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When using optimization algorithms the goal is usually clear: The global optimum should be found. How-
ever, in general it is not clear when this goal is achieved, especially if real-world problems are optimized
for which no knowledge about the global optimum is available. Therefore, it is not easy to decide when the
execution of an optimization algorithm should be terminated. Although different mechanisms can be used
for the detection of an appropriate time for ending an optimization run, only two of them are frequently
used in the literature. Unfortunately, both methods have disadvantages, particularly for the optimization
of real-world problems. Because especially for practical applications it is important when an optimization
algorithm is terminated as they usually contain computationally expensive objective functions, the perfor-
mance of several stopping criteria that react adaptively to the state of an optimization run is evaluated for a
Particle Swarm Optimization algorithm in this work. The examination is done on the basis of a constrained
single-objective power allocation problem. Suggestions from former work concerning stopping criteria for
unconstrained optimization are verified and comparisons with results for Differential Evolution are made.

Povzetek: Ovrednoteni so ustavitveni kriteriji za optimiranje z roji delcev (angl. particle swarm optimiza-
tion) in rezultati primerjani z rezultati algoritma diferencialne evolucije.

1 Introduction
Evolutionary algorithms (EAs) are a class of population-
based stochastic optimization algorithms that incorporate
mechanisms from evolution for optimization processes.
The most famous representatives from this class are pos-
sibly Genetic Algorithms [5] but in the last years also e.g.
Particle Swarm Optimization (PSO) [7] and Differential
Evolution (DE) [9] had a lot of success.

For theoretical aspects of evolutionary algorithms stop-
ping criteria are usually not important. However, for prac-
tical applications the choice of stopping criteria can signif-
icantly influence the duration of an optimization run. Due
to different stopping criteria an optimization run might be
terminated before the population has converged, or compu-
tational resources might be wasted because the optimiza-
tion run is terminated late. Real-world problems mostly
contain computationally expensive objective functions that
may result in optimization runs that take several days, thus
wasting of computational resources has to be prevented.

In the literature mostly two stopping criteria are applied
in single-objective optimization: Either an error measure in
dependence on the known optimum is used or the number
of function evaluations is limited to femax. These criteria
are perfectly suitable for e.g. comparing the performance
of different algorithms but for solving real-world problems
there are some drawbacks. The first mentioned method
has the disadvantage that the optimum has to be known,

so it is generally not applicable to real-world problems be-
cause the optimum is usually not known a priori. The sec-
ond method is highly dependent on the objective function.
Because generally no correlation can be seen between an
optimization problem and the required number of function
evaluations, femax has to be determined by trial-and-error
methods usually. Evolutionary algorithms include random-
ness in the optimization process, thus the number of func-
tion evaluations that is needed for convergence is subject
to fluctuations, so a safety margin for femax is needed.
The fluctuations can be significant as can be seen in [17]
where a test suite of 24 functions has been examined, and
the standard deviation of function evaluations for reaching
a predefined error measure was up to 180,000. If a real-
world problem with an unknown optimum would result in
a similar standard deviation, it would be difficult to choose
femax.

As a result, it would be better to use stopping criteria that
consider knowledge from the state of the optimization run.
The time of termination would be determined adaptively,
so function evaluations could be saved.

Several stopping criteria are reviewed in [19] and [20]
that are sensitive to the state of the optimization run by ob-
serving the improvement, movement or distribution of the
population members. In [19] stopping criteria are tested for
unconstrained single-objective optimization using Particle
Swarm Optimization and Differential Evolution, while in
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[20] the criteria have been adapted for constrained single-
objective problems using DE because real-world problems
normally include constraints. In this work it will be ex-
amined if the suggestions regarding stopping criteria for
PSO from [19] hold for the constrained real-world problem
of optimizing a power allocation scheme. Additionally, a
comparison with the results for DE in [20] will be done.

