Small Label Classes in 2-Distinguishing Labelings

Debra L. Boutin
Hamilton College, Clinton, NY 13323, USA

Received 11 September 2007, accepted 25 November 2008, published online 29 November 2008

Abstract

A graph G is said to be 2-distinguishable if there is a labeling of the vertices with two labels so that only the trivial automorphism preserves the labels. Call the minimum size of a label class in such a labeling of G the cost of 2-distinguishing G and denote it by $\rho(G)$. This paper shows that for $n \geq 5,\left\lceil\log _{2} n\right\rceil+1 \leq \rho\left(Q_{n}\right) \leq 2\left\lceil\log _{2} n\right\rceil-1$, where Q_{n} is the hypercube of dimension n.

Keywords: Graph, distinguishing labeling, automorphism group.
Math. Subj. Class.: 05C15, 05C25

1 Introduction

A labeling of the vertices of a graph G with the integers $1, \ldots, d$ is called a d-distinguishing labeling if no nontrivial automorphism of G preserves the labels. A graph is called d distinguishable if it has a d-distinguishing labeling. Albertson and Collins introduced distinguishing in [2]. Recent work shows that large members of many infinite families of graphs are 2-distinguishable. These graph families include hypercubes Q_{n} with $n \geq 4$ [3], nontrivial Cartesian powers of a connected graph $G \neq K_{2}, K_{3}$ [8], Kneser graphs $K_{n: k}$ with $n \geq 6, k \geq 2$ [1], and (with seven small exceptions) 3 -connected planar graphs [6]. Recently Wilfried Imrich posed the following question: "What is the minimum number of vertices in a label class of a 2-distinguishing labeling for the hypercube Q_{n} ?" This question can be extended to any family of 2 -distinguishable graphs.

Let G be a 2-distinguishable graph. Call a label class in a 2-distinguishing labeling of G a distinguishing class. Call the minimum size of such a class in G the cost of 2-distinguishing G and denote it by $\rho(G)$. The labeling provided for Q_{n} by Bogstad and Cowan in [3] shows that for $n \geq 4, \rho\left(Q_{n}\right) \leq n+2$. The best result known when Imrich posed the question mentioned above was $\rho\left(Q_{n}\right) \approx \sqrt{n}$ [7]. For $n \geq 5$, this paper shows that $\rho\left(Q_{n}\right) \leq 2\left\lceil\log _{2} n\right\rceil-1$ and that this is within a factor of two of a natural lower bound (discussed below). To give a sense

[^0]of this result, note that though Q_{16} has 2^{16} vertices and $16!\times 2^{16}$ automorphisms, it can be distinguished, effectively eliminating all symmetry, by coloring just seven vertices red and all others blue.

A significant tool used in this work is the determining set [4], a set of vertices whose pointwise stabilizer is trivial. Albertson and Boutin showed that a graph is d-distinguishable if and only if it has a determining set that is $(d-1)$-distinguishable [1]. When $d=2$ this translates as: a graph is 2-distinguishable if and only if it has a determining set with the property that any automorphism that preserves the set must fix it pointwise. This shows that $\rho(G)$ is bounded below by the size of a smallest determining set for G. For Q_{n} this bound is $\left\lceil\log _{2} n\right\rceil+1$ [5]. We will use the connection between determining sets and distinguishing labelings, along with particular determining sets found in [5], to create a distinguishing class for Q_{n} that is smaller than twice this lower bound.

The paper is organized as follows. Definitions and facts about determining sets, Cartesian products, and distinguishing labelings are given in Section 2. This section also sets out the key idea tying together determining sets and distinguishing labelings. For $n \geq 5$, Section 3 gives a set of $2\left\lceil\log _{2} n\right\rceil-1$ vertices of Q_{n} and proves that it is a distinguishing class. Section 4 lists some open questions.

2 Background

2.1 Determining Sets

Let G be a graph. A subset $U \subseteq V(G)$ is said to be a determining set for G if whenever $g, h \in \operatorname{Aut}(G)$ and $g(x)=h(x)$ for all $x \in U$, then $g=h$. Thus every automorphism of G is uniquely determined by its action on a determining set. Every graph has a determining set since any set containing all but one vertex is determining. There are graphs, e.g. K_{n} and $K_{1, n}$, for which such a determining set is optimal or within one of being optimal. The determining number of G, denoted here by $\operatorname{Det}(G)$, is the minimum r such that G has a determining set of cardinality r.

Recall that the set stabilizer of $U \subseteq V(G)$ is the set of all $\phi \in \operatorname{Aut}(G)$ for which $\phi(x) \in U$ for all $x \in U$. In this case we say that $\phi(U)=U$. The pointwise stabilizer of U is the set of all $\phi \in \operatorname{Aut}(G)$ for which $\phi(x)=x$ for all $x \in U$. It is easy to see that $U \subseteq V(G)$ is a determining set for G if and only if the pointwise stabilizer of U is trivial.

2.2 Cartesian Products

Recall that the Cartesian product of graphs G and H, denoted by $G \square H$, has vertex set $V(G) \times V(H)$ with an edge between vertices (x, u) and (y, v) if either x is adjacent to y in G and $u=v$, or u is adjacent to v in H and $x=y$. The Cartesian power H^{k} is the Cartesian product of H with itself k times.

