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Abstract

We show that all 2A-Majorana representations of the Harada-Norton group F5 have the
same shape. If R is such a representation, we determine, using the theory of association
schemes, the dimension and the irreducible constituents of the linear span U of the Majo-
rana axes. Finally, we prove that, if R is based on the (unique) embedding of F5 in the
Monster, U is closed under the algebra product.
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1 Introduction
Let (W, ·) be a real commutative algebra endowed with a scalar product ( , )W and denote
with Aut(W ) the group of algebra automorphisms of W that preserve the scalar product.
We shall assume that, for every u, v, w ∈W ,

(M1) ( , )W is associative , that is (u · v, w) = (u, v · w),

(M2) the Norton Inequality, (u · u, v · v) ≥ (u · v, u · v), holds.
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Recall that a Majorana axis of W (see [10, Definition 8.6.1] or, equivalently, [9,
p. 2423]) is a vector a ∈W such that

(M3) a has length 1,

(M4) the adjoint endomorphism ad(a), induced by multiplication by a on the R-vector
space W , is semisimple with spectrum contained in {1, 0, 2−2, 2−5},

(M5) a spans linearly the eigenspace relative to the eigenvalue 1 of ad(a),

(M6) the linear transformation aτ : W →W , that inverts the eigenvectors of ad(a) relative
to 2−5 and centralises the other eigenvectors, preserves the algebra product,

(M7) the linear transformation aσ : CW (aτ ) → CW (aτ ), that inverts the eigenvectors of
ad(a) relative to 2−2 and centralises the other eigenvectors contained in CW (aτ ),
preserves the restriction to CW (aτ ) of the algebra product.

Denote with A the set of Majorana axes of W . If a ∈ A, the map aτ is called a Ma-
jorana involution corresponding to a. Note that, by (M1) and (M4), W decomposes into
an orthogonal sum of ad(a)-eigenspaces, hence (M6) actually implies that every Majorana
involution is an element of Aut(W ). Let

τ : A → Aut(W )

be the map a 7→ aτ . Note that A is invariant under Aut(W ) and, for a ∈ A and δ ∈
Aut(W ), we have

(aδ)τ = δ−1aτδ,

so that the set Aτ of Majorana involutions is invariant under conjugation by elements of
Aut(W ).

The fundamental examples of Majorana involutions are given by the 2AM -involutions
(i.e. those centralised by the double cover of the Baby Monster) of the Monster group
M acting on the 196884-dimensional Conway-Norton-Griess algebra WM . A key result,
in this context, is the Norton-Sakuma Theorem, that classifies and describes the Norton-
Sakuma algebras, i.e. the algebras that are generated by a pair of Majorana axes [19] (see
also [9, Section 2.6]). By S. Sakuma’s classification, every Norton-Sakuma algebra is iso-
morphic to a subalgebra ofWM generated by a pair of Majorana axes a0, a1 corresponding
via τ to 2AM -involutions in M . In [17] S. Norton proved that the latter algebras (hence
all Norton-Sakuma algebras) fall into nine isomorphism types, labelled 1A, 2A, 2B, 3A,
3C, 4A, 4B, 5A, and 6A, accordingly to the conjugacy class in the Monster of the ele-
ment aτ0a

τ
1 . Further, Norton produced, for each type, a basis (the Norton basis), the relative

structure constants and the Gram matrix. Table 1 (which is an extract from Table 3 in [9])
summarises the results from the Norton-Sakuma Theorem we need for this paper: more
precisely, for each pair of distinct Majorana axes a0, a1, we give the Norton basis of the
algebra generated by a0 and a1, and the relevant (for this paper) scalar products (with the
same scaling as in [9]):

Here, for ρ := aτ0a
τ
1 in each Norton-Sakuma algebra,

• a−1 := aρ
−1

1 , a−2 := aρ
−1

0 , a2 := aρ0, a3 := aρ1, in particular they are Majorana
axes.
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Table 1: Norton bases and relevant scalar products for the Norton-Sakuma algebras.

