w′, which occurs exactly when k ≥ r.) Hence f is not 2-good. �

By the symmetry, the same conclusion can also be made for words f = 0r10s10t with
r ≥ s + t + 3.

Recall that by Theorem 3.1, the word

00001010

is 2-good. On the other hand, Proposition 3.2 and the above remark imply that the word

000001010

(obtained by s = t = 1, r = 5) is not 2-good. These two words show that there is a very
thin line between being 2-good and not being 2-good.

We also conclude this section with a conjecture. It is motivated by Theorem 3.1 and
computer experiments.

Conjecture 3.3 Let f be a bad word that contains exactly two 1s. Then f is 2-good if
and only if f = 02r+1

102r−1102r−1 (or its reverse) for some r ≥ 0.

6Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

4 Computational results

For each length 3 ≤ r ≤ 10 we generated all binary words of length r (reverse words
and complements are excluded) and calculated the index of these words by considering all
possible words of lengths d, r ≤ d ≤ 20. For each word f and dimension d we constructed
generalized Fibonacci cube Qd(f) and then ran breadth first search algorithm from each
vertex of a cube in order to determine the distance matrix and check the embeddability of
Qd(f) in the hypercube Qd. In Table 1 the computational results for words with exactly
two 1s are presented.

The table needs some comments. The words that were recognized as bad and for which
the index was computed, clearly support Conjecture 2.3. Among them, only the word 0011
attains the conjectured upper bound: let f = 0011, then β(f) = 7 = 2|f | − 1. It was
proved in [5] that for any s ≥ 2, the word 1s01s0 is good, and that for any s ≥ 1, the word
(10)s is good. These two results cover all the good words from the table except the four
words with “(?)” attached to them. These are the words 0001001, 0001010, 000010010,
and 000010001. Each of them is a stutter, so we cannot use the proof of Theorem 2.2 to
conclude that they are good. However, it follows from our computations that either each
of them is good or Conjecture 2.3 is false. Note also that the obtained results support
Conjecture 3.3.

We also designed an O(|f |4) algorithm for checking whether a given binary word f
is 2-good. If f is not 2-good, then there exist two words v and u which differ on two
places i and j, such that v + e(i) contains f as a prefix and v + e(j) contains f as a suffix.
This means that we can try to overlap two copies of f such that bk(f) and ek(f) differ on
exactly zero or two places (see Fig. 2), where k is the number of bits in the intersection
of two copies of f . That is, in order to construct possible words u and v to demonstrate
that f is not 2-good, we will consider cases when bk(f) and ek(f) differ on exactly zero or
two places.

If the number of differences is two, we can construct the words u and v by changing
the bits on i-th and j-th position, respectively. Finally, if v and u do not contain f as a
subword, it follows that f is not 2-good. If the number of differences is zero, we need to
traverse all pairs (i, j), 1 ≤ i < j ≤ k, construct the words u and v as above and check
whether u and v contain f as a subword.

For searching the occurrences of f in the words u and w we use the Knuth-Morris-
Pratt string searching algorithm [1]. KMP algorithm searches for occurrences of a word w
within a main text string s by employing the observation that when a mismatch occurs,
the word w itself embodies sufficient information to determine where the next match in s
could begin. The running time of this algorithm is linear O(|w|+ |s|), which is optimal in
the worst case sense. Pseudo code of this approach is shown below as Algorithm 1.

7Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

Length The index Words

2 ∞ 11

3 4 101
∞ 110

4 5 0110
7 0011
∞ 1010

5 6 00110, 10001
7 01001
8 00011, 01010
∞ 00101

6 7 000110, 001100, 100001
8 010001, 010010
9 000011, 000101, 001010
∞ 001001

7 8 0000110, 0001100, 1000001
9 0010100, 0100001, 0100010
10 0000011, 0000101, 0010001
11 0010010
∞ 0001001(?), 0001010(?)