This work is organized as follows: In Section 2 related
work is discussed. In Section 3 the Particle Swarm Op-
timization algorithm is described and Section 4 provides
a short introduction to Differential Evolution. In Section 5
the stopping criteria that are used in this work are reviewed.
In Section 6 results are shown and Section 7 closes with
conclusions.

2 Related Work

Every optimization algorithm includes a stopping rule but
there are only few works concentrating explicitly on stop-
ping criteria. In [16] convergence of a Particle Swarm Op-
timization algorithm is detected by computing a maximum
swarm radius, by doing a cluster analysis or by calculating
the rate of change in the objective function. Most stop-
ping criteria are applicable not only to PSO but also to
other population-based optimization algorithms, e.g. in [1]
the difference between maximum and minimum objective
function value is used as stopping criterion for a Differ-
ential Evolution algorithm. In [13] not only termination
criteria for evolutionary algorithms but also for other opti-
mization algorithms are discussed. Often criteria similar to
the ones used in the work are also applied in hybrid algo-
rithms to determine the moment when global search should
be replaced by local search [4, 6, 15].

3 Particle Swarm Optimization

Particle Swarm Optimization is derived from the behavior
of social groups like bird flocks or fish swarms. Although
the “survival of the fittest” principle is not used in PSO,
it is usually considered as an evolutionary algorithm. A
thorough discussion of this topic can be found in [7]. Like
in this work, PSO is mostly used for the optimization of
continuous functions.

Optimization is achieved by giving each individual in the
search space a memory for its previous successes, infor-
mation about successes of a social group and providing a
way to incorporate this knowledge into the movement of
the individual. Therefore, each individual (called particle)
is characterized by its position ~xi, its velocity ~vi, its per-
sonal best position ~pi and its neighborhood best position
~pg. Several neighborhood topologies have been developed
[10]. In this work the von-Neumann topology is used as it
showed promising results in the literature, e.g. in [8].

The dynamic behavior of PSO is generated by the update

equations for velocity and position of the particles:

~vi(t + 1) = w · ~vi(t) (1)
+c1r1[~pi(t)− ~xi(t)]
+c2r2[~pg(t)− ~xi(t)]

~xi(t + 1) = ~xi(t) + ~vi(t + 1) (2)

Due to these equations the particles are drawn towards their
personal best position and their neighborhood best posi-
tion, and furthermore the velocity of the previous iteration
is kept weighted with the inertia weight w. Other parame-
ters are c1 and c2 which influence the impact of the cogni-
tive and social component, respectively. To add a stochas-
tic element to the movement of the particles, the numbers
r1 and r2 are chosen randomly from the interval [0,1] in
each iteration. Further parameters of PSO are the popula-
tion size NP and the maximum velocity Vmax that is used
for preventing oscillations with increasing magnitude [7].

The control parameter settings for this examination are
derived from a parameter study using the same opti-
mization problem (yet unpublished): w = 0.6, c1 = 0.4,
c2 = 1.4, NP = 64, Vmax = 1

2 (Xmax −Xmin).
Constraint-handling is done by modifying the replace-

ment procedure for personal and neighborhood best posi-
tions [11]. In unconstrained single-objective optimization
a personal or neighborhood best position is replaced if the
current position has a lower objective function value (for
minimization problems as in this work). For constrained
single-objective optimization this rule is altered so that in a
comparison of two solutions ~a and~b, ~a is preferred if

– both vectors are feasible and ~a has a better objective
function value or

– both vectors are infeasible and ~a has the lower sum of
constraint violation or

– ~a is feasible and~b is infeasible

where feasibility means that all constraints are satisfied. In
contrast to several other constraint-handling techniques, no
additional parameters are needed for this method [2]. For
unconstrained problems the modified PSO algorithm is ex-
actly the same as the original PSO.