Type Norton basis Scalar Products

2A a0, a1, aρ (a0, a1)W = 1
23

2B a0, a1 (a0, a1)W = 0

3A a0, a1, a−1, uρ (a0, a1)W = 13
28

3C a0, a1, a−1 (a0, a1)W = 1
26

4A a0, a1, a−1, a2, vρ (a0, a1)W = 1
25

4B a0, a1, a−1, a2, aρ2 (a0, a1)W = 1
26

5A a0, a1, a−1, a2, a−2, wρ (a0, a1)W = 3
27

6A a0, a1, a−1, a2, a−2, a3, aρ3 , uρ2 (a0, a1)W = 5
28

• The vectors uρ, vρ, ±wρ, resp. uρ2 , appearing in the algebras of type 3A, 4A, 5A,
resp. 6A, are called 3A-, 4A-, 5A-, resp. 3A-, axes and, in each Norton-Sakuma
algebra, they are defined as follows,

uρ := 26

335 (2a0 + 2a1 + a−1)− 211

335a0 · a1,

vρ := a0 + a1 + 1
3 (a−1 + a−1)− 26

3 a0 · a1,
wρ := − 1

27 (3a0 + 3a1 − a−1 − a−1 − a−2) + a0 · a1,

uρ2 := 26

335 (2a0 + 2a−1 + a−2)− 211

335a0 · a−1.

The indexing with powers of ρ is justified by the fact that, in the action of M on
WM , for 3 ≤ N ≤ 5, the NA-axes are essentially determined (up to the sign in the
5A-case) by the cyclic groups 〈ρ〉 inM of orderN (see [9, p. 2450]). It is not clear if
that property follows from Axioms (M1)-(M7), therefore axiom (M8)(b) was added
in [3] in the definition of Majorana representations.

• The vectors aρ, aρ2 , resp. aρ3 appearing in the algebras of type 2A-, 4B-, resp. 6A
are further Majorana axes. As above, the indexing is suggested by the action of M
on WM since, in that case, whenever a0 and a1 generate a subalgebra of type 2A,
the product ρ = aτ0a

τ
1 is the Majorana involution corresponding to aρ. As in the

previous paragraph, that property will be axiomatised in (M8)(a). Finally, by the
Norton-Sakuma Theorem (see [9, Lemma 2.20 (iv) and (v)]), a0 and a2 (resp. a0
and a3) generate a subalgebra of type 2A in the algebra of type 4B (resp. 6A) and,
for i ∈ {2, 3}, by the definition of ai, the product aτ0a

τ
i is equal to ρi.

The Norton-Sakuma Theorem inspired the definition of Majorana representations, in-
troduced by A. A. Ivanov in [10] in order to provide an axiomtic framework for studying
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the actions of 2AM -generated subgroups of M on WM .
Let G be a finite group, T a G-invariant set of involutions generating G,

φ : G→ Aut(W )

a faithful representation of G on W , and

ψ : T → A

be an injective map such that for every g ∈ G and t ∈ T ,

(tψ)τ := tφ (1.1)

and
(tψ)g

φ

= (g−1tg)ψ. (1.2)

The quintet
R := (G, T ,W, φ, ψ)

is called a Majorana representation (or, to put evidence on the set T , a T -Majorana
representation) of G, ifR satisfies the following condition (see [3, Axiom M8]):

(M8) (a) For t1 and t2 in T , the Norton-Sakuma algebra generated by tψ1 and tψ2 has type
2A if and only if t1t2 ∈ T .

(b) Suppose that t1, t2, t3, and t4 are elements of T such that t1t2 = t3t4 and the
subalgebras generated by tψ1 , t

ψ
2 and tψ3 , t

ψ
4 have both type 3A, 4A, or 5A. Then

u(t1t2)φ = u(t3t4)φ , v(t1t2)φ = v(t3t4)φ , or w(t1t2)φ = w(t3t4)φ , respectively.

Axiom (M8)(a) and Norton-Sakuma Theorem (see [9, Lemma 2.20]) imply that,

if tψ1 and tψ2 generate a Norton-Sakuma subalgebra of W of type 2A, 4B, or 6A,
then t1t2, (t1t2)2 , or (t1t3)3 belongs to T , and (t1t2)ψ , ((t1t2)2)ψ , or ((t1t3)3)ψ

coincides with a(t1t2)φ , a((t1t2)2)φ , or a((t1t2)3)φ , respectively.

