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Izvleček

Namen članka je predstaviti praktično metodo optimalne 
zasnove pasovnih temeljev obremenjenih z vertikalnimi 
in horizontalnimi obtežbami. Problem načrtovanja 
z iskanjem optimalne velikosti temelja in minimalne 
količine armature je izražen v nelinearni minimalizacijski 
obliki. Na vrhu pasovnega temelja delujejo vertikalne in 
horizontalne obtežbe. V problemu načrtovanja nastopajo 
štiri neodvisne spremenljivke, in sicer širina temelja, 
debelina temelja, globina temeljenja in količina armature. 
Zahtevane geotehnične omejitve vključujejo preveritve 
nosilnosti, prevrnitve, kot tudi globalni zdrs in lokalni zdrs 
na vogalih temeljev. Kratkotrajna stabilnost in dolgotrajna 
stabilnost sta sočasno formulirani. Konstrukcijske omejitve 
zajemajo kontrolo odpora prereza na strižne sile in 
upogibne momente.

Formulacija omejitvenega problema vodi do nelinearnega 
programiranja katerega cilj je zmanjšati skupno maso 
materiala temelja, vključno z betonom in armaturo. 
Optimalna rešitev je dobljena z algoritmom optimizacije 
s kolonijami mravelj, MIDACO. Predlagana metoda opti-
mizacije je prikazana na primeru dejanskega načrtovanje 
temelja za podporo velikega stroja, ki se premika po tirih.
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Abstract

The objective of this paper is to present a practical method 
for the optimal design of a continuous footing subjected to 
vertical and horizontal loads. The design problem of find-
ing the optimal size of footing as well as the minimum steel 
reinforcement is formulated in a nonlinear minimization 
form. The continuous footing is subjected to the vertical 
and horizontal loads acting on the top of the column. 
There are four design variables in the design problem, i.e., 
the width of the footing, the thickness of the footing, the 
soil-embedment depth, and the amount of steel reinforce-
ment. The required geotechnical constraints include the 
bearing capacity, overturning, as well as global sliding and 
local sliding at the footing corners. Short-term stability and 
long-term stability are considered simultaneously in the 
same formulation. The structural constraints are enforced 
to control the shear force and bending moment within 
the section resistance. The formulation of the problem’s 
constraints leads to the nonlinear programming, whose 
objective function is to minimize the total cost of the 
footing material, including the concrete and steel reinforce-
ment. The optimal solution is solved using the ant-colony 
optimization algorithm MIDACO. The proposed optimiza-
tion method is demonstrated through the actual design of 
the footing for supporting a large machine moving on rails.

1 INTRODUCTION

A shallow foundation is generally used to support a 
structure when the underlying soil has a relatively high 
shear strength. The conventional design of a shallow 
foundation subjected to a vertical loading is an itera-
tive process that considers geotechnical analysis and 
structural reinforced-concrete design separately. The 
dimension of the footing must be assumed initially such 
that a geotechnical analysis of the bearing capacity is 
evaluated. Once the geotechnical considerations have 
been satisfied, the design of a structurally reinforced-
concrete footing is then carried out. This process is 
repeated in order to determine the optimal dimensions 
of the footing as well as the amount of steel reinforce-
ment. Thus, the conventional process for the optimal 
design of a footing is iterative and practical.

This paper studies the optimal design of a continuous 
footing subjected to vertical and horizontal loads. This 
foundation is used to support a large machine, such as a 
stacker or a reclaimer used in a bulk-material handling 
process, as shown in Fig. 1 [1, 2]. These machines move 
slowly on a rail on top of strip footing in order to pile up 
the bulk material as a stockpile (stacker, Fig. 1(a)) or to 
recover the material (reclaimer, Fig. 1(b)) from a stock-
pile. Bulk materials include coal, limestone, ores, etc.
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The optimal design of a continuous footing supporting 
these machines is complex because it is involved with 
checking the safety factors of several geotechnical 
criteria. The horizontal load adds more complexities and 
more stability evaluation, in addition to the standard 
bearing capacity for the vertical load case. The geotech-
nical analyses must evaluate additional failure mecha-
nisms, namely, overturning, global sliding, and local 
sliding at the edge or corner of the footing. In addition, 
the short-term stability and long-term stability of these 
failure mechanisms must be considered in the analysis. 

The techniques of optimization have been applied to 
many problems in geotechnical engineering [3, 4, 5, 6, 
7]. Various previous studies have mainly focused on 
the optimal design of retaining structures and some 
optimization methods were proposed and developed. 
Early research of the optimization of a retaining wall 
was pioneered by Rhomberg and Street [8]. Saribas and 
Erbatur [9] presented a detailed study of the optimum 
design for reinforced-concrete cantilever retaining walls 
with seven geometrical and reinforcement design vari-

Figure 1. Large machine used in bulk-material
handling process.

