© Acta hydrotechnica 22/37 (2004) Ljubljana ISSN 1581-0267 95 UDK/UDC: 519.61/.64:504.4:556.38 Prejeto/Received: 18. 6. 2005 Kratki znanstveni prispevek – Preliminary scientific paper Sprejeto/Accepted: 25. 11. 2005 UPORABA MODELA PEARL ZA SIMULACIJO EMISIJE PESTICIDOV V PODTALNICO LJUBLJANSKEGA POLJA USAGE OF MODEL PEARL FOR SIMULATION OF PESTICIDE EMISSION INTO THE LJUBLJANSKO POLJE GROUNDWATER Sašo KLEMENČI Č Podtalnica Ljubljanskega polja je eno najpomembnejših vodnih teles v Sloveniji in predstavlja vir pitne vode za okoli 300.000 ljudi. Tla, ki prekrivajo vodonosnik, so ve činoma plitva in dobro prepustna, zaradi tega podtalnico ogrožajo pesticidi, ki pronicajo iz kmetijskih površin na Ljubljanskem polju. Velike koli čine v preteklosti uporabljenega atrazina na Ljubljanskem polju so privedle do tega, da sta atrazin in njegov razgradni produkt desetil atrazin presegla mejne vrednosti in sta še vedno prisotna v podtalnici. Zaradi manjše porabe po letu 1995 in prepovedi uporabe atrazina leta 2003 se njuna vrednost po časi zmanjšuje. Da bi se v prihodnosti takšna stanja prepre čilo, smo skušali ugotoviti uporabnost modela PEARL za ocenjevanje bilance atrazina in mobilnosti pesticidov, ki se danes uporabljajo. Klju čne besede: podtalnica, atrazin, metolaklor, PEARL, Ljubljansko polje Groundwater of the plain of Ljubljansko polje is one of the most important water bodies in Slovenia and represents the source of drinking water for around 300,000 people. Soil covering the aquifer is mostly shallow and permeable. Because of that the percolation of pesticides from the Ljubljansko polje fields represents a considerable threat to the groundwater. In the past atrazine was used in large amounts at the Ljubljansko polje, which was the reason that atrazine and its metabolite desethyl atrazine have exceeded the limit value and are still present in the groundwater. After 1995, the use of atrazine started to decrease, and in 2003 the use of atrazine was prohibited. Because of that the quantity of atrazine and desethyl atrazine in groundwater is slowly reducing. In order to prevent such scenarios in the future, we tried to establish the suitability of the PEARL model for the Ljubljansko polje. With the model one can evaluate the pesticide mobility, before they are registered and deployed to fields. Key words: groundwater, atrazine, metolaclor, PEARL, Ljubljansko polje 1. UVOD Uporaba razli čnih kemi čnih sredstev za zaš čito rastlin, ki se jih uporablja v kmetijstvu, onesnažuje okolje. Ker gre za strupene snovi, je njihova prisotnost v okolju in še posebej v pitni vodi nevarna. Ko pesticidi z dolgo razpolovno dobo pridejo do podtalnice, se dolgo časa zadržijo v njej, pri tem po časi razpadajo in prehajajo v druge, tudi strupene snovi. Lahko samo po čakamo, da se odstranijo po naravni poti, kar pa traja dolgo časa, ogroža zdravje ljudi ter pove čuje stroške oskrbe s pitno vodo. Ker je treba takšne primere prepre čiti, smo preverjali uporabnost modela 1. INTRODUCTION The usage of different chemical agents for plant protection used in farming has been the cause of environmental pollution. Because of toxicity of chemical agents their presence in the environment, especially in drinking water, is hazardous. Once pesticides with long half lives enter the groundwater, they stay there for a long time, slowly breaking down and transforming themselves into other also toxic substances. We have no other choice but to wait for the pesticides to break down by themselves. However, that takes a long time, represents health risks to people and increases the costs of water supply. Such situations need to be prevented. Because of that we examined the PEARL model (Pesticide Emission Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 96 PEARL (Pesticide Emission Assessment at Regional and Local Scales) za ugotavljanje mobilnosti pesticidov pri pogojih, kakršni obstajajo na Ljubljanskem polju. Uporabnost je bilo treba preveriti, ker je bil model razvit na Nizozemskem in je prilagojen njihovim