A good reference for Cartesian products is [9]. Recall that H is prime with respect to the Cartesian product if it cannot be written as the Cartesian product of two smaller graphs. Further, every connected graph can be written uniquely (up to order) as the Cartesian product of prime factors, $G=G_{1} \square \cdots \square G_{m}$.

Let $U=\left\{V_{1}, \ldots, V_{r}\right\}$ be an ordered subset of vertices of $G=G_{1} \square \cdots \square G_{m}$. Let $M=M_{U}$ be the $r \times m$ matrix whose $i^{t h}$ row contains the coordinates for V_{i} with respect
to the prime factor decomposition of G. Call this the characteristic matrix for U. Note that the $j^{\text {th }}$ column of M consists of the $j^{\text {th }}$ coordinates of V_{1}, \ldots, V_{r} and can be denoted $\left[V_{1, j} \ldots V_{r, j}\right]^{T}$. We say the $j^{t h}$ and $k^{t h}$ columns of $M,\left[V_{1, j} \ldots V_{r, j}\right]^{T}$ and $\left[V_{1, k} \ldots V_{r, k}\right]^{T}$, are isomorphic images of each other if there exists an isomorphism $\varphi: G_{j} \rightarrow G_{k}$ so that $\varphi\left(V_{i, j}\right)=V_{i, k}$ for all i. These definitions allow us to state criteria for a set to be determining set as follows.

Lemma 1. [5] Let G be a connected graph and $G=G_{1} \square \cdots \square G_{m}$ the prime factor decomposition for G with respect to the Cartesian product. A set of vertices U is a determining set for G if and only if each column of the characteristic matrix M for U contains a determining set for the appropriate factor of G and no two columns of M are isomorphic images of each other.

2.3 Distinguishing Labelings

A labeling $f: V(G) \rightarrow\{1, \ldots, d\}$ is said to be d-distinguishing if $\phi \in \operatorname{Aut}(G)$ and $f(\phi(x))=f(x)$ for all $x \in V(G)$ implies that $\phi=i d$. Every graph has a distinguishing labeling since each vertex can be assigned a distinct label. Furthermore, there are graphs, e.g. K_{n} and $K_{1, n}$, for which such a labeling is optimal or within one of being optimal. A graph is called d-distinguishable if it has a d-distinguishing labeling.

We will also need to know what it means for a subset of vertices to be d-distinguishable. Let $U \subseteq V(G)$. A labeling $f: U \rightarrow\{1, \ldots, d\}$ is called d-distinguishing if whenever $\phi \in \operatorname{Aut}(G)$ so that $\phi(U)=U$ and $f(\phi(x))=f(x)$ for all $x \in U$ then $\phi(x)=x$ for all $x \in U$. Note that though such a ϕ fixes U pointwise, it is not necessarily trivial; it may permute vertices in the complement of U. Then by definition, U is 1-distinguishable if every automorphism that preserves U fixes it pointwise.

The following theorem ties together determining sets and distinguishing labelings and facilitates the work in this paper.

Theorem 2. [1] A graph is d-distinguishable if and only if it has a determining set that is ($d-1$)-distinguishable.

In particular, suppose U is a 1 -distinguishable determining set. The fact that it is 1 distinguishable means that any automorphism that preserves U as a set also fixes it pointwise. The fact that it is a determining set means that the only automorphism that fixes it pointwise is the trivial automorphism. Thus if we label the vertices of U with ones and the vertices of its complement with twos, only the trivial automorphism preserves the label classes. Therefore U is a distinguishing class of a 2 -distinguishing labeling. Thus to find a distinguishing class, we will look for a (small) determining set for which no nontrivial automorphism both preserves the set and permutes vertices within the set. One can think of such a set as having no "internal symmetry."

3 The Hypercubes

Recall that the n-cube, or hypercube of dimension n, is the Cartesian product of K_{2} with itself n times. That is, $Q_{n}=K_{2}^{n}$. Thus we can represent the vertices of Q_{n} as strings of n zeros and ones. For $n \geq 5$ we will construct a distinguishing class of size $2\left\lceil\log _{2} n\right\rceil-1$ for Q_{n}. We will start by defining a set $U_{r} \subseteq V\left(Q_{2^{r}}\right)$ for $r \geq 3$. In Theorem 5 we will show that
U_{r} is indeed a distinguishing class for $Q_{2^{r}}$. In Theorem 6 we will show that if $r=\left\lceil\log _{2} n\right\rceil$ the same is true for the projection of U_{r} into Q_{n} obtained by projecting each vertex onto its first n coordinates.

First let us define U_{r}. For $0 \leq k \leq r$, we call each of the 2^{r-k} consecutive sequences of 2^{k} coordinates in a vertex of $Q_{2^{r}}$ a block of length 2^{k}. For $i=1, \ldots, r$, let V_{i} be the vertex of $Q_{2^{r}}$ consisting of blocks of 2^{i-1} ones alternating with blocks of 2^{i-1} zeros. Let V_{0} be the vertex with one in its second coordinate and zeros in all others. For $i=1, \ldots, r-2$, let X_{i} be the vertex of $Q_{2^{r}}$ that agrees with V_{i} and V_{i+1} on the coordinates in which they agree and that has a one in every other coordinate. We can think of X_{i} as the "OR" of V_{i} and V_{i+1}; it has a one in a coordinate if either V_{i} or V_{i+1} has a one there, and a zero otherwise. Alternately, X_{i} can be described as having the repeating pattern: three blocks of 2^{i-1} ones followed by one block of 2^{i-1} zeros. Let $U=U_{r}=\left\{V_{0}, \ldots, V_{r}, X_{1}, \ldots, X_{r-2}\right\}$