An immediate consequence of that definition is that, given a Majorana representation

R := (G, T ,W, φ, ψ)

of a group G and a nonempty subset T0 of T , such that T0 is 〈T0〉-invariant, the quintet

R〈T0〉 := (〈T0〉, T0,W, φ|〈T0〉, ψ|T0) (1.3)

is a T0-Majorana representation of 〈T0〉. Further, if we replace W with the subalgebra WT0
generated by the set of Majorana axes T ψ0 in the quintet (1.3), we still have a Majorana
representation of 〈T0〉 provided 〈T0〉 acts nontrivially onWT0 (which is the case, e.g., when
〈T0〉 has trivial centre). In particular, if ε is an embedding of a group H in M and Hε is
generated by a subset T of 2AM , then H inherits a (T ∩Hε)ε

−1

-Majorana representation
Rε obtained by composing ε with the restriction of RM to Hε. In that case, the Majorana
representation Rε of H is said to be based on the embedding ε. In this paper, whenever a
Majorana representation of a group G is based on an embedding ε in the Monster, we shall
always identify G with Gε.

For a pair (a, b) of elements in W , denote the subalgebra they generate with 〈〈a, b〉〉.
LetR be as above, the shape ofR is a function shR from the set of the nondiagonal orbitals
of G on T to the set of types of the Norton-Sakuma algebras so that
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1. shR((t, s)G) = NX if and only if ts has order N and the algebra 〈〈tψ, sψ〉〉 is a
Norton-Sakuma algebra of type NX .

2. shR must respect the embeddings of the algebras:

2A ↪→ 4B, 2A ↪→ 6A, 2B ↪→ 4A, 3A ↪→ 6A

in the sense that, for t, r1, r2 ∈ T , if 〈〈tψ〉〉 < 〈〈tψ, rψ1 〉〉 < 〈〈tψ, r
ψ
2 〉〉, then

(shR((t, r1)G), shR((t, r2)G)) ∈ {(2A, 4B), (2A, 6A), (2B, 4A), (3A, 6A)}.

Remark: Clearly, if T0 is a 〈T0〉-invariant nonempty subset of T , the shape ofR〈T0〉 is the
restriction of shR to T0 × T0.

Majorana representations of several groups have already been investigated (see [9, 11,
12, 13, 14, 5, 3, 6]).

In this paper we study the 2A-Majorana representations of the Harada-Norton group
F5, where 2A is the set of the involutions of F5 whose centraliser is (2HS) · 2, the double
cover of the Higman-Sims group extended by its outer automorphism group of order 2. We
shall show that every 2A-Majorana representation ofF5 has the same shape as the Majorana
representations of F5 based on its embedding into M as the subgroup generated by the set
of involutions in 2AM that centralise an element of type 5A (here 2A = 2AM∩F5, see [4]).
By [18, Theorem 21], that one is the unique embedding of F5 into M (up to conjugation
in M ), hence, since F5 is transitive on 2A, there is (up to conjugation in M ) only one
Majorana representation of F5 based on an embedding in M . We prove the following
result.

Theorem 1.1. Let W be as above and R := (F5, 2A,W, φ, ψ) be a 2A-Majorana repre-
sentation of F5 on W . Then

(i) R has the shape given in Table 3;

(ii) The R-linear span 〈2Aψ〉 of 2Aψ has dimension 18 316;

(iii) 〈2Aψ〉 is the direct sum of three irreducible R[F5]-submodules of dimensions 1, 8910
and 9405, respectively;

(iv) ifR is based on the embedding of F5 in M , then W2A = 〈2Aψ〉.

Unless explicitly stated, for the remainder of this paper we shall stick to the notations
introduced in this section. We shall also set T := 2A.