(a) stacker machine [1]

(b) reclaimer machine [2]

ables, where the constrained nonlinear programming 
was solved by a specially prepared program. Ten modes 
of wall failure, including overturning, sliding, eccentric-
ity, bearing capacity, shear and the bending moment 
of the toe slab, heel slab and stem of the wall were 
considered. A similar technique for the optimization of 
a retaining wall was studied by Basudkar and Lakshman 
[10]. Alshawi et al. [11] applied the optimization method 
to a tie-back retaining wall.

Ceranic et al. [12] studied the application of a simulated 
annealing algorithm to a problem with only geometrical 
design variables. Castillo et al. [13] and Babu and 
Basha [14] presented an approach for a reliability-based 
design optimization of a reinforced-concrete cantilever 
retaining wall, where the analysis was performed by 
treating the input parameters as random variables. 
Khajehzadeh et al. [15] presented the effectiveness of the 
particle-swarm optimization with a passive congregation 
algorithm to the economic design of a retaining wall, 
where the problem consisted of eight geometrical and 
reinforcement design variables and the constraints were 
the same as those of Babu and Basha [14]. The ant-
colony optimization method was proposed by Ghazavi 
and Bonab [16] to determine the optimal design of a 
reinforced concrete retaining wall. Camp and Akin [17] 
employed a numerically simple optimization algorithm, 
the big-bang/big-crunch optimization for designing 
low-cost or low-weight cantilever reinforced-concrete 
retaining walls with base shear keys. A numerical 
model was proposed by Pourbaba et al. [18] to obtain 
the optimum cost of cantilever retaining walls having 
different cases of backfill, where the optimal solution of 
the economical sections was determined by the chaotic 
imperialist competitive algorithm, minimizing the cost 
of the sections. Papazafeiropoulos et al. [19] employed 
two-dimensional finite-element simulations together 
with the genetic algorithm to find the optimum design 
of cantilever reinforced-concrete retaining walls with 
considerations for earthquake loading, where the linear 
elastic soil, retaining wall stem and wall foundation 
were assumed to calculate the seismic earth pressures. 
The optimum design of gravity and reinforced retaining 
walls using the enhanced charged system search algo-
rithm, the recently developed meta-heuristic algorithm, 
was introduced by Talatahari and Sheikholeslami [20] 
to obtain the least-cost sections with different cases of 
backfill. Very recently, Sadoglu [21] proposed an optimi-
zation technique for the optimal design of a symmetrical 
gravity retaining wall. It is clear that most of the previ-
ous investigations have heavily focused on the optimal 
design of cantilever or gravity retaining walls where 
different optimization algorithms were proposed to solve 
the formulated optimization problems.
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Several researches on the optimal design of foundations 
were conducted in the past [22, 23, 24 and 25]. Some 
studies focused on optimal design with a finite-element 
analysis [22], while the remaining focused on its math-
ematical formulation and derivation [23, 24, and 25]. 
The optimization technique was also applied to a steel 
pile group foundation [26]. Very few researches have 
studied the practical application of optimization for a 
strip footing. Moreover, none of research has considered 
short-term and long-term geotechnical conditions in the 
same optimization. These are the main contributions of 
the proposed practical method in this study.

In this paper, a practical method for the optimal design 
of a continuous footing subjected to vertical and hori-
zontal loads is proposed. The geotechnical and structural 
constraints are enforced in order to setup a feasible 
region of the decision variable, including the footing 
width, the footing thickness, the soil-embedment depth, 
and the main steel reinforcement. The short-term and 
long-term stability are considered simultaneously in the 
same numerical optimization. The proposed nonlinear 
programming problem is solved using a state-of-the-art, 
ant-colony optimization algorithm, MIDACO [27, 28, 29, 
30]. The proposed practical method of numerical opti-
mization is applied to determine the optimal design of 
a continuous footing that supports a very large machine 
moving slowly on rail such as stacker or reclaimer, where 
they are commonly used in the stockpile.

2. PROBLEM FORMULATION

Fig. 2 shows the problem geometry for determining the 
optimal dimension of a continuous footing subjected to 
the vertical load (P) and the horizontal load (H). In this 
analysis, the global variable (X) consists of four design 
variables as: 

1 2 3 4( , , , )X x x x x=         (1)

Soil
Unit weight γt 
Short term: c=su ; ϕ=0
Long term: c', ϕ'

Figure 2. Problem geometry and design variables.

where
x1 = Footing width (m)
x2 = Footing thickness (m)
x3 = Soil-embedment depth (m)
x4 = Cross-sectional area of the main steel reinforce- 
        ment (m2/m)

Those four design variables represent the maximum 
unknowns of the continuous footing that can be opti-
mized in the design. It should be noted that the width of 
the pedestal wall (Wp) is not considered as a design vari-
able, but constitutes one of the input parameters because 
its size is controlled by the superstructure design. 