Example 3. U_{4} contains the following vertices.
$V_{0}=0100000000000000$
$V_{1}=1010101010101010$
$V_{2}=1100110011001100$
$V_{3}=1111000011110000$
$V_{4}=1111111100000000$
$X_{1}=1110111011101110$
$X_{2}=1111110011111100$

The proofs of Theorems 5 and 6 make extensive use of distances between elements of U. Due to the repeating nature of the coordinates of our vertices, these distances are reasonable to compute. The details are given below and are summarized in Table 1.

Consider $d\left(V_{i}, V_{j}\right)$ where $1 \leq i<j \leq r$. Each block of length 2^{j-1} in V_{j} (which contains only zeros or only ones) corresponds to 2^{j-i} blocks of length 2^{i-1} in V_{i} (which alternate between ones blocks and zeros blocks). Thus V_{i} and V_{j} disagree in half their coordinates. Therefore $d\left(V_{i}, V_{j}\right)=2^{r-1}$ for $1 \leq i<j \leq r$.

Consider $d\left(X_{i}, V_{i}\right)$ and $d\left(X_{i}, V_{i+1}\right)$ where $1 \leq i \leq r-2$. Note that since $i \geq 1$, precisely half the coordinates of V_{i} that disagree with V_{i+1} are zeros and thus disagree with X_{i} also. The same statement holds for V_{i+1}. Thus $d\left(X_{i}, V_{i}\right)=d\left(X_{i}, V_{i+1}\right)=\frac{1}{2} d\left(V_{i}, V_{i+1}\right)=2^{r-2}$ for $1 \leq i \leq r-2$.

Consider $d\left(X_{i}, X_{i+1}\right)$ where $1 \leq i \leq r-3$. There are eight blocks of length 2^{i-1} in X_{i} to every four blocks of length 2^{i} of X_{i+1}. By comparing the repeating patterns of these blocks we see that X_{i} and X_{i+1} disagree on the $4^{t h}$ and $7^{t h}$ of these eight blocks. Thus $d\left(X_{i}, X_{i+1}\right)=\frac{2}{8} 2^{r}=2^{r-2}$ for $1 \leq i \leq r-3$.

Consider $d\left(X_{i}, X_{j}\right)$ where $1 \leq i \leq j-2 \leq r-4$. Since $i \leq j-2$, an integer multiple of four blocks of X_{i} correspond to a single block of zeros or ones in X_{j}. The four block pattern of X_{i} disagrees $\frac{1}{4}$ of the time with a ones block of X_{j} and $\frac{3}{4}$ of the time with a zeros block of X_{j}. Since $\frac{3}{4}$ of the blocks of X_{j} are ones and $\frac{1}{4}$ are zeros, we get that X_{i} and X_{j} disagree $\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{3}{4}=\frac{3}{8}$ of the time. Thus $d\left(X_{i}, X_{j}\right)=3 \cdot 2^{r-3}$ for $1 \leq i \leq j-2 \leq r-4$.

Consider $d\left(X_{i}, V_{j}\right)$ where $1 \leq i \leq j-2 \leq r-2$. Again since $i \leq j-2$, an integer multiple of four blocks of X_{i} corresponds to a single block of V_{j}. The four block pattern of
X_{i} disagrees with ones blocks and zeros blocks as described above. However, V_{j} has half its blocks ones and half zeros. Thus X_{i} and V_{j} disagree $\frac{1}{2} \cdot \frac{1}{4}+\frac{1}{2} \cdot \frac{3}{4}=\frac{1}{2}$ the time. Thus $d\left(X_{i}, V_{j}\right)=\frac{1}{2} \cdot 2^{r}=2^{r-1}$ for $1 \leq i \leq j-2 \leq r-2$.

Consider $d\left(V_{i}, X_{j}\right)$ where $1 \leq i \leq j-1 \leq r-3$. Since $i \leq j-1$, an integer multiple of two blocks of V_{i} correspond to a single block of X_{j}. Such a pair of blocks disagrees with a single block of X_{j} precisely half the time. Thus $d\left(X_{i}, V_{j}\right)=2^{r-1}$ for $1 \leq i \leq j-1 \leq r-3$.

Consider $d\left(V_{0}, V_{i}\right)$ where $1 \leq i \leq r$. Since for $i \geq 1, V_{i}$ has exactly half of its coordinates zero, if V_{0} consisted of all zeros we would have $d\left(V_{0}, V_{i}\right)=2^{r-1}$. However since the second coordinate of V_{0} is one, which disagrees with the second coordinate of V_{1} and agrees with all other V_{i} we have that $d\left(V_{0}, V_{1}\right)=2^{r-1}+1$, and $d\left(V_{0}, V_{i}\right)=2^{r-1}-1$ for $2 \leq i \leq r$.

Consider $d\left(V_{0}, X_{i}\right)$ where $1 \leq i \leq r-2$. Because X_{i} has three blocks of ones followed by one block of zeros, X_{i} has three quarters of its coordinates ones. Adjusting for the one in the second coordinate of V_{0} yields $d\left(V_{0}, X_{i}\right)=\frac{3}{4} 2^{r}-1=3 \cdot 2^{r-2}-1$ for $1 \leq i \leq r-2$.