razmeram. Z uporabo takih modelov bi se lahko pred registracijo pesticidov simuliralo njihovo obnašanje v okolju in bi se tako prepre čilo kontaminiranje podtalnice. Vodonosnik Ljubljanskega polja je eden najve čjih in tudi najpomembnejših vodnih teles v Sloveniji. Tla, ki ga prekrivajo, so plitva in dobro prepustna, zato je tudi eden izmed najbolj ogroženih vodonosnikov v Sloveniji. Njegove dinami čne zaloge so ocenjene na 3 do 4 m 3 /s (Andjelov et al., 2005). Njegove stati čne zaloge ob povpre čnem vodostaju podtalnice pa po oceni znašajo 1,801 x 10 12 m 3 . Kljub tako velikim koli činam vode so bile v nekaterih vodnjakih presežene mejne vrednosti za atrazin – v vodarni Hrastje pa so še vedno. To je vodilo k temu, da se je uporaba atrazina za čela po letu 1995 zmanjševati, leta 2003 pa je bila sprejeta prepoved uporabe atrazina. 2. MATERIAL IN METODE Pesticidi, ki se uporabljajo v kmetijstvu, se lahko izcejajo v podtalnico ali izhlapevajo v ozra čje. Za ocenjevanje nevarnosti emisij pesticidov iz rastlin in tal ter njihovo obnašanje v okolju se vse bolj uporabljajo ra čunski modeli. Izbrali smo model PEARL in preverili njegovo uporabnost za vodonosnik Ljubljanskega polja (Leistra et al., 2001). PEARL (slika 1) je enodimenzionalni numeri čni model, ki simulira obnašanje pesticidov v sistemu zemljina–rastlina. Razvit je bil na Nizozemskem. Tok vode po zemljini je opisan z Richardovo ena čbo, upoštevajo č vrsto možnih spodnjih robnih pogojev. Evaporacija zemljine in transpiracija rastlin sta izra čunana z množenjem referen čne evapotranspiracije s faktorji rastlin in zemljine. Tok toplote po zemljini je opisan s Fourierjevim zakonom. Toplotne lastnosti so funkcija poroznosti in vodne vsebnosti in so zato funkcija časa in globine zemljine. Assessment at Regional and Local Scales) for simulating pesticide mobility in conditions present in the plain of Ljubljansko polje. Since the model has been developed in the Netherlands and adapted to their conditions, we had to check the applicability of the model in Slovenia. Namely, prior to the actual registration and application of pesticides to cropland, we could, with the help of these types of models, simulate the pesticide behaviour in the environment. In this way the contamination of groundwater could be prevented. The aquifer of the Ljubljansko polje is one of the biggest and most important water bodies in Slovenia. The soil covering the Ljubljansko polje aquifer is shallow and permeable, which is why this is one of the most vulnerable aquifers in Slovenia. Its dynamic reserves were estimated at 3–4 m 3 /s (Andjelov et al., 2005), whereas its static reserves at the average water level of groundwater were estimated at 1.801 x 10 12 m 3 . Despite such enormous quantity of water in some wells, the concentrations of atrazine were over the boundary value. In the Hrastje water plant, the concentrations are still over the boundary value. Because of high concentrations of atrazine in groundwater its usage has begun to decrease after 1995; since 2003 the usage of atrazine has been prohibited. 2. MATERIAL AND METHODS Pesticides used for farming can leach into underground waters or evaporate into the atmosphere. For evaluating the danger of pesticide emission from plants and soil, numerical models are used. We chose the PEARL model and examined its applicability for the Ljubljansko polje aquifer (Leistra et al., 2001). PEARL (Fig. 1) is a one-dimensional numerical model, which simulates pesticide behaviour in the soil–plant system. It was developed in the Netherlands. The water flow in soil is described by Richard’s equation including a range of possible lower boundary conditions. Evaporation from the soil and transpiration from plants are calculated so that the reference evapotranspiration is multiplied by soil and plant factors. Soil heat flow is described by Fourier’s law. The thermal properties are a function of porosity and water content and are therefore a function of time and soil depth. Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 97 Model PEARL temelji na: - konvekcijsko/disperzijski ena čbi, vklju čujo č difuzijo v plinasti fazi s temperaturno odvisnim Henryjevim koeficientom, - modelu Freundlichove absorpcije, - hitrosti transformacije, ki je odvisna od vsebnosti vode, temperature in globine zemljine, - pasivnem rastlinskem dvigovanje vode. Model ra čuna tudi tvorbo in obnašanje produktov transformacije in opisuje tudi stranski izpust pesticidov v drenaže. Model ne simulira preferen čnega toka. Izhlapevanje iz površja zemljine je izračunano tako, da se privzame laminarno zra čno plast na površini zemljine (Leistra et al., 2001). PEARL sam ne ra čuna toka vode in temperatur zemljine, ampak uporabi izra čune iz modela SWAP (Soil Water Atmosphere Plant). Programski paket za simulacijo je torej sestavljen iz dveh modelov: SWAP in PEARL (slika 2) (Leistra et al., 2001). Simulirali smo nanašanje atrazina na Ljubljansko polje, in sicer v realnih koli činah, ki so jih ocenili na Inštitutu za hmeljarstvo in pivovarstvo Žalec (Simon či č et al., 2004). Privzeli smo, da so atrazin nanašali vsako leto na isto polje, poraš čeno s koruzo. Takega stanja v realnosti zaradi kolobarjenja ni. Koli čine in datumi nanosov, uporabljeni v modelu, so prikazani v preglednici 1. The PEARL model is based on: - the convection/dispersion equation including diffusion in the gas phase with the temperature dependent on the Henry coefficient, - the Freundlich sorption model, - the transformation rate that depends on water content, temperature and depth in soil, - the passive plant uptake rate. PEARL also calculates the formation and behaviour of transformation products and describes the lateral discharge of pesticides into drains. The volatilisation from the soil surface is calculated with the assumption that there is a laminar air layer on the soil surface (Leistra et al., 2001). The PEARL model does not calculate water flow and soil temperatures but uses calculated values from the SWAP model (Soil Water Atmosphere Plant). The program package for the simulation consists of two models: SWAP and PEARL (Fig. 2) (Leistra et al., 2001). We simulated the application of atrazine to the Ljubljansko polje and took real quantities that were estimated by the Slovenian Institute of Hop Research and Brewing (Simon či č et al., 2004). We assumed that the atrazine was applied to the same cornfield every year. In reality such a condition does not exist because of the rotation of crops. Quantities and dates of application used in the model are represented in Table 1. Preglednica 1. Nanašanje atrazina na polje v simulaciji. Table 1. Application of atrazine to the field in simulation. Datum / Date Nanos / Application (kg/ha) Datum / Date Nanos / Application (kg/ha) 13.05.1989 1.500 06.05.1997 0.833 11.05.1990 1.500 13.05.1998 0.500 14.05.1991 1.500 08.05.1999 0.300 11.05.1992 1.500 07.05.2000 0.233 07.05.1993 1.500 15.05.2001 0.167 10.05.1994 1.500 08.05.2002 0.067 10.05.1995 1.500 2003 0.000 07.05.1996 1.330 2004 0.000 Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 98 Slika 1. Pregled podatkovne baze modela PEARL (Tiktak et al., 2000). Figure 1. Overview of the PEARL database (Tiktak et al., 2000). Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 99 Slika 2: Pregled procesov, vklju čenih v model PEARL (Tiktak et al., 2000). Figure 2. Overview of processes included in the PEARL model (Tiktak et al., 2000). Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 100 Uporabljeni so bili realni meteorološki podatki, kot so: son čno sevanje, maksimalna dnevna temperatura, minimalna dnevna temperatura, povpre čni parni tlak, hitrost vetra in padavine od 1. 1. 1989 do 30. 9. 