2.1 Geotechnical constraints

Since this footing is subjected to both the vertical and 
horizontal loads, such a condition produces equivalently 
the inclined and eccentric loading, as shown in Fig. 3. 
The footing has the load eccentricity (e) measured from 
the centreline and the load inclination (α) with respect 
to the vertical line. The vertical component (Qv) of the 
total load of the footing (Q) is the sum of the applied 
vertical load, the weight of the concrete footing, and the 
weight of the soil embedment. These expressions can be 
written in terms of the design variables as:

1 2 3 1 3( )v c c p t pQ P x x W x x W xg g g= + + + -         (2)

2 3( ) / ve H x x Q= +         (3)

arctan( / )vH Qa=         (4)

where
P = The applied vertical load at the centre of the 
        pedestal wall

 H = The applied horizontal force at the centre of the  
        pedestal wall

 γc = Unit weight of concrete
 γt = Total unit weight of back-filled soil

Figure 3. Equivalent problem of an inclined and eccentrically 
loaded strip footing.
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It should be noted that the eccentricity distance e is 
calculated straightforwardly by taking the moment 
equilibrium at the centre of the footing base.

In this analysis it is assumed that the properties of the 
back-filled soil above the base of the footing are the same 
as those of the underlying soil. The net resulting inclined 
and eccentric load of the footing gives rise to the non-
uniform, applied pressure underneath the footing base, 
as shown in Fig. 4. The maximum pressure (qmax) and 
the minimum pressure (qmin) at the footing corners can 
be calculated based on the vertical force equilibrium as:

max
1 1

6(1 )vQ eq
x x

= +         (5)

min
1 1

6(1 )vQ eq
x x

= -         (6)

Figure 4. Pressure distribution under the footing.

Since the considered foundation is the strip footing, it 
is not necessary to include the correction factors for 
the footing shape. However, the depth factors (Fcd , 
Fqd , Fγd), the inclination factors (Fci , Fqi , Fγi) and the 
effective width concept must be applied for calculating 
the ultimate bearing capacity (qult) of the footing. These 
correction factors together with the standard bearing-
capacity factors (Nc , Nq , Nγ) can be found in most stan-
dard foundation textbooks [31, 32, 33]. The short- (qult,s) 
and long-term (qult,l) ultimate bearing capacity of this 
continuous footing can be approximated using Terzaghi’s 
general bearing-capacity equation as:

, 0.5ult s u c cd ci q qd qi d iq s N F F qN F F B N F Fg g gg¢= + +       (7)

, 0.5ult l c cd ci q qd qi d iq c N F F q N F F B N F Fg g gg¢ ¢ ¢ ¢= + +     (8)

where
su = Undrained shear strength of soil

 c' = Effective cohesion of soil
 ϕ' = Effective friction angle of soil
 γ' = Buoyant unit weight of soil = γt - γw
 γw = Unit weight of water
 q = Total surcharge = γt(x2 + x3)
 q' = Effective surcharge = γ'(x2 + x3)
 B' = Effective footing width = x1 - 2e

For the short-term condition or the total stress analysis, 
the ϕ = 0 concept is applied in equation (7). For the 
long-term condition or the effective stress analysis, 
the effective cohesion and the effective soil friction 
angle are substituted in equation (8). Even though the 
ground-water table is assumed to locate at the base of 
the footing, the effective unit weight is used to calculate 
the effective surcharge due to the effect of the perched 
water table. 

The corresponding ultimate load per unit length for the 
short- (Qult,s) and the long-term (Qult,l) conditions of 
the continuous footing are calculated from the effective 
width of the footing as:

, ,ult s ult sQ q B¢=         (9)

, ,ult l ult lQ q B¢=         (10)

The factor of safety against a bearing-capacity failure 
defined in terms of stress for the short-term (FSbs,s) and 
long-term (FSbs,l) conditions are given as:

max/bs,s ult,sFS q q=         (11)

max/bs,l ult,lFS q q=         (12)

The geotechnical criterion requires that the safety factor 
against a bearing-capacity failure must be equal to or 
greater than the required value. In addition, the mini-
mum applied stress must be compression or greater than 
zero in order not to cause tensile stress to the underlying 
soil. These two criteria can be written for the short-term 
and long-term constraints as:

1( ) 0bs,s b,rG X FS FS= - ³         (13)

2( ) 0bs,l b,rG X FS FS= - ³         (14)

3 min( ) 0G X q= ³         (15)

where FSb,r = Required safety factor for a bearing-
capacity failure.