Note that the only pairs of vertices of U at distance 2^{r-2} are $\left\{X_{i}, V_{i}\right\},\left\{X_{i}, V_{i+1}\right\}$, and $\left\{X_{i}, X_{i+1}\right\}$. We will call these related pairs because they have the distance relationship we will use to show that U is 1-distinguishable. Other pairs of vertices in U are called non-related pairs.

Related Pairs

$d\left(X_{i}, V_{i}\right)$	2^{r-2}	for $1 \leq i \leq r-2$
$d\left(X_{i}, V_{i+1}\right)$	2^{r-2}	for $1 \leq i \leq r-2$
$d\left(X_{i}, X_{i+1}\right)$	2^{r-2}	for $1 \leq i \leq r-3$

Non-Related Pairs

$d\left(V_{0}, X_{i}\right)$	$3 \cdot 2^{r-2}-1$	for $1 \leq i \leq r-2$
$d\left(V_{0}, V_{1}\right)$	$2^{r-1}+1$	
$d\left(V_{i}, V_{j}\right)$	2^{r-1}	for $1 \leq i<j \leq r$
$d\left(X_{i}, V_{j}\right)$	2^{r-1}	for $1 \leq i \leq r-2,1 \leq j \leq r$,
		$j \neq i, i+1$
$d\left(V_{0}, V_{i}\right)$	$2^{r-1}-1$	for $2 \leq i \leq r$
$d\left(X_{i}, X_{j}\right)$	$3 \cdot 2^{r-3}$	for $1 \leq i \leq j-2 \leq r-4$

Table 1: Distances in $Q_{2^{r}}$
Before stating and proving Theorem 5, we will prove that U is a determining set for $Q_{2^{r}}$. By Lemma 1, U is a determining set for $Q_{2^{r}}$ if and only if each column of the characteristic matrix for U contains a determining set for its associated prime factor and no two columns are isomorphic images of each other. Since any single vertex is a determining set for K_{2}, here we need only show that no two columns of M_{U} are isomorphic images of each other.

Let M_{U} be the characteristic matrix for $U=\left\{V_{0}, \ldots, V_{r}, X_{1}, \ldots, X_{r-2}\right\}$ and M_{T} the
characteristic matrix for $T=\left\{V_{0}, \ldots, V_{r}\right\}$. Note that the matrix M_{T} is given by the first $r+1$ rows of M_{U}. See Example 4 for M_{U} in the case $r=4$.

Example 4. The characteristic matrix for U_{4}.
V_{0}
V_{1}
V_{2}
V_{3}
V_{4}
X_{1}
$X_{2}$$\left[\begin{array}{llllllllllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}\right]$

By the proof of [5, Theorem 3], if we take T and replace V_{0} with the vertex of all zeros, we get a determining set for $Q_{2^{r}}$. This means that if we change the entry in the first row second column of M_{T} to a zero, we would have a characteristic matrix in which no pair of columns are isomorphic images of each other. Thus in M_{T} the only pairs of columns that might be isomorphic images of each other are pairs involving the second column. Note that the second column, $\left[\begin{array}{lllll}1 & 0 & 1 & 1 & \cdots\end{array}\right]$ 1 $]^{T}$, and the $\left(2^{r}-1\right)^{\text {st }}$ column, $\left.\begin{array}{lllll}0 & 1 & 0 & \cdots & 0\end{array}\right]^{T}$, are isomorphic images of each other under the isomorphism (01) of K_{2}. (Thus T is not a determining set.) If there was another column of M_{T} isomorphic to the second, it would also be isomorphic to the $\left(2^{r}-1\right)^{s t}$, which we argued cannot happen. Thus the second and $\left(2^{r}-1\right)^{s t}$ columns are the only pair of columns of M_{T} that are isomorphic images of each other.

Since the first $r+1$ rows of M_{U} form M_{T}, if two columns of M_{U} are isomorphic images of each other, then so are the corresponding columns in M_{T}. Thus we only need to check the second and $\left(2^{r}-1\right)^{s t}$ columns of M_{U}. We have seen that the first $r+1$ entries in the second and $\left(2^{r}-1\right)^{s t}$ of these columns are isomorphic images of each other under the isomorphism (01). However, since $r \geq 3, X_{1}$ exists, provides the $(r+2)^{n d}$ row of M_{U}, and has one in each of its second and $\left(2^{r}-1\right)^{s t}$ coordinates. Thus the isomorphism does not continue to the $(r+2)^{n d}$ entries of these columns. Thus no two columns of M_{U} are isomorphic images of each other and therefore U is a determining set for $Q_{2^{r}}$.