2004 (ARSO). V simulaciji smo uporabili troje razli čnih tal: lahka tla, lahka in srednje težka tla in srednje težka tla. Lahka tla ležijo ob reki Savi in predstavljajo podro čje, kjer je ogroženost podtalnice zaradi uporabe fitofarmacevtskih sredstev najve čja. Ve čji del teh tal prekrivajo gozdovi, grmi čevje in travniki. Najve čji del prispevnega podro čja, iz katerega se napajajo vodnjaki v vodarnah, je prekritega z lahkimi in srednje težkimi tlemi. Srednje težka tla so prisotna le na zelo majhnem delu prispevnega obmo čja. Podatki o lastnostih tal so podani v preglednicah 2–9. Simulirali smo tudi nanašanje atrazina na železniške nasipe (podatki o nanašanju so isti kot pri poljedelstvu). Za primerjavo smo simulirali tudi distribucijo metolaklora po zemljini. Metolaklor smo izbrali, ker se je uporabljal približno v istih koli činah kot atrazin, vendar pa mejnih vrednosti v vodnjakih vodarn ni nikoli presegel (Andjelov et al., 2005). Lastnosti pesticidov atrazina in metolaklora, uporabljene v izra čunu, so navedene v preglednicah 10 in 11. The applied meteorological data were real; they were obtained from the Environmental Agency of the Republic of Slovenia (ARSO). We entered the following data: daily global sun radiation, maximum daily temperature, minimum daily temperature, average vapour pressure, average wind speed and daily precipitation, dating from 01/01/1989 to 30/09/2004. In the simulation we used three types of soil: light soil, light and moderate soil, and moderate soil. Light soil is to be found near the river Sava and represents the area where the groundwater is most vulnerable to the use of pesticides. The major part of light soil is covered with woods, bushes and meadows. The largest part of the drainage basin is covered with light and moderate soil. Moderate soil is present only in a small part of the drainage basin. Data about soil properties are given in Tables 2 to 9. We also simulated the application of atrazine to railway dikes (application data are the same as for farming). For comparison we also simulated soil distribution of metolaclor. Metolaclor was chosen because it was used in almost the same quantities as the atrazine, however, the concentrations of metolaclor in the wells of water plants were never exceeded (Andjelov et al., 2005). Properties used in the model for atrazine and metolaclor are given in Tables 10 and 11. Preglednica 10. Razpolovni čas atrazina v dneh v odvisnosti od vrste tal in globine. Table 10. Half life of atrazine in days, as a function of soil type and depth. Horizont Horizon 123456 Lahka tla Light soil 40 146 300 1000 1000 – Lahka in srednje težka tla Light and moderate soil 40 146 300 1000 1000 – Srednje težka tla moderate soil 40 146 146 300 1000 1000 Železniški nasipi Railway dikes 146 1000 1000 – – – Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 101 Suha pros. gostota zem. Dry bulk density [kg/m 3 ] 1260 1260 1860 2000 2000 Glina Clay [%] 6 15 6 2.5 2.5 Pesek Sand [%] 46 33 90 95 95 Organska snov Organic matter [%] 5 3.25 1 0 0 pH 8 8 8 7 7 Teksturni razred Texture class PI – peš čena ilovica SaL – Sandy Loam MI – meljasta ilovica SiL – Silty Loam prod in pesek Gravel and Sand prod in pesek Gravel and Sand prod in pesek Gravel and Sand Debelina plasti Layer thickness [cm] 15 14 50 200 721 Preglednica 2. Parametri, uporabljeni v modelu PEARL, za lahka tla. Table 2. Parameters used in PEARL for light soil. 1. horizont/horizon 1 2. horizont/horizon 2 3. horizont/horizon 3 4. horizont/horizon 4 5. horizont/horizon 5 λ (–) 0.18 0.057 0 0 0 K sat (m/d) 10 3.0912 8 10 10 n (–) 1.56 1.686 2.17 2.17 2.17 α w (1/cm) 0.016 0.0025 0.022 0.022 0.022 α d (1/cm) 0.016 0.0025 0.022 0.022 0.022 θ s (m 3 /m 3 ) 0.01 0.00 0.01 0.01 0.01 θ s (m 3 /m 3 ) 0.524 0.523 0.379 0.323 0.323 Preglednica 3. Uporabljeni Van Genuchtenovi parametri za lahka tla (Tiktak et al. , 2000: K sat iz SWCHPC, 2004). Table 3. Van Genuchten parameters used for light soil (Tiktak et al., 2000: K sat from SWCHPC, 2004). 