In addition to enforcing the safety factor against a bear-
ing-capacity failure as a function of stress, it is advisable 
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to enforce this term as a function of force. The factors of 
safety against a bearing-capacity failure defined in terms 
of force for the short-term (FSbf,s) and long-term condi-
tions (FSbf,l) are given as:

bf,s ult,sFS Q Q         (16)

/bf,l ult,lFS Q Q=         (17)

Thus, those safety factors for a bearing-capacity failure 
in terms of force must be equal to or greater than the 
required value as:

4 ( ) 0bf,s b,rG X FS FS= - ³         (18)

5( ) 0bf,l b,rG X FS FS= - ³         (19)

It should be noted that expressions (13), (14) and (18), 
(19) can produce the same result in the case that there 
is no horizontal load acting on the top of the footing. In 
other words, it corresponds to the case of the concentric 
load without eccentricity, which is in contrast to the 
strip footing considered here. 

The next geotechnical consideration is the overturning 
stability of the footing since it is applied using the hori-
zontal load. The driving moment (Md) about the right 
corner of the footing for the overturning mechanism 
and the resisting moment (Mr) due to the self-weight of 
concrete, the soil embedment and the applied total verti-
cal force are given as:

1 / 2r vM Q X=         (20)

2 3( )dM H x x= +         (21)

The safety factor against the overturning mechanism 
(FSov) is defined in terms of the ratio of the resisting 
moment to the driving moment as:

/ov r dFS M M=         (22)

The geotechnical criterion requires that the safety factor 
against the overturning mechanism (FSov) must be equal 
to or greater than the required value (FSov,r) as:

6( ) 0ov ov,rG X FS FS= - ³         (23)

The last geotechnical criterion is the sliding stability of 
the footing along its base. In this case, the passive earth 
force of the soil embedment is neglected for the reason 
of conservatism. The resisting sliding force for the short- 
(Fr,s) and the long-term (Fr,l) conditions are given as:

r,s uiFS s B¢=         (24)

tan( )r,l i vFS c B Q d¢ ¢ ¢= +         (25)

where
 sui = Interface undrained shear strength between 

         concrete and soil = 0.5su
  ci' = Interface effective cohesion between concrete 

         and soil = 0.5c'
 δ' =  Interface friction between concrete and soil        

         = 0.5ϕ'

The sliding failure mechanism is caused by the applied 
horizontal force. Thus, the factors of safety against the 
global sliding for the short-term (FSgs,s) and long-term 
(FSgs,l) conditions are defined as:

/gs,s r,sFS F H=         (26)

/gs,l r,lFS F H=         (27)

The geotechnical criterion requires that the safety factor 
against the global sliding mechanism must be equal to or 
higher than the required value (FSgs,r) for both the short- 
and long-term conditions as:

7 ,( ) gs s gs,rG X FS FS= ³         (28)

8( ) gs,l gs,rG X FS FS= ³         (29)

In addition, to ensure an adequate safety factor against 
the global sliding along the footing base, it is advisable 
to enforce additional constraints of the local sliding at 
each footing corner. This requirement is important and 
necessary, particularly for the long-term condition since 
there is a significant difference in the applied normal 
stress among the two footing corners, i.e., qmax (corner 
1) and qmin (corner 2). As a result, the interface shear 
resistance at each corner is different, which results in a 
possible progressive local sliding failure. On the other 
hand, the short-term condition gives rise to the interface 
shear resistance, which is independent of those applied 
normal stresses because of the ϕ = 0 concept. Thus, the 
short-term stability of the global sliding gives the same 
constraint as that of the local sliding. Thus, there is no 
need to enforce the constraint of the short-term stability 
of the local sliding. 

For a generality of the formulation, the local sliding is 
enforced for both the short-term and long-term condi-
tions. The interface shear resistance at each corner of the 
footing for both the short-term condition (corner 1, τi1,s 
; corner 2, τi2,s) and the long-term condition (corner 1, 
τi1,l ; corner 2, τi2,l) can be calculated as: 

1, 2,i s i s uist t= =         (30)

1, max tan( )i l ic qt d¢ ¢= +         (31)

2, min tan( )i l ic qt d¢ ¢= +         (32)
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Based on the effective width concept of the footing, the 
average applied shear stress (τavg) for each footing corner 
is given as:

/avg H Bt ¢=         (33)

The ratio of the interface shear resistance to the applied 
average shear stress at each footing corner defines the 
safety factor against the local sliding failure for the 
short-term condition (corner 1 FSls1,s ; corner 2 FSls2,s) 
and the long-term condition (corner 1 FSls1,l ; corner 2 
FSls2,l). These expressions are given as:

1, 1, /ls s i s avgFS t t=         (34)

2, 2, /ls s i s avgFS t t=        (35)

1, 1, /ls l i l avgFS t t=         (36)

2, 2, /ls l i l avgFS t t=        (37)