We now have the machinery in place to prove that U_{r} is a distinguishing class for $Q_{2^{r}}$.
Theorem 5. If $r \geq 3$, then $Q_{2^{r}}$ has a distinguishing class of size $2 r-1$.
Proof. Define $U=U_{r} \subset Q_{2^{r}}$ as above. Define the distance relationship graph on U, denoted G_{U}, to be the graph with vertex set U and with edges between two vertices if their distance in $Q_{2^{r}}$ is 2^{r-2}. The related pairs, $\left\{X_{i}, V_{i}\right\},\left\{X_{i}, V_{i+1}\right\}$, and $\left\{X_{i}, X_{i+1}\right\}$, are precisely those that are adjacent in the distance relationship graph. In particular, in this distance relationship graph V_{0} and V_{r} are isolated vertices, V_{1} and V_{r-1} have degree one, V_{2}, \ldots, V_{r-2} have degree two, X_{1}, \ldots, X_{r-2} have degree greater than two, and there is a connected component induced by $V_{1}, \ldots, V_{r-1}, X_{1}, \ldots, X_{r-2}$ that has \mathbb{Z}_{2} symmetry. See Figure 1 for an illustration when $r=6$.

Since automorphisms necessarily preserve distance, any automorphism in the set stabilizer of U induces an automorphism of the distance relationship graph. But the only nontrivial actions on G_{U} either transpose V_{0} and V_{r}, or reflect the nontrivial connected component and therefore transpose V_{1} and V_{r-1}, or both. Thus any automorphism that preserves U setwise either transposes V_{0} and V_{r}, or V_{1} and V_{r-1}, (or both).

Figure 1: Distance Relationship Graph for U_{6}

However, for any $i, 1 \leq i \leq r-2, d\left(V_{0}, X_{i}\right)=3 \cdot 2^{r-2}-1$ while the distance between V_{r} and any vertex of $U-\left\{V_{0}, V_{r}\right\}$ is 2^{r-1}. Thus V_{0} achieves distances with vertices of $U-\left\{V_{0}, V_{r}\right\}$ that are strictly greater than those achieved by V_{r}. Since automorphisms preserve distance, no automorphism that preserves U can transpose V_{0} and V_{r}. Thus V_{0} is distinguished from V_{r} within U. Further, $d\left(V_{0}, V_{1}\right)=2^{r-1}+1$ and $d\left(V_{0}, V_{r-1}\right)=2^{r-1}-1$. Again, since automorphisms preserve distance, no automorphism in the set stabilizer of U can transpose V_{1} and V_{r-1}. Thus V_{1} and V_{r-1} are distinguished within U.

Thus any automorphism that preserves U must fix U pointwise. Thus U is 1-distinguishable. Recall that before beginning Theorem 5 we proved that U is a determining set. Thus U is a 1-distinguishable determining set, i.e. a distinguishing class, of size $2 r-1$ for $Q_{2^{r}}$.

If $2^{r-1}<n<2^{r}$ we will find the desired distinguishing class by projecting U_{r} into Q_{n}. The proof that the result is a distinguishing class for Q_{n} is similar to, but more complex than, the proof for $Q_{2^{r}}$.

Theorem 6. If $n \geq 5$, then Q_{n} has a distinguishing class of size $2\left\lceil\log _{2} n\right\rceil-1$.
Proof. By Theorem 5, we get the desired result when $n=2^{r}$ for $r \geq 3$. For $n \geq 5$ and not a power of two, there is some $r \geq 3$ for which $2^{r-1}<n<2^{r}$. For such an n, let p_{n} be the projection of $Q_{2^{r}}$ onto Q_{n} by projecting each vertex onto its first n coordinates. Let $U=U_{r}$. Here our goal is to show that $p_{n}(U)$ is a 1 -distinguishable determining set for Q_{n}. Note that the characteristic matrix for $p_{n}(U)$ is formed from the first n columns of the characteristic matrix for U. Since we showed that no two columns in M_{U} are isomorphic images of each other, no two columns in $M_{p_{n}(U)}$ are isomorphic images of each other. Thus $p_{n}(U)$ is a determining set for Q_{n}.

Consider the possible distances between vertex pairs in Q_{n}. When we project vertices, say X and Y, from $Q_{2^{r}}$ into Q_{n} (or from Q_{n} into $Q_{2^{r-1}}$) by dropping the appropriate number of rightmost coordinates, we are dropping coordinates in which these vertices may disagree. Thus the distances between projected vertices can only get smaller. In particular the projection of each related pair of U has distance less than or equal to 2^{r-2} in Q_{n}. Moreover, we conclude that the distance $d\left(p_{n}(X), p_{n}(Y)\right)$ falls between the distance $d\left(p_{2^{r-1}}(X), p_{2^{r-1}}(Y)\right)$ and the distance $d(X, Y)$ (in $Q_{2^{r}}$). Again distances in $Q_{2^{r-1}}$ are not hard to find due to the repeating nature of the coordinates of our vertices. They are contained in Table 2.

Projection of Related Pairs

$d\left(p_{n}\left(X_{i}\right), p_{n}\left(V_{i}\right)\right)$	2^{r-3}	for $1 \leq i \leq r-2$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(V_{i+1}\right)\right)$	2^{r-3}	for $1 \leq i \leq r-2$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(X_{i+1}\right)\right)$	2^{r-3}	for $1 \leq i \leq r-3$