8 9 00000110, 00001100, 00011000, 10000001
10 00010100, 01000001, 01000010
11 00000011, 00000101, 00100001, 00100010
12 00001001, 00010010, 00100100
14 00001010
∞ 00010001

9 10 000000110, 000001100, 000011000, 100000001
11 000010100, 000101000, 010000001, 010000010
12 000000011, 000000101, 001000001, 001000010, 001000100
13 000001001, 000100001, 000100100
14 000001010, 000100010
∞ 000010001(?), 000010010(?)

10 11 0000000110, 0000001100, 0000011000, 0000110000, 1000000001
12 0000010100, 0000101000, 0100000001, 0100000010
13 0000000011, 0000000101, 0001001000, 0010000001, 0010000010,

0010000100
14 0000001001, 0001000001, 0001000010
15 0000001010, 0000010001, 0000010010, 0000100010, 0000100100,

0001000100
∞ 0000100001

Table 1: The index of words with two 1s.

8Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

Input: Binary word f
Output: True if f is 2-good, false otherwise
n = |f |;
for k = 2 to n − 1 do

diff = 0;
i = −1;
j = −1;
for s = 1 to k do

if f [s] 6= f [n − k + s] then
diff = diff + 1;
if diff > 2 then

break;
end
if i = −1 then

i = s;
else

j = s;
end

end

end
if diff = 2 then

v = f + substring(f, k + 1, n);
u = substring(f, 1, k) + f ;
v[k + i] = 1 − v[k + i];
u[k + j] = 1 − u[k + j];
if KMP (v, f) = false and KMP (u, f) = false then

return false;
end

end
if diff = 0 then

v = f + substring(f, k + 1, n);
u = substring(f, 1, k) + f ;
for i = 1 to k − 1 do

v[k + i] = 1 − v[k + i];
for j = i + 1 to k do

u[k + j] = 1 − u[k + j];
if KMP (v, f) = false and KMP (u, f) = false then

return false;
end
u[k + j] = 1 − u[k + j];

end
v[k + i] = 1 − v[k + i];

end

end

end
return true;

Algorithm 1: Determining whether a word f is 2-good.

9Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

Acknowledgements

This work was supported by Research Grants 174010 and 174033 of Serbian Ministry of
Science, by the Research Grant P1-0297 of Ministry of Higher Education, Science and
Technology Slovenia, and by Basic Science Research Program through the National Re-
search Foundation of Korea funded by the Ministry of Education, Science and Technology
grant 2011-0025319. The work was partially done during a visit of S.K. at the University
of Incheon, Korea, whose support is gratefully acknowledged.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms,
Second Edition, MIT Press, 2001.

[2] J. Dassow, G. M. Mart́ın, F. J. Vico, Some operations preserving primitivity of words,
Theoret. Comput. Sci. 410 (2009) 2910–2919.

[3] C. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, J. Tromp, Prefix reversals
on binary and ternary strings, SIAM J. Discrete Math. 21 (2007) 592–611.

[4] W.-J. Hsu, Fibonacci cubes—a new interconnection technology, IEEE Trans. Parallel
Distrib. Syst. 4 (1993) 3–12.

[5] A. Ilić, S. Klavžar, Y. Rho, Generalized Fibonacci cubes, Discrete Math., to appear.
doi:10.1016/j.disc.2011.02.015.

[6] S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., to appear.

[7] S. Klavžar, S. Shpectorov, Asymptotic number of isometric generalized Fibonacci
cubes, manuscript, 2010.

[8] J. Liu, W.-J. Hsu, M. J. Chung, Generalized Fibonacci cubes are mostly Hamiltonian,
J. Graph Theory 18 (1994) 817–829.

[9] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cam-
bridge, 2002.

[10] M. Lothaire, Applied Combinatorics on Words, Cambridge University Press, Cam-
bridge, 2005.

[11] N. Zagaglia Salvi, On the existence of cycles of every even length on generalized
Fibonacci cubes, Matematiche (Catania) 51 (1996) 241–251.

10Pr
ep

ri
n

t
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

1,
 S

ep
te

m
be

r
27

, 2
01

1