The geotechnical criterion requires that the safety factor 
against the local sliding failure must be equal to or 
greater than that of the required value (FSls,r) as:

9 1( ) ls ,s ls,rG X FS FS= ³         (38)

10 2( ) ls ,s ls,rG X FS FS= ³         (39)

11 1( ) ls ,l ls,rG X FS FS= ³         (40)

12 2( ) ls ,l ls,rG X FS FS= ³         (41)

2.2 Structural constraints of reinforced concrete 

Fig. 5 shows the shear-force and bending-moment 
diagrams along the base of the footing generated from 
a linear distribution of pressure under the footing. For 
convenience, by neglecting the reduction effect from the 
concrete weight and the weight of the back-filled soil, 
the applied shear force (Vcen) and the bending moment 
(Mcen) calculated from the overturning side at the centre 
of base footing are given as:

max 1( ) / 4cen cenV q q x= +         (42)

2
1 maxx / 8 ( ) /12cen cen cenM q q q= + +         (43)

where qcen = 0.5(qmax + qmin).

It should be noted that the shear force and the bending 
moment at the centre of the footing are slightly higher 
than those at the critical sections given by the design 
code [34]. According to the ACI code [34], there are two 
critical sections of the shear force: 1) the beam shear 
type; and 2) the punching shear type. The former and 
the latter happen at the distances t = Wp/2 ± d (Vb

+ and 

Vb
-) and t = Wp/2 ± d/2 (Vp

+ and Vp
-) measured from 

the centre of the footing, where d is the effective depth of 
the base of the footing. The critical section of the bend-
ing moment happens at the pedestal edge or the distance 
t = ±Wp/2 (Mb

+ and Mb
-) measured from the footing 

centre. Instead of using the exact calculation given by 
the design code, this analysis adopts the approximated 
values of the shear force (Vcen) and the bending moment 
(Mcen) at the centre of the footing shown in the expres-
sions (42) and (43) as the substitutes for the values at the 
critical sections. If the calculations of the shear force and 
the moment follow the code, four constraints are needed 
to enforce the shear force and the moment on the left- 
and right-hand sides at the critical sections. However, 
since the modified calculations for the shear force and 
the moment at the centre give rise to the largest values, 
only two constraints are required. Thus, the use of 
maximum values for the shear force and the moment at 
the centre are adopted for reasons of convenience and 
conservatism.

In this paper, the classical design code of the work-
ing stress method (e.g., Ricketts et al. [35]) is used to 
evaluate the allowable shear resistance and the bending 

Figure 5. Shear-force and bending-moment diagrams along 
the base of the footing.

Bending moment diagram (BMD)

Shear force diagram (SFD)
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moment of the reinforced concrete footing. Based on 
this method, the allowable shear force of the concrete 
footing can be calculated as:

29 /100c cV f bd¢=         (44)

where
fc' = Unconfined compressive strength of concrete (kPa)

 b = 1 unit length of footing (m)
 d = Effective depth of slab footing = x3 - cv (m)
 cv = Effective concrete covering (m)

The allowable moment resistances of the reinforced 
concrete footing calculated from the concrete (Mc) and 
the steel reinforcement (Ms) are defined as: 

2
cM Rbd=         (45)

4s sM f jdx=         (46)

where
R = 0.5fckj

 fs = 0.5fy ≤ 170000 kPa
 fy = Tensile strength of steel (kPa)
 j = 1 - k/3
 k =1/(1 + fs/(nfc))
 fc = 0.45 fc'
 n = Es/Ec
 Es = Young’s modulus of steel = 2.04 × 108 kPa
 Ec = Young’s modulus of concrete (kPa) =

        1521000 /100cf ¢

The first structural concrete criterion requires that the 
allowable shear force (Vc) of concrete must be equal to 
or greater than the approximated shear force at the criti-
cal section (Vcen). Moreover, the other criterion requires 
that the allowable moment resistance from the steel 
(Ms) must be equal to or greater than the approximated 
bending moment at the critical section (Mcen). These two 
criteria can be written as:

13( ) 0c cenG X V V= - ³         (47)

14 ( ) 0s cenG X M M= - ³         (48)

In order to design a single steel reinforcement at the 
bottom face of the footing base, it is necessary to enforce 
an additional constraint of the approximated bending 
moment at the critical section (Mcen) to be equal to or 
smaller than the allowable moment of the concrete (Mc) as:

15( ) 0c cenG X M M= - ³         (49)

Finally, in addition to the structural constraints of the 
reinforced concrete criteria, it is necessary to specify 
the maximum and minimum allowable limits of the 

design variables since most optimization solvers require 
their searching ranges. The range of footing width, x1, 
is defined as x1 = 0.25–3.0m. The footing thickness, x2 
, and the soil embedment depth, x3 , are in the range 
0.5–2.0m. Finally, 0.2–5.0% of the total area of the foot-
ing base is used for the main steel reinforcement, x4 . 
These maximum and minimum limits are converted to 
the inequality constraints as follows:

16 1( ) 0.25 0G X x= - ³         (50)

17 1( ) 3 0G X x= - ³         (51)

18 2( ) 0.5 0G X x= - ³         (52)

19 2( ) 2 0G X x= - ³         (53)

20 3( ) 0.5 0G X x= - ³         (54)

21 3( ) 2 0G X x= - ³         (55)

22 4 2( ) 0.002 0G X x bx= - ³         (56)

23 2 4( ) 0.05 0G X bx x= - ³         (57)

2.3 Objective function and optimization form

The objective function (F(X)) of the proposed optimiza-
tion problem for a continuous footing is to minimize the 
total cost of the material in the strip footing, including 
the price of the concrete for the entire footing and the 
price of the main steel reinforcement of the footing slab. 
This objective function can be written as:

1 2 3 1 4( ) ( ( ) )c p s sMinimize F X Minimize u x x W x u x x g= + +
(58)

where
γs = Unit weight of steel

 uc = Unit price of concrete per unit volume (i.e., 
        US$/m3)

 us = Unit price of steel reinforcement per unit weight 
        (i.e., US$/kN)

The resulting numerical optimization of the dimension 
and reinforcement for a continuous footing leads to the 
constrained nonlinear programming, which has the form:

( )Minimize F X         (59)

Subject to: Gi(X) ≥ 0,  i = 1..23 

It should be noted that both the objective function and 
the geotechnical and structural constraints are nonlinear 
in terms of four unknown design variables and there are 
18 nonlinear constants in this optimization.
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There are two classes of optimization algorithm that can 
be used to solve the formulated optimization problem 
shown in expression (59). The first class is to apply the 
gradient-based algorithm of the optimization (e.g., 
NLPSolve [36], FindMinimum [37], fmincon [38], 
and Knitro [39]), while the other is to employ the free-
derivative type of optimization (e.g., MIDACO [27, 28, 
29, 30], ga [40], Nminimize [41], and Particle-swarm 
optimization [42, 43]). The gradient-based approach 
to optimization has the advantages such that it can 
efficiently determine the optimal solution with a rapid 
speed with the help of the first and second derivatives 
of the objective function and the constraints. Several 
algorithms of the gradient-based optimization approach 
can be found in Venkataraman [44]. On the other hand, 
the gradient-based technique of the optimization suffers 
a major drawback of being the local optimization, where 
its searching can be trapped into a local optimal solution, 
not the global optimal solution. Thus, several trials of 
other values of the decision variables must be performed 
in order to determine the global optimal solution.

Instead of using the classical technique of local optimi-
zation, which requires a first- and second-evaluations 
derivative approach and changes to the initial values 
of the variables, the optimal solution of the formulated 
optimization can also be solved using the technique of 
global optimization, such as evolutionary algorithms 
(Genetic algorithm [40, 45], Differential evolution [41]), 
swarm-based optimization algorithms (Particle-swarm 
optimization [42, 43], Ant-colony optimization [27, 
28, 29, 30]). In this paper, the proposed optimization 
problem is coded in MATLAB and the optimal solution 
of the proposed formulation is solved using a state-of-
the-art solver, MIDACO [27, 28, 29, 30]. 

MIDACO is an extended ant-colony optimization that 
is one of the swarm-based optimization algorithms. 
A distinct feature of this solver is that it employs an 
evolutionary metaheuristic search strategy to determine 
the global optimal solution from the search space in an 
intelligent and efficient way, as if ants seek the best path 
between their colony and a source of food. The search 
space is generated from the multi-kernel Gaussian prob-
ability density function. In addition, MIDACO is a self-
adaptive algorithm to automatically determine the global 
optimal solution rather a local optimal solution. The 
major advantage of MIDACO is that there is no need to 
change the initial value of the decision variables by the 
users. Furthermore, the algorithm does not require the 
property of differentiability of the first or second deriva-
tives for the nonlinear objective function or nonlinear 
equality or inequality constraints. Since MIDACO is 
a global optimization algorithm, it ensures that the 
computed solution from this software corresponds to the 

global optimal solution of the continuous footing that is 
subjected to the vertical and horizontal loads. Details of 
this solver are not within the scope of this study, but can 
be found in [27, 28, 29, 30].

All the analyses of the optimal design for a continu-
ous footing are carried out on a personal computer, 
Windows 7 operating system, Intel Core I7-4770 CPU, @ 
3.40 GHz and 8 GB memory.