Projection of Non-Related Pairs

$d\left(p_{n}\left(V_{0}\right), p_{n}\left(V_{r}\right)\right)$	$2^{r-1}-1$	
$d\left(p_{n}\left(V_{0}\right), p_{n}\left(X_{i}\right)\right)$	$3 \cdot 2^{r-3}-1$	for $1 \leq i \leq r-2$
$d\left(p_{n}\left(V_{0}\right), p_{n}\left(V_{1}\right)\right)$	$2^{r-2}+1$	
$d\left(p_{n}\left(V_{i}\right), p_{n}\left(V_{j}\right)\right)$	2^{r-2}	for $1 \leq i<j \leq r$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(V_{j}\right)\right)$	2^{r-2}	for $1 \leq i \leq r-2$,
		$1 \leq j \leq r-1$,
$d\left(p_{n}\left(V_{0}\right), p_{n}\left(V_{i}\right)\right)$	$2^{r-2}-1$	for $2 \leq i \leq i, i+1$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(X_{j}\right)\right)$	$3 \cdot 2^{r-4}$	for $1 \leq i \leq j-2 \leq r-4$
$d\left(p_{n}\left(V_{r}\right), p_{n}\left(X_{i}\right)\right)$	2^{r-3}	for $1 \leq i \leq r-2$

Table 2: Distances of projections into Q_{n}, where $n=2^{r-1}$

Suppose that the projection of some related pair has distance 2^{r-2} in Q_{n}. Since this was also their distance in $Q_{2^{r}}$ this means that the original pair agreed in each of their final $2^{r}-n$ coordinates. Examining the final blocks of the related pairs we find that the maximum agreement is 2^{r-2} coordinates and occurs only for $\left\{X_{r-2}, V_{r-2}\right\}$. In particular if $n<3 \cdot 2^{r-2}$ then every related pair is at distance less than 2^{r-2}.

We will break this proof into two cases: Case 1: $3 \cdot 2^{r-2} \leq n<2^{r}$ and Case 2: $2^{r-1}<$ $n<3 \cdot 2^{r-2}$. In each case we will define a distance relationship graph on the vertex set $p_{n}(U)$ similar to the one defined in the proof of Theorem 5. In Case 1 the distance relationship will be "less than or equal to 2^{r-2} " while in Case 2 the distance relationship will be "strictly less than 2^{r-2}." These definitions will ensure that related pairs will be adjacent in each distance relationship graph.

By Table 2, the non-related vertices that cannot possibly have distance less than or equal to 2^{r-2} in Q_{n} where $2^{r-1}<n<2^{r}$ are the pairs $\left\{p_{n}\left(V_{0}\right), p_{n}\left(V_{r}\right)\right\},\left\{p_{n}\left(V_{0}\right), p_{n}\left(X_{i}\right)\right\}$ where $1 \leq i \leq r-2$, and $\left\{p_{n}\left(V_{0}\right), p_{n}\left(V_{1}\right)\right\}$. We will analyze the distances between the projections of all other non-related pairs using their distances when projected into $Q_{3 \cdot 2^{r-2}}$. These are given in Table 3.

Case 1: $3 \cdot 2^{r-2} \leq n<2^{r}$.
When $3 \cdot 2^{r-2} \leq n<2^{r}$, define the distance relationship graph $G_{p_{n}(U)}$ on $p_{n}(U)$ so that there is an edge between a pair of vertices when their distance is less than or equal to 2^{r-2}. Since all related pairs fit this distance criterion, $G_{p_{n}(U)}$ contains G_{U} (from the proof of Theorem 5) as a subgraph. The distance information from Table 3 allows us to conclude that since $n \geq 3 \cdot 2^{r-2}$ the only edges that might be in $G_{p_{n}(U)}$ but are not in G_{U} would be

Projection of Some Non-Related Pairs

$d\left(p_{n}\left(V_{r-1}\right), p_{n}\left(V_{r}\right)\right)$	2^{r-1}	
$d\left(p_{n}\left(V_{0}\right), p_{n}\left(V_{r-1}\right)\right)$	$2^{r-1}-1$	
$d\left(p_{n}\left(V_{i}\right), p_{n}\left(V_{j}\right)\right)$	$3 \cdot 2^{r-3}$	for $1 \leq i<j \leq r, i \neq r-1$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(V_{j}\right)\right)$	$3 \cdot 2^{r-3}$	for $1 \leq i \leq r-2$,
		$1 \leq j \leq r-2$,
$d\left(p_{n}\left(V_{r}\right), p_{n}\left(X_{r-2}\right)\right)$	$3 \cdot 2^{r-3}$	$j \neq i, i+1$
$d\left(p_{n}\left(V_{0}\right), p_{n}\left(V_{i}\right)\right)$	$3 \cdot 2^{r-3}-1$	for $2 \leq i \leq r-2$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(V_{r-1}\right)\right)$	$5 \cdot 2^{r-4}$	for $1 \leq i \leq r-3$,
$d\left(p_{n}\left(V_{r}\right), p_{n}\left(X_{i}\right)\right)$	$5 \cdot 2^{r-4}$	for $1 \leq i \leq r-3$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(X_{j}\right)\right)$	$9 \cdot 2^{r-5}$	for $1 \leq i \leq j-2 \leq r-5$
$d\left(p_{n}\left(X_{i}\right), p_{n}\left(X_{r-2}\right)\right)$	2^{r-2}	for $1 \leq i \leq r-4$

Table 3: Some distances of projections into Q_{n}, where $n=3 \cdot 2^{r-2}$
between the pairs of the form $\left\{p_{n}\left(X_{r-2}\right), p_{n}\left(X_{i}\right)\right\}$ where $1 \leq i \leq r-4$. Thus in $G_{p_{n}(U)}$ the only vertices of degree zero are $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{r}\right)$, the only vertices of degree one are $p_{n}\left(V_{1}\right)$ and $p_{n}\left(V_{r-1}\right)$, and the vertices of degree two are precisely the vertices $p_{n}\left(V_{i}\right)$ where $2 \leq i \leq r-2$.