2 The First Eigenmatrix
By [4, p. 166], we have |T | = 1539000, and it seems hard, at present, to perform a direct
computation of the dimension of the linear span of T ψ . We therefore apply the theory of
association schemes as in [14] and [6] to reduce ourselves to a more manageable situation.
The first step is to compute the first eigenmatrix of the association scheme relative to the
permutation action of F5 on T (see [1, pp. 59-60]). For that purpose, we need to recover
some information about the action F5 induces by conjugation on T .
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Let n := |T | and let t1, . . . , tn be the distinct elements of T , so that

B := (t1, . . . , tn)

is an ordered basis for the complex permutation module V of F5 on T . With respect to B,
we identify EndC(V ) with the set of n× n matrices with complex entries. Let T0, . . . , T8
be the orbitals of F5 on T and, for every k ∈ {0, . . . , 8}, let Ak be the adjacency matrix
associated to the orbital Tk, that is

(Ak)ij =

{
1 if the pair (ti, tj) is in Tk
0 otherwise.

By [1, Theorem 1.3], the 9-tuple (A0, . . . , A8) is a basis for the centralizer algebra

C := EndC[F5](V ).

For i, j, k ∈ {0, . . . , 8}, let pkij be the number of elements z in T such that for a fixed
pair (x, y) in Tk we have (x, z) ∈ Ti and (z, y) ∈ Tj . By definition, the pkij’s are all non
negative integers and, by [1, §2.2], they are the structure constants of C relative to the basis
(A0, . . . , A8), that is

AiAj =

8∑
k=0

pkijAk. (2.1)

The matrix Bi of size 9 whose j, k entry is pkij is called ith intersection matrix. Clearly, Bti
is the matrix associated to the endomorphism induced by Ai on C via left multiplication
with respect to the basis (A0, . . . , A8), in particular Bi has the same eigenvalues as Ai.
By [8, Lemma 2.18.1(ii)] we may choose the indexes of the orbitals T0, . . . , T8 in such a
way that T0 is the diagonal orbital (hence B0 is the identity matrix), T1 is the non-diagonal
orbital of smallest size, and the first intersection matrix B1 is as follows:

B1 =



0 1 0 0 0 0 0 0 0
1408 53 32 18 4 2 0 0 0

0 50 0 2 12 0 2 0 0
0 450 32 100 32 50 32 0 0
0 350 672 112 160 100 92 160 0
0 504 0 504 288 356 312 320 0
0 0 672 672 552 650 720 640 1280
0 0 0 0 360 250 240 288 0
0 0 0 0 0 0 10 0 128


.

By [1, Theorem 3.1], we have that V decomposes into the direct sum

V = V0 ⊕ . . .⊕ V8 (2.2)

of nine irreducible C[F5]-submodules. Since F5 is transitive on T , the subspace linearly
spanned by the sum of all elements of T is the unique trivial submodule of V . As usual,
we shall denote it by V0. Since the action of F5 on T is multiplicity free (see [8, Lemma
2.18.1.(ii)]), the Vj’s are minimal common eigenspaces for the adjacency matrices Ai. It
follows that there is a complex invertible matrix D that simultaneously diagonalises the
matrices Ai’s. By the definition of the adjacency matrices, we have that, for each i, the
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sums (say ki) of the entries in each row of the matrices Ai are constant, whence V0 is a
ki-eigenspace for Ai, for each i.

For i, j ∈ {0, . . . , 8}, let pij be the eigenvalue ofAj on Vi. The 9×9 matrix P := (pij)
is called the first eigenmatrix of the association scheme (T , {T0, . . . , T8}).

Lemma 2.1. With the above notations,

P =



1 1408 2200 35200 123200 354816 739200 277200 5775
1 128 200 0 1600 −2304 0 0 375
1 28 −50 −50 −100 396 −750 450 75
1 16 4 −56 −136 −288 504 0 −45
1 −32 40 −80 80 576 −240 −360 15
1 −47 −50 250 350 −504 0 0 0
1 −112 300 1000 −2200 −864 −1800 3600 75
1 208 −50 2200 −2800 2016 4200 −6300 525
1 208 100 1000 1400 2016 −4200 0 −525


.

Proof. Note that, since A0 is the identity matrix, pi0 = 1 for all i’s. Straightforward
computation shows that the eigenvalues of B1 are 1408, 128, 28, 16, −32, −47, −112,
208, and 208, giving the first two columns of P . Set

(λ0, . . . , λ8) = (1408, 128, 28, 16,−32,−47,−112, 208, 208).