4 Differential Evolution
The main characteristic of Differential Evolution is an
adaptive scaling of step sizes that results in fast conver-
gence behavior. Using DE the population members are
evolved from one generation to the next by applying the
operators mutation, recombination and selection. The first
two operators generate new vectors by linearly combin-
ing several population members and afterwards exchang-
ing some vector components. The third operator decides
based on objective function values and constraint violation
which vectors will be kept for the next generation. Because
no deterioration with regard to the objective function value
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is possible, the DE selection scheme is called greedy [14].
More specific information about the here mentioned DE al-
gorithm can be found in [20].

5 Stopping Criteria
Stopping criteria are needed to terminate the execution of
optimization algorithms. In contrast to using a maximum
number of function evaluations as a stopping condition,
other criteria have the advantage of reacting adaptively to
the state of the optimization run, thus function evaluations
can be saved. Unfortunately, it seems to be impossible to
define a stopping criterion without introducing one or more
parameters. The parameter settings generally depend on
the given optimization problem. However, it should be in-
vestigated if there are stopping criteria for which the pa-
rameter settings are robust to changes or if parameters can
be set depending on certain aspects of the problem. It is
assumed that the general behavior of different optimiza-
tion problems to stopping criteria is similar. It should be
kept in mind that limiting the number of function evalua-
tions as a stopping criterion also incorporates the choice of
a problem-dependent parameter femax. Hence, it is favor-
able to examine other possibilities for stopping that contain
the advantage of reacting adaptively to the state of the op-
timization run.

In the following the stopping criteria that incorporate in-
formation about the state of the optimization run are re-
viewed shortly. Note that there is a change compared to
[19]: Instead of using the current positions ~xi for the calcu-
lation of stopping conditions, the personal best positions ~pi

are used here. The reason is that the current positions have
many fluctuations whereas the development of the personal
best positions is more smooth, so decisions about termina-
tion of an optimization run should be easier.

Improvement-based criteria terminate an optimization
run if only small improvement is made because usually in
the beginning of an optimization run large improvements
are achieved whereas in later stages the improvement be-
comes small. Three different conditions are used here:

– ImpBest: The improvement of the best objective func-
tion value is monitored. If it falls below a given
threshold t for a number of generations g, the opti-
mization run is terminated.

– ImpAv: Similar to ImpBest, but instead of observing
the best objective function value, the average value
computed from the whole population is checked.

– NoAcc: It is observed if any new ~pi are accepted in
a specified number of generations g. For DE this cri-
terion is slightly different because in DE there are no
personal best positions (instead, the acceptance of new
population members is considered).

For movement-based criteria not the improvement but
the movement of individuals is regarded. Two variants of

movement-based criteria are considered that differ in the
regarded space:

– MovObj: The movement of the individuals with
respect to their objective function value (objective
space) is examined if it is below a threshold t for a
number of generations g. MovObj is different from
ImpAv only if the regarded algorithm allows deteriora-
tion of the individuals’ objective function value. This
is the case for PSO in contrast to DE, but as ~pi are con-
sidered here instead of ~xi, MovObj = ImpAv holds in
this case also. Therefore, this criterion is not regarded
further in this work.

– MovPar: The movement with respect to positions (pa-
rameter space) is checked if it is below a threshold t
for a number of generations g.

The distribution-based criteria consider the diversity in
the population. If the diversity is low, the individuals are
close to each other, so it is assumed that convergence has
been obtained.

– StdDev: It is checked if the standard deviation of po-
sitions is below a threshold m.

– MaxDist: The distance from every population mem-
ber to the best individual is observed. The optimiza-
tion run is stopped if the maximum distance is below
a threshold m.

– MaxDistQuick: MaxDistQuick is a generalization of
MaxDist. Instead of using the whole population
for the computation of the maximum distance to the
best population member, a quicksort algorithm is em-
ployed for sorting the individuals due to their ob-
jective function value, and only the best p% of the
individuals are regarded. The background for this
criterion is that there are optimization runs where
most of the population has converged to the optimum
but because of the remaining individuals which are
still searching, the optimization run is not stopped
although they do not contribute any new informa-
tion. Using MaxDistQuick an optimization run can
be stopped earlier than using MaxDist, so wasting of
computational resources is avoided. However, the per-
centage p must not be set too low for a reliable detec-
tion of convergence.