Recall that since $G_{p_{n}(U)}$ is defined by distances in Q_{n}, to prove that $p_{n}(G)$ is 1-distinguishable in Q_{n} we can use information from Q_{n} itself and information from $G_{p_{n}(U)}$. Notice that in both V_{0} and V_{r} the second 2^{r-1} coordinates are zeros. In particular, their second 2^{r-1} coordinates are the same. Thus distances involving V_{0} and V_{r} are reduced by the same amount in the projection to Q_{n}. Thus $p_{n}\left(V_{0}\right)$ still attains greater distances with vertices of $p_{n}(U)-\left\{p_{n}\left(V_{0}\right), p_{n}\left(V_{r}\right)\right\}$ than $p_{n}\left(V_{r}\right)$ can attain. Since automorphisms preserve distance, $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{r}\right)$ cannot be transposed by any automorphism that preserves $p_{n}(U)$. (Note that this is true for any $2^{r-1}<n<2^{r}$; it will be used again in Case 2.) Thus we can distinguish $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{r}\right)$ in $p_{n}(U)$.

If $p_{n}\left(V_{1}\right)$ and $p_{n}\left(V_{r-1}\right)$ have different distances from $p_{n}\left(V_{0}\right)$ then they are distinguished from each other. However, if $p_{n}\left(V_{1}\right)$ and $p_{n}\left(V_{r-1}\right)$ have the same distance from $p_{n}\left(V_{0}\right)$, we can replace V_{0} (and $\left.p_{n}\left(V_{0}\right)\right)$ with the vertex of all zeros. This does not change any argument given so far. (The only possible concern is the distance between $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{1}\right)$. With the change to V_{0}, when $n=2^{r-1}$ the distance between $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{1}\right)$ drops to 2^{r-2}, which gives $p_{n}\left(V_{0}\right)$ a neighbor in the distance relationship graph. However, since V_{0} and V_{1} differ in their $\left(2^{r-1}+1\right)^{s t}$ coordinate, when $n>2^{r-1}$ their distance is still greater than 2^{r-2}.) The change in V_{0} will decrease the distance between $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{1}\right)$ by one and increase the distance between $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{r-1}\right)$ by one, thereby distinguishing $p_{n}\left(V_{1}\right)$ and $p_{n}\left(V_{r-1}\right)$. Again, since the only requirement is that $n>2^{r-1}$, this argument will still be valid in Case 2.

The vertex $p_{n}\left(X_{1}\right)$ (resp. $p_{n}\left(X_{r-2}\right)$) is the only one adjacent to the vertex $p_{n}\left(V_{1}\right)$ (resp. $p_{n}\left(V_{r-1}\right)$) in $G_{p_{n}(U)}$. Thus $p_{n}\left(X_{1}\right)$ and $p_{n}\left(X_{r-2}\right)$ are distinguished. The vertex $p_{n}\left(V_{2}\right)$ (resp. $p_{n}\left(V_{r-2}\right)$) is the only vertex of degree 2 at distance 2 from $p_{n}\left(V_{1}\right)\left(\right.$ resp. $p_{n}\left(V_{r-1}\right)$) in $G_{p_{n}(U)}$. Thus these are also distinguished.

The vertex $p_{n}\left(X_{2}\right)\left(\right.$ resp. $p_{n}\left(X_{r-3}\right)$) is the only one adjacent to both $p_{n}\left(X_{1}\right)$ and $p_{n}\left(V_{2}\right)$ (resp. $p_{n}\left(X_{r-2}\right)$) and $\left.p_{n}\left(V_{r-2}\right)\right)$ in $G_{p_{n}(U)}$; thus they are distinguished. Continue in this manner to see that all vertices in $G_{p_{n}(U)}$ are distinguished. Thus $p_{n}(U)$ is a 1-distinguishable determining set.

Note that in the argument above we distinguished all of $p_{n}(U)-\left\{p_{n}\left(V_{r}\right)\right\}$ without using the fact that $p_{n}\left(V_{r}\right)$ was itself distinguished. Once $p_{n}\left(V_{0}\right)$ was distinguished, the remainder of $p_{n}(U)-\left\{p_{n}\left(V_{0}\right), p_{n}\left(V_{r}\right)\right\}$ could be distinguished. This results in the distinguishing of $p_{n}\left(V_{r}\right)$ by elimination. This argument will be used again in Case 2 below.