3 RESULTS AND DISCUSSIONS

Table 1 lists all the input parameters used for demon-
strating the application of the proposed optimization 
method in practice. Those parameters represent the 
actual conditions of the strip footing design. This contin-
uous footing is used to support the stacker machine 
moving on the rail on top of the strip footing. Based on 
the results of triaxial testing, the soil is classified as a 
hard clay, whose total stress parameters are su = 150 kPa 
and the effective soil parameters are c' = 6 kPa and ϕ' = 
30° The slow-moving stacker generates the static applied 
vertical and horizontal loads as P = 400 kN/m and H = 
40 kN/m. The unit prices of the concrete and steel rein-
forcements are uc = 83.33 US$/m3 and us = 733.33 US$/
ton (metric), based on the average unit costs in Thailand.

Input parameters Value
Applied vertical load, P (kN/m) 400

Applied horizontal load, H (kN/m) 40
Width of pedestal, Wp (m) 0.7

Total unit weight of soil, γt (kN/m3) 20.0
Undrained shear strength of soil, su (kPa) 150

Effective cohesion, c' (kPa) 6.0
Effective friction angle, ϕ' 30°

Unit weight of concrete, γc (kN/m3) 24
Unconfined compressive strength of concrete, fc' (kPa) 28000

Effective concrete covering, cv (m) 0.09
Unit weight of steel, γs (kN/m3) 78.5
Tensile strength of steel, fy (kPa) 400000

Unit price of concrete, uc (US$/m3) 83.33
Unit price of steel reinforcement, us (US$/ton) 733.33

Required safety factor for bearing, FSb,r 3.0
Required safety factor for overturning, FSov,r 2.5

Required safety factor for global sliding, FSgs,r 2.5
Required safety factor for local sliding, FSls,r 1.5

Table 1. Input parameters for the optimal design of the 
continuous footing.
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Design variables Value
Footing width, x1 (m) 2.839

Footing thickness, x2 (m) 0.886
Soil embedment depth, x3 (m) 0.5

Cross-sectional area of reinforcement, x4 (m2/m) 17.724×10-4

Table 2. The optimal solution of the continuous footing.

The proposed optimization presented in Section 2 
is applied to determine the optimal solution of this 
continuous footing. In this analysis, the nonlinear 
minimization problem is programmed in MATLAB and 
solved by MIDACO [27, 28, 29, 30] using the MATLAB 
toolbox. It should be noted that there is no need to 
try several initial solutions in order to ensure that 
the obtained optimal solution is the global minimum 
since MIDACO is the global optimization algorithm. 
Table 2 summarizes the global optimal solution of this 
actual case study using MIDACO. This solver handles 
the objective function and constraints as a black-box 
function or library. The constraints must be converted 
into the standard form as Gi(X) ≥ 0 or Gi(X) = 0. The 
user needs to provide a function call to the optimization 
problem, i.e., objective function and constraints, which 
evaluates the objective function F(X) and the constraints 
Gi(X) for a given design variable X. The MIDACO solver 
does not require the user to determine the explicit form 
of the constraints in terms of the design variables x1, x2 
… xn. Several local variables in a function call can be 
used to store the values of some expressions, which are 
functions of the design variables. Then, the function 
calls return the computed value of the objective function 
and all the constraints back to MIDACO. 

The stopping criterion in MIDACO was setup to find the 
minimum cost of the function for a period of 5 minutes 
during the optimization. This timing was sufficient to 
find the global optimal solution of the selected problem 
consisting of four design variables. Within this timing, 
the cost of the function converged to the lowest value 
during the running and was verified by manual checking.

A detailed result of the analysis is examined to verify 
which constraints are active and control the design. 
Table 3 lists each condition for all the required geotech-
nical and structural constraints. The active constraint 
[Gi(x) = 0] means that the expression produces the 
equality sign, while the inactive constraint [Gi(x) > 0] 
produces the inequality sign. The controlled design 
conditions or the active constraints are listed as follows: 

1) Long-term safety factor for the bearing-capacity 
failure based on the stress calculated using FSbs,l 
[G2(x) = 0]

2) Allowable shear force of concrete, Vc [G13(x) = 0]
3) Allowable bending moment of steel, Ms [G14(x) = 0]
4) Minimum soil embedment depth, [G18(x) = 0].

It is clear that there are four active constraints, which 
are equal to the numbers of design variables. However, 
the results of these four active constraints do not imply 
that they are always active for other cases. Similarly, 
the remaining inactive constraints may not always be 
irrelevant to the design. In general, the controlled design 
constraints or the active expressions depend on the rela-
tive magnitude of the vertical and horizontal loads, the 
soil parameters of the short- and long-term conditions, 
and the required safety factors for each failure mechanism. 
For example, the constraint of the compressive stress for 
the minimum applied pressure or the global sliding may 
become active and control the design for some cases of the 
input parameters of the loading, the soil parameters, the 
required safety factor, and the structured parameters.