For each h ∈ {0, . . . , 8}, let Sh be the linear system

(B1 − λhId) t(1, λh, x2, . . . , x8) = 0 (2.3)

in the indeterminates x2, . . . , x8. Taking i = 1 in Equation (2.1) and multipling each term
by D on the right and by D−1 on the left, we get

(D−1A1D)(D−1AjD) =

8∑
h=0

ph1j(D
−1AhD). (2.4)

Since the matricesD−1AhD are diagonal with eigenvalues pkh on the common eigenspaces
Vk, for each k ∈ {0, . . . , 8}, from Equation (2.4) we obtain that the relation

λkpkj =

8∑
h=0

ph1jpkh (2.5)

holds for every k ∈ {0, . . . , 8}. Note that the second member is the jth entry of the vector
B1

t(1, λk, pk2, . . . , pk8), therefore Equation (2.5) implies that the 9-tuple

(1, λk, pk2, . . . , pk8)

is an eigenvector for B1 relative to the eigenvalue λk, for every k ∈ {0, . . . , 8}. Since, for
k 6= 7, 8, the eigenvalue λk has multiplicity 1, it follows that the first seven rows of the
matrix P can be obtained computing the unique solution (pk2, . . . , pk8) of the system Sk
for each k ∈ {1, . . . , 6}.

We are now left with the last two rows of the matrix P , corresponding to the eigenvalue
208 of B1. The set of solutions of the system S7,

(B1 − 208Id) t(1, 208, x2, . . . , x8) = 0,
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is

{(25− x

7
, 1600 +

8x

7
,−700− 4x, 2016, 8x,−3150− 6x, x) | where x ∈ R}.

Therefore, for suitable x, y ∈ R, we can write the last two rows of the matrix P as follows

1, 208, 25− x

7
, 1600 +

8x

7
,−700− 4x, 2016, 8x,−3150− 6x, x

1, 208, 25− y

7
, 1600 +

8y

7
,−700− 4y, 2016, 8y,−3150− 6y, y.

Set mi = dimR(Vi). Then m0 = 1 and, for 1 ≤ i ≤ 6, mi can be computed from the rows
of P using the following formula (see [1, Theorem 4.1]):

mi =
n∑8

j=0 k
−1
j p2ij

from which we get m1 = 16929, m2 = 267520, m3 = 653125, m4 = 365750, m5 =
214016, m6 = 8910, whence

m7 +m8 = n−
6∑
i=0

mi = 12749.

Comparing that value with the decomposition of the permutation module of F5 on T into
irreducible submodules given in [8, Lemma 2.18.1.(ii)], we obtain that, modulo inter-
changing the indices 7 and 8,

m7 = 3344 and m8 = 9405.

By the Column Orthogonality Relation of the first eigenmatrix,
8∑
k=0

mkpkipkj = nkiδij

(see [1, Theorem 3.5]), applied with (i, j) = (0, 8) and (i, j) = (8, 8), we get the quadratic
system {

3344x+ 9405y = −3182025
3344x2 + 9405y2 = 3513943125

whose solutions are

(x, y) = (525,−525) or (x, y) = (1575/61, 62475/61).

By [2, Theorem 3.5(b)], the matricesAi’s are symmetric, since, by [4], the Frobenius-Schur
indices of the irreducible constituents of the permutation character of F5 on T is +1 (and
the action is multiplicity free). Thus, recalling that the pkij’s are all non negative integers,
in order to determine which of the two solutions is the right one, we may use the formula

phij =
1

nkh
tr(AiAjAh) (2.6)

(see [1, Theorem 3.6(ii)]). Since the trace is invariant by matrix conjugation, tr(AiAjAh)
can be obtained by multiplying, entry-wise, the ith, jth, and hth columns of the matrix P
and adding the entries of the resulting column. In that way, we get that the entries pk2j are
integers only in the case when (x, y) = (525,−525).



C. Franchi, et al.: The 2A-Majorana representations of the Harada-Norton group 183

3 The shape
We continue with the notations of the last section. The next lemma recalls some known
facts about conjugacy classes in M and F5 (see [16, 15]). For the remainder of this paper
let H be the centraliser in M of an A5-subgroup of type (2A, 3A, 5A). By [15], we have
that H ∼= A12 and we may w.l.o.g. assume that F5 centralizes a 5A-element in that A5-
subgroup, in particular H ≤ F5.