Case 2: $2^{r-1}<n<3 \cdot 2^{r-2}$.
When $2^{r-1}<n<3 \cdot 2^{r-2}$ define the distance relationship graph $G_{p_{n}(U)}$ on $p_{n}(U)$ so that there is an edge between a pair of vertices when their distance is strictly less than 2^{r-2}. Recall that the distances between related pairs have dropped strictly below 2^{r-2} since $n<3 \cdot 2^{r-2}$. Table 2 indicates that the distance between a pair of the form $\left\{p_{2^{r-1}}\left(V_{0}\right), p_{2^{r-1}}\left(V_{i}\right)\right\}$ for $2 \leq i \leq r-2$ is $2^{r-2}-1$ in $Q_{2^{r-1}}$. However, V_{0} and V_{i} differ in their $\left(2^{r-1}+1\right)^{s t}$ coordinate. Thus the distance between their projections in Q_{n} is at least 2^{r-2}. From Table 2 we see that the only other non-related pairs of vertices that might have distance smaller than 2^{r-2} in Q_{n} are the pairs $\left\{p_{n}\left(X_{i}\right), p_{n}\left(X_{j}\right)\right\}$ where $1 \leq i \leq j-2 \leq r-4$ and the pairs $\left\{p_{n}\left(V_{r}\right), p_{n}\left(X_{i}\right)\right\}$ where $1 \leq i \leq r-2$. Thus we see that in $G_{p_{n}(U)}, p_{n}\left(V_{0}\right)$ still has degree zero, $p_{n}\left(V_{1}\right)$ and $p_{n}\left(V_{r-1}\right)$ still have degree one, and $p_{n}\left(V_{i}\right)$ with $2 \leq i \leq r-2$ still have degree two. Further $p_{n}\left(X_{i}\right)$ with $1 \leq i \leq r-2$ still have degree greater than two. However, the degree of $p_{n}\left(V_{r}\right)$ varies depending on the value of n.

If the degree of $p_{n}\left(V_{r}\right)$ in $G_{p_{n}(U)}$ is greater than zero, then $p_{n}\left(V_{0}\right)$ is the only vertex of degree zero and is thus distinguished.

Suppose the degree of $p_{n}\left(V_{r}\right)$ in $G_{p_{n}(U)}$ is zero. Then $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{r}\right)$ are the only vertices of degree zero in $G_{p_{n}(U)}$. Thus any automorphism that preserves $p_{n}(U)$ either fixes them both or transposes them. However, the argument given in Case 1 shows that when $2^{r-1}<n<2^{r}$, we can distinguish $p_{n}\left(V_{0}\right)$ and $p_{n}\left(V_{r}\right)$ by the distances they attain.

Thus in either case, $p_{n}\left(V_{0}\right)$ is distinguished and we can use the arguments of Case 1 to distinguish the remaining vertices of $p_{n}(U)$.

Thus we have found a 1 -distinguishable determining set, i.e. a distinguishing class, of size $2 r-1=2\left\lceil\log _{2} n\right\rceil-1$ for Q_{n}.

Corollary 7. For $n \geq 5,\left\lceil\log _{2} n\right\rceil+1 \leq \rho\left(Q_{n}\right) \leq 2\left\lceil\log _{2} n\right\rceil-1$.
Proof. By the remarks following Theorem 2, every distinguishing class for $Q_{n}, n \geq 4$, is also a determining set. By [5] a smallest such set for Q_{n} has size $\left\lceil\log _{2} n\right\rceil+1$. This provides the lower bound.

The only 2-distinguishable case for Q_{n} that is not covered in Theorem 6 is Q_{4}. The proof technique fails in this case because the given set U has no X_{i} when $n<5$. If the results of Theorem 6 held for Q_{4}, it would have a distinguishing class of size three. Since three is also the determining number for Q_{n}, such a distinguishing class would also be a minimum size determining set. It is not hard to show that there is a single isomorphism class of minimum size determining sets for Q_{4}, and that one of its members, $U=\{0000,1010,1100\}$, has a
nontrivial set stabilizer. Thus every minimum size determining set for Q_{4} has a nontrivial stabilizer and therefore cannot be a distinguishing class.

Thus the result of Theorem 6 does not hold for $n<5$.

4 Open Questions

Question 8. For $n \geq 5$ is there a distinguishing class for Q_{n} that is smaller than $2\left\lceil\log _{2} n\right\rceil-$ 1 ?

Question 9. For $n \geq 5$ we saw that $\rho\left(Q_{n}\right)$ is no bigger than a constant multiple of $\operatorname{Det}\left(Q_{n}\right)$. That is, $\rho\left(Q_{n}\right)=O\left(\operatorname{Det}\left(Q_{n}\right)\right)$ in this case. For what other infinite families of graphs is this true?

5 Acknowledgments

The author thanks Wilfried Imrich for useful conversations about determining sets and distinguishing labelings of Cartesian products. The author also thanks the referees for finding a computational error in the original proof of Theorem 6 and for a careful reading of the manuscript.

References

[1] M. O. Albertson and D. L. Boutin, Using determining sets to distinguish Kneser graphs, Electron. J. Combin. 14 (2007), \#R20.
[2] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3 (1996), \#R18.
[3] B. Bogstad and L. J. Cowen, The distinguishing number of the hypercube, Discrete Math. 283 (2004), 29-35.
[4] D. L. Boutin, Identifying graph automorphisms using determining sets, Electron. J. Combin. 13 (2006), \#R78.
[5] D. L. Boutin, The determining number of Cartesian products, J. Graph Theory, forthcoming.
[6] T. Fukuda, S. Negami and T. Tucker, 3-connected planar graphs are 2-distinguishable with few exceptions, preprint, 2006.
[7] W. Imrich, personal communication.
[8] W. Imrich and S. Klavžar, Distinguishing Cartesian powers of graphs, J. Graph Theory 53 (2006), 250-260.
[9] W. Imrich and S. Klavžar, Product graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

[^0]: E-mail address: dboutin@hamilton.edu (Debra L. Boutin)