– Diff : The difference between best and worst objective
function value is checked if it is below a threshold d.
A further demand is that at least p% of the individu-
als are feasible because otherwise Diff could lead to
undesired results if e.g. only two individuals are fea-
sible and they are close to each other incidentally. In
contrast to the previous three criteria that are used in
parameter space, Diff considers objective space.

Because functions have different features it may be ben-
eficial to couple several criteria. Up to now two combined
criteria have been regarded:
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– ComCrit: This criterion is a combination of ImpAv
and MaxDist. Only if the condition of ImpAv is ful-
filled, MaxDist is checked.

– Diff_MaxDistQuick: Diff is a criterion that is rather
easy to check, but it fails with flat surfaces. Therefore,
if its condition has been fulfilled, the MaxDistQuick
criterion is checked afterwards.

6 Results

As a basis for the examination a real-world problem was
used that consists of optimizing a power allocation scheme
for a Code Division Multiple Access (CDMA) system [20].
The overall power is minimized considering the powers of
16 individual users as parameters. Because multiple users
send data simultaneously in a CDMA system, multi-user
interference degrades the system performance. The appli-
cation of a parallel interference cancellation technique al-
lows estimation of the multi-user interference, so it can be
subtracted from the received signal before detection, result-
ing in improvement of the system performance. The con-
vergence of the parallel interference cancellation technique
has to be incorporated in the optimization problem as a con-
straint.

In the following results are shown sorted according to
the type of stopping criterion. The global optimum is
considered to be reached if an objective function value of
f(x) ≤ 18.5 has been found [20]. As performance mea-
sures the convergence rate and the success performance
(mean number of function evaluations weighed with the
total number of runs divided by the number of success-
ful runs) are given. A high convergence rate and a small
success performance indicate good performance. To allow
easy comparisons, figures showing success performances
are scaled to 20,000. A maximum number of generations
Gmax = 1000 is used to terminate the algorithm if the ex-
amined stopping criteria do not lead to termination in ap-
propriate time. If a run is not stopped before Gmax is
reached, the run is considered as unsuccessful.

6.1 Improvement- and Movement-Based
Criteria

Because ImpAv, ImpBest and MovPar rely on similar mech-
anisms, the convergence rate and success performance of
these criteria are displayed together. Considering the con-
vergence rate, almost no dependence on the number of gen-
erations g is observable (Figure 1(a)). For decreasing val-
ues of the improvement threshold t generally the conver-
gence rate increases, except for MovPar that was not able
to terminate several runs before reaching Gmax for small
settings of t.

The success performance of ImpAv, ImpBest and Mov-
Par is slightly increasing with growing g (see Figure 1(b)).
The results regarding t are similar for ImpAv and ImpBest:

For high settings of t the success performance is large be-
cause of the small convergence rate. After a strong de-
crease the success performance increases again for smaller
values of t because of the growing average number of func-
tion evaluations for convergence.

The smallest success performance of MovPar is in the
same range as for ImpAv and ImpBest. The difference in the
average number of function evaluations for different set-
tings of t is larger for MovPar than for ImpAv or ImpBest,
thus the success performance grows quickly for decreas-
ing t. As a result the success performance is better for
t = 10−2 than for t = 10−4 although the convergence rate
of t = 10−2 is worse.

The success performance of ImpAv and MovPar has sim-
ilar characteristics as for DE in [20]. For ImpBest the re-
sults are different: The success performance for g = 5 is
considerably better for PSO. Furthermore, the success per-
formance is dependent on t and almost independent from g
whereas for DE it depends more on g than on t. The reason
for the different results is not clear yet.

The results for ImpAv and ImpBest are considerably bet-
ter here than in [19] for unconstrained single-objective
problems. For ImpAv the reason might be that the personal
best positions are regarded here instead of the current po-
sitions, but criterion ImpBest did not change because only
the global best result is regarded. In contrast, for MovPar
the results are worse, but it has to be kept in mind that the
results are slightly dependent on the setting of Gmax be-
cause it influences the convergence rate.