Lemma 3.1. Denoting the conjugacy classes of M and F5 as in [4], the correspondences
between the conjugacy classes of the elements of order less or equal to 6 in M , F5 and H
are as in Table 2.

Table 2: Correspondences between the conjugacy classes of the elements of order at most
6 in M , F5, and H .

Conj. class in M 2A 2B 3A 4A 4B 5A 6A

Conj. class in F5 2A 2B 3A 4A 4B 5A 6A

Cycle type in H 22, 26 24 3, 32, 34 42,
42 · 22

4 · 2,
4 · 22

5, 52 3 · 22, 6 · 23,
62, 32 · 22

Let (t1, . . . , tn) be as in the previous section. For i, j ∈ {1, . . . n}, set

γij := (tψi , t
ψ
j )W .

Lemma 3.2. If (ti, tj) and (th, tk) belong to the same orbital of F5 on T , then γij = γhk.

Proof. That follows immediately from Equation (1.2) and the definition of γij .

Thus, we can set, for k ∈ {0, . . . , 8} and (t, s) ∈ Tk,

γk := (tψ, sψ)W . (3.1)

Lemma 3.3. For every x ∈ {22, 3, 4 · 2, 24, 5} there are pairs of involutions of type 22 in
A12 such that their product has cycle type x. Every element of cycle type 42 · 22 in A12 is
the product of two elements of cycle type 26.

Proof. That is an elementary computation (note that two elements of cycle type 26 whose
product has cycle type 42 · 22 are explicitely given in the proof of Lemma 3.4).

Lemma 3.4. With the above notations, for every k ∈ {0, . . . , 8} and (t, s) ∈ Tk, the scalar
products γk’s are given in Table 3.

Proof. The first two columns of Table 3 follow from Lemma 2.1. The correspondence that
associates to each orbital Tk of F5 on T the F5-conjugacy class xk of the products ts,
where (t, s) ∈ Tk, has been determined by Segev in [20], giving the third column.
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Table 3: Valencies, shapes, and scalar products related to the orbitals of F5 on the set of its
2A-involutions.

k |tCF5
(s)| (st)F5 shR(Tk) γk

0 1 1 − 1

1 1408 5A 5A 3/27

2 2200 2A 2A 1/23

3 35200 3A 3A 13/28

4 123200 4B 4B 1/26

5 354816 5E 5A 3/27

6 739200 6A 6A 5/28

7 277200 4A 4A 1/25

8 5775 2B 2B 0

Assume shR(Tk) = NX , where N ∈ {1, . . . , 6} and X ∈ {A,B,C}. By the defini-
tion of shape, for (t, s) ∈ Tk, we have that |st| = N . In particular, for k equal to 1, 5 and
6, we have that shR(Tk) is equal to 5A, 5A, and 6A, respectively.

Let k ∈ {2, 3, 4, 8}. By the second and third rows of Table 2 and Lemma 3.3 there are
involutions s and t of cycle type 22 in T ∩H such that st ∈ xk, whence, by the first and
third columns of Table 3,

(s, t) ∈ Tk ∩ (H ×H).

By the remark in the introduction, we have that

shR(Tk) = shRH ((s, t)H),

whence Lemma 8 and Table 10 in [6] give the entry in the fourth column corresponding to
k.

Assume now k = 7. Choose the elements

s = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12) and t = (1, 3)(2, 4)(5, 7)(6, 9)(8, 11)(10, 12)

inH . Then st has cycle type 42·22. By Table 2, s and t are contained in T and (st)F5 = 4A,
hence, by the third column of Table 3, (s, t) ∈ T7 and, by the Norton-Sakuma Theorem,
shR(T7) ∈ {4A, 4B}. By Equation (1.2),

(tψ)(ts)
φ

= (tts)ψ = (ts)ψ,

so we have that tψ and (ts)ψ are contained in the subalgebra generated by tψ and sψ ,
which is 〈s, t〉-invariant. Since tts has cycle type 24, by Table 2 it belongs to the class 2B
of F5, whence, by the third column of Table 3, (t, ts) ∈ T8 and the subalgebra generated
by tψ, (ts)ψ is of type 2B, by the previous paragraph. By the second condition of the
definition of the shape, shR(T7) = 4A.