Design constraint Value
Short-term safety factor for bearing-capacity stress, FSbs,s 

[G1(x)>0] 3.95

Long-term safety factor for bearing-capacity stress, FSbs,l 
[G2(x)>0] 3.00

Minimum applied pressure, σmin (kPa) [G3(x)>0] 136.4
Short-term safety factor for bearing force, FSbf,s[G4(x)>0] 4.47
Long-term safety factor for bearing force, FSbf,l [G5(x)>0] 3.39

Safety factor for overturning, FSov [G6(x)>0] 13.54
Short-term safety factor for global sliding, FSgf,s 

[G7(x)>0] 4.75

Long-term safety factor for global sliding, FSgf,l[G8(x)>0] 3.39
Short-term safety factor for local sliding corner 1, FSls1,s 

[G9(x)>0] 4.75

Short-term safety factor for local sliding corner 2, FSls2,s 
[G10(x)>0] 4.75

Long-term safety factor for local sliding corner 1, FSls1,l 
[G11(x) >0] 3.82

Long-term safety factor for local sliding corner 2, FSls2,l 
[G12(x)>0] 2.50

Allowable shear force of concrete, Vc (kN/m) [G13(x)=0] 329
Allowable bending moment of steel , Ms (kNm/m) 

[G14(x)=0] 207

Allowable bending moment of concrete section Mc 
(kNm/m) [G15(x)>0] 948

Minimum area of steel reinforcement (cm2/m) 
[G16(x)>0] 15.377

Minimum thickness of footing (m) [G17(x)>0] 0.25
Minimum soil embedment depth (m) [G18(x)=0] 0.5

Table 3. Results of each design constraint.
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4 MAJOR LIMITATION OF THE PROPOSED 
OPTIMAL DESIGN FOR CONTINUOUS 
FOOTINGS

It should be noted that the proposed optimal design for 
continuous footings has a major limitation, such that the 
single steel reinforcements or only the bottom bars are 
used in the footings. In general, continuous footings with 
double steel reinforcements may be the most economical 
scenario, instead of a single reinforcement. To achieve 
this design consideration, another new design variable, 
x5, the cross-sectional area of the top reinforcements, 
must be introduced into the proposed optimization prob-
lem. In addition, the objective function must be modi-
fied to include the cost of the top bar reinforcements. 
Additional constraints of the reinforced concrete section 
with a double reinforcement must also be added to the 
formulated problem, together with the upper and lower 
limits of this new variable (i.e., x5 = 0–10% of the total 
area of the footing base). As a result, this revised optimi-
zation problem is the most economical formulation that 
determines the optimal design consideration, including 
both single and double reinforcements of the continuous 
footings. For example, if the optimal solution yields the 
result such that x5 = 0, this solution corresponds to the 
single steel reinforcement. On the other hand, if the 
optimal solution turns out to be x5 ≠ 0, this solution 
corresponds to the double steel reinforcements.

5. CONCLUSIONS

This paper presents a numerical technique for optimiz-
ing the dimensions and reinforcement of a continuous 
footing subjected to vertical and horizontal loads. The 
mathematical formulations lead to nonlinear program-
ming, whose objective function is to determine the mini-
mum cost of the reinforced concrete footings, including 
concrete and steel reinforcements. The analysis considers 
four design variables, i.e., the footing width, the footing 
thickness, the footing embedment, and the steel reinforce-
ment. The continuous footing subjected to the vertical 
and horizontal loads generates the complex geotechni-
cal and structural constraints in terms of the design 
variables, totalling 18 nonlinear constraints. The major 
advantage of the proposed method is that all the required 
constraints of the geotechnical and structural designs for 
the short-term and long-term stability considerations are 
optimized simultaneously. As a result, the final analysis 
yields the most optimal dimension of the foundation and 
the required reinforcements for both types of stability 
consideration. The proposed method is more efficient and 
convenient than most conventional footing designs where 
the short-term and long-term analyses are looked at sepa-

rately. Moreover, a classical or conventional design may 
have to initially assume some design variables, such as the 
footing thickness or the footing width. Therefore, it is not 
always guaranteed that the assumed footing dimensions 
and reinforcement are the most optimal design. 

The formulated optimization problem for the continu-
ous footing is solved by the state-of-the-art ant-colony 
optimization solver, MIDACO, which is a global opti-
mization algorithm and does not require any derivative 
of the objective function and the constraints, and does 
not require changing the initial values of the decision 
variables. The proposed method is applied to design the 
continuous foundation of an actual stacker machine 
used in bulk-material handling applications. The 
numerical optimization by MIDACO makes it possible 
to efficiently analyse 18 complex nonlinear constraints 
from the geotechnical and structural criteria, resulting in 
the global optimal solution in a single analysis for both 
the short-term and long-term conditions.
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