Unfortunately, suitable parameter settings for ImpAv and
ImpBest cannot be derived from knowledge about the opti-
mization problem. Besides, it is indicated in [19] that prob-
lems arise for functions with a flat surface, but it is usually
not known in advance if a function possesses this property.
Therefore, it will be necessary to do examinations on pa-
rameter settings for the application of these stopping cri-
teria. Based on the examined problem parameter settings
of g ≈ 10 . . . 15 and t ≈ 10−5 . . . 10−4 are recommended.
However, these settings are dependent on the optimization
problem and the desired accuracy. It has to be noted also
that these criteria may not be as reliable as others because
improvement often occurs irregularly in evolutionary algo-
rithms.

Criterion NoAcc showed good results for DE in [20] but
not a single run could be terminated before reaching Gmax

for PSO. Apparently, the personal best positions improve
too often to allow a stopping criterion like NoAcc.

6.2 Distribution-Based Criteria

For MaxDist the convergence rate does not get above 80%
because of runs that could not be terminated before reach-
ing Gmax. The results for StdDev are shifted in contrast
to MaxDist and higher convergence rates are reached (Fig-
ure 2(a)). Furthermore, StdDev yields a lower minimum
success performance than MaxDist (Figure 2(b)). For both
criteria the performance is highly dependent on the setting
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Figure 1: Results for criteria ImpAv, ImpBest and MovPar
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Figure 2: Results for criteria MaxDist and StdDev

of m. However, it is connected to the desired accuracy of
the result. Similar effects have been found in [20] for DE.
The same settings of parameter m yield the lowest success
performances for MaxDist and StdDev for PSO as for DE,
respectively.

The convergence rate and success performance of Max-
DistQuick is given for 10−3 ≤ m ≤ 10−1 in Figures 3(a)
and 3(b). Other parameter settings are omitted because the
success performance was above 20,000. The convergence
rate is fluctuating for m = 0.1 with different settings of
p, indicating that the performance is not robust for this pa-
rameter setting. For m = {10−2, 10−3} and varying p the
convergence rate is approximately constant but the success
performance rises with increasing p. Hence, a similar result
is obtained as in [19]: Because less function evaluations
are needed for convergence if smaller values of p are used
and the convergence probability is not compromised, it is

recommended to use e.g. 0.3 ≤ p ≤ 0.5. In spite of the in-
creased computational effort for the incorporated quicksort
algorithm [18], MaxDistQuick is considered to be superior
to MaxDist and StdDev for PSO, particularly because the
increased computational effort is usually negligible when
compared to computationally expensive objective function
evaluations of real-world problems. For future work also
a similar generalized criterion based on standard deviation
instead of maximum distance should be evaluated.

For DE the success performance depends less on p
[19, 20], so MaxDistQuick does not have advantages over
MaxDist for DE. This behavior is supposed to be connected
with the greediness of the DE selection scheme.

It may be confusing that the success performance for
MaxDistQuick with p = 1 is not equal to the results of
MaxDist. The reason is that the success performance is
sensitive to even small changes in the number of success-



56 Informatica 31 (2007) 51–59 K. Zielinski et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

p

co
nv

er
ge

nc
e 

ra
te

 in
 %

m = 0.1
m = 0.01
m = 0.001

(a) Convergence rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

p

su
cc

es
s 

pe
rf

or
m

an
ce

m = 0.1
m = 0.01
m = 0.001

(b) Success performance

Figure 3: Results for criterion MaxDistQuick

ful runs. If the average number of function evaluations is
examined, the results from MaxDistQuick with p = 1 and
MaxDist are similar (not shown here).