Finally, the last column follows from Table 1.
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4 Closure
Lemma 4.1. Suppose thatR is based on the embedding of F5 in M . Then

〈T ψ〉 = WT .

Proof. Let H be the subgroup of F5 isomorphic to A12 defined as in the previous section.
Let t, s be distinct elements of T , set ρ = (ts)φ and let N be the order of ρ. Let U be the
Norton-Sakuma algebra generated by tψ and sψ , and letNX be its type. By Table 1, ifNX
is contained in {2A, 2B, 4B}, then U is linearly spanned by elements in T ψ , otherwise,
by Lemma 3.4, NX ∈ {3A, 4A, 5A, 6A} and U has a basis all of whose elements but the
NX-axis are Majorana axes. Therefore, with the notations of Table 1, we may assume that
NX ∈ {3A, 4A, 5A, 6A} and show that, in all those cases, the NX-axes uρ, vρ, wρ, uρ2
are contained in 〈T ψ〉.

If ts has order 3, 4, or 5, then, by Lemma 3.1, there is g ∈ F5, depending on ts, such
that ts is an element of cycle type respectively 3, 42 ·22, and 5 inHg . By Lemma 3.3, there
are elements t′ and s′ of cycle type 22 or 26 in Hg such that ts = t′s′. By Lemma 3.1,
(t′)ψ and (s′)ψ generate a Norton-Sakuma algebra of the same type as U , thus, by Axiom
(M8)(b), we have that uρ = u(t′s′)φ , vρ = v(t′s′)φ , and wρ = w(t′s′)φ , respectively.

Assume NX = 3A. By [3, Corollary 3.2], u(t′s′)φ is a linear combination of elements
of (T ∩Hg)ψ and we are done.

Similarly, assume NX = 4A (resp. NX = 5A). By [3], second formula in the
abstract, or Section 6 (resp. Lemma 5.1), we have that v(t′s′)φ (resp. w(t′s′)φ ) is a linear
combination of elements in (T ∩Hg)ψ and 3A-axes, and we are done by the previous case.

Finally assume NX = 6A. Then, by the remarks after Table 1, uρ2 is a 3A-axis and
again we are done by the 3A case.

Note that in the previous proof we require thatR is based on the embedding of F5 inM
only to deal with the case 4A, all the other cases following from results of [3] that depend
only on the shape of that representation of A12.

5 Proof of Theorem 1.1
The first claim of Theorem 1.1 follows from Lemma 3.4 and the last is the content of
Lemma 4.1. To prove the second and the third claims, let

Γ = (γij)

be the Gram matrix of ( , )W associated to the n-tuple (tψ1 , . . . , t
ψ
n). By an elementary result

on Euclidean spaces, we have that

rank(Γ) = dimR(〈tψ | t ∈ T 〉). (5.1)

Since T0, . . . , T8 is a partition of T ×T and, by Equation (3.1), γk = γij , for (ti, tj) ∈
Tk, we have that

Γ =

8∑
k=0

γkAk. (5.2)
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Let D be as in Section 2. From Equation (5.2) we get:

Γ := D−1ΓD =

8∑
k=0

γkD
−1AkD, (5.3)

where all the matrices Γ, and Ak := D−1AkD for k ∈ {0, . . . , 8}, are diagonal. Now,
clearly, the rank of Γ is equal to the rank of Γ, hence (being Γ diagonal) to the number of
nonzero entries of Γ. By Lemma 3.4 (Table 3), Equation (5.3) becomes

Γ = A0 +
3

27
A1 +

1

8
A2 +

13

28
A3 +

1

26
A4 +

3

27
A5 +

5

28
A6 +

1

25
A7 + 0A8,

which, by Lemma 2.1, gives the eigenvalues

70875/2, 0, 0, 0, 0, 0, 875/8, 0, 225/4

of Γ on the subspaces V0, . . . , V8, respectively. Hence

dimR(〈T ψ〉) = m0 +m6 +m8 = 1 + 9405 + 8910 = 18 316.
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