For criterion Diff no definite trend can be observed re-
garding the demanded percentage p of feasible individuals
in the population (Figures 4(a) and 4(b)) which is assumed
to be due to the fact that all individuals get feasible quite
fast here. Similar results were found for DE in [20]. As ex-
pected, the success performance depends on the difference
threshold d. Like parameter m of the other distribution-
based criteria, the setting of d is connected with the de-
sired accuracy of the result. The highest convergence rate
is achieved with d = 10−2 but although d = 10−1 results
in a worse convergence rate, the success performance is
better.

Criterion Diff is advantageous in contrast to the
distribution-based criteria in parameter space if several pa-
rameter combinations yield the same objective function
value. In this case the distribution-based criteria in param-
eter space may waste computational resources while the al-
gorithm tries to converge to one point in the search space,
with no or only little improvement of the objective func-
tion value. However, Diff is likely to produce bad results
for functions with a flat surface [19].

6.3 Combined Criteria
The convergence rate and success performance for both
combined criteria are given for m ≥ 10−2 because smaller
values of m lead to success performances larger than
20,000 (Figures 5(a), 5(b), 6(a) and 6(b)). The results
are different than for DE as the success performance
increases less with decreasing value of m. Especially
for Diff_MaxDistQuick the results are almost independent
from m. However, a strong dependence on d can be seen,
in particular for the success performance.

For the combined criteria generally more parameters

have to be set than for the individual criteria and further-
more the dependence of parameter settings on the desired
accuracy of the results cannot be seen anymore, so in gen-
eral it might be easier to use the individual criteria.

6.4 Summary

Although the improvement-based criteria ImpAv and
ImpBest yielded good results in this work, they are consid-
ered as rather unreliable because generally improvement
occurs irregularly in evolutionary algorithms. To prevent
early termination, parameter g must not be chosen too low
when using these criteria. The movement-based criterion
MovPar has similar problems. The third improvement-
based criterion NoAcc was not able to stop a single opti-
mization run during the given maximum number of gener-
ations, so it is classified as unsuitable for PSO although it
showed a good performance for DE in [20].

Based on the considered optimization problem as well as
results from [19] it can be concluded that it is beneficial to
use the generalization MaxDistQuick instead of MaxDist.
Because StdDev performed better than MaxDist, a general-
ization of StdDev should be examined in future work. In
general the distribution-based criteria in parameter space
are classified as reliable means for detecting convergence.
The distribution-based criterion in objective space (Diff ) is
also considered to be a reliable criterion with the exception
of optimization problems that contain objective functions
with a flat surface.

As the combined criteria are combinations of other cri-
teria, they generally incorporate more parameters that have
to be adjusted. So far no advantage of combined criteria
could be found that would compensate this drawback, so it
is recommended to use the individual criteria.
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Figure 4: Results for criterion Diff
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Figure 5: Results for criterion ComCrit

7 Conclusions

In this work stopping criteria were studied that react adap-
tively to the state of an optimization run based on improve-
ment, movement or the distribution of individuals. In con-
trast to other examinations, not the current positions but
the personal best positions were used for the calculations.
It was shown that the stopping criteria can be used for con-
strained problems using PSO. A similar behavior as for DE
could be found for several stopping criteria. It would be in-
teresting to make comparisons with other evolutionary al-
gorithms in future work.

Although parameter settings have to be determined in
dependence on the used optimization problem, general
statements could be derived. It was not possible to deter-
mine one criterion that will be best for all problems, but
because of their adaptive nature generally improved per-

formance for real-world problems is expected in contrast to
termination after a limited number of function evaluations.

For multi-objective optimization the definition of ap-
propriate stopping criteria is even more important because
real-world problems usually contain multiple objectives. It
will be also even more challenging because usually the
population will not converge to one point in the search
space but to the Pareto-optimal front, thus using error mea-
sures is difficult. One possibility would be to monitor per-
formance measures like hypervolume [3] and calculate e.g.
improvement. Another approach from literature is based on
observing the development of crowding distances [12]. As
only little work is done in this area so far, it is an interesting
field of research for future work.
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Figure 6: Results for criterion Diff_MaxDistQuick
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