1. horizont (TOP Soils – B4) 2. horizont (SUB Soils – O14) 3. horizont (SUB Soils – O1) 4. horizont (SUB Soils – O1) 5. horizont (SUB Soils – O1) Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 102 Suha pros. gostota Dry bulk density [kg/m 3 ] 1100 1100 1860 2000 2000 Glina Clay [%] 23 25 6 2.5 2.5 Pesek Sand [%] 16 18 90 95 95 Organska snov Organic matter [%] 7 5 1 0 0 pH 6 6 7 7 7 Teksturni razred Texture class MI – meljasta ilovica SiL – Silty Loam MI – meljasta ilovica SiL – Silty Loam prod in pesek Gravel and Sand prod in pesek Gravel and Sand prod in pesek Gravel and Sand Debelina plasti Layer thickness [cm] 20 16 50 200 724 Preglednica 4. Parametri, uporabljeni v modelu PEARL, za lahka in srednje težka tla (iz Simon či č et al., 2004). Table 4. Parameters used in PEARL for light and moderate soil (from Simonči č et al., 2004). 1. horizont/horizon 1 2. horizont/horizon 2 3. horizont/horizon 3 4. horizont/horizon 4 5. horizont/horizon 5 λ (–) –2.161 0.057 0 0 0 K sat (m/d) 6.0648 4.8504 8 10 10 n (–) 1.325 1.686 2.167 2.167 2.167 α w (1/cm) 0.0065 0.0025 0.0224 0.0224 0.0224 α d (1/cm) 0.0065 0.0025 0.0224 0.0224 0.0224 θ s (m 3 /m 3 ) 0 0.00 0.01 0.01 0.01 θ s (m 3 /m 3 ) 0.584 0.586 0.379 0.323 0.323 Preglednica 5. Uporabljeni Van Genuchtenovi parametri za lahka in srednje težka tla (Tiktak et al., 2000: K sat iz SWCHPC, 2004). Table 5. Van Genuchten parameters for light and moderate soil (Tiktak et al., 2000: K sat from SWCHPC, 2004). 1. horizont (TOP Soils – B09) 2. horizont (SUB Soils – O14) 3. horizont (SUB Soils – O1) 4. horizont (SUB Soils – O1) 5. horizont (SUB Soils – O1) Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 103 Suha pros. gostota zem. Dry bulk density [kg/m 3 ] 1100 1100 1210 1310 2000 2000 Glina Clay [%] 23 25 22 40 2.5 2.5 Pesek Sand [%] 16 18 22 19 95 95 Organska snov Organic matter [%] 7 5 3 0 0 0 pH 6 6 6 6 6.5 7 Teksturni razred Texture class MI – meljasta ilovica SiL – Silty Loam MI – meljasta ilovica SiL – Silty Loam MI – meljasta ilovica SiL – Silty Loam MG – meljasta glina SiC – Silty Clay prod in pesek Gravel and Sand prod in pesek Gravel and Sand Debelina plasti Layer thickness [cm] 20 16 29 15 200 720 Preglednica 6. Parametri, uporabljeni v modelu PEARL, za srednje težka tla. Table 6. Parameters used in the PEARL model for moderate soil. 1. horizont/horizon 1 2. horizont/horizon 2 3. horizont/horizon 3 4. horizont/horizon 4 5. horizont/horizon 5 6. horizont/horizon 6 λ (–) –2.161 0.057 0.057 –4.171 0 0 K sat (m/d) 6.0648 4.8504 1.6848 0.0312 10 10 n (–) 1.325 1.686 1.686 1.159 2.167 2.167 α w (1/cm) 0.0065 0.0025 0.0025 0.0095 0.0224 0.0224 α d (1/cm) 0.0065 0.0025 0.0025 0.0095 0.0224 0.0224 θ s (m 3 /m 3 ) 0 0.00 0 0 0.01 0.01 θ s (m 3 /m 3 ) 0,584 0.586 0.542 0.508 0.323 0.323 Preglednica 7. Uporabljeni Van Genuchtenovi parametri za srednje težka tla (Tiktak et al., 2000: K sat iz SWCHPC, 2004). Table 7. Van Genuchten parameters used for moderate soil (Tiktak et al., 2000: K sat from SWCHPC, 2004). 1. horizont (TOP Soils – B09) 2. horizont (SUB Soils – O14) 3. horizont (SUB Soils – O14) 4. horizont (SUB Soils – O12) 5. horizont (SUB Soils – O1) 6. horizont (SUB Soils – O1) Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 104 Suha pros. gostota zem. Dry bulk density [kg/m 3 ] 1860 2000 2000 2000 Glina Clay [%] 6 2.5 2.5 2.5 Pesek Sand [%] 90 95 95 95 Organska snov Organic matter [%] 2 0 0 0 pH 8 7 7 7 Teksturni razred Texture class prod in pesek / Gravel and Sand prod in pesek / Gravel and Sand prod in pesek / Gravel and Sand prod in pesek / Gravel and Sand Debelina plasti Layer thickness [cm] 10 90 200 700 Preglednica 8. Parametri, uporabljeni v modelu PEARL, za železniški nasip. Table 8. Parameters used in model PEARL for railway dike. 1. horizont/horizon 1 2. horizont/horizon 2 3. horizont/horizon 3 4. horizont/horizon 4 λ (–) 0 0 0 0 K sat (m/d) 8 10 10 10 n (–) 2.167 2.167 2.167 2.167 α w (1/cm) 0.0224 0.0224 0.0224 0.0224 α d (1/cm) 0.0224 0.0224 0.0224 0.0224 θ s (m 3 /m 3 ) 0.01 0.01 0.01 0.01 θ s (m 3 /m 3 ) 0.379 0.353 0.353 0.353 Preglednica 9. Uporabljeni Van Genuchtenovi parametri za železniški nasip (Tiktak et al., 2000: K sat iz SWCHPC, 2004). Table 9. Van Genuchten parameters for railway dike (Tiktak et al., 2000: K sat from SWCHPC, 2004). 1. horizont (SUB Soils – O1) 2. horizont (SUB Soils – O1) 3. horizont (SUB Soils – O1) 4. horizont (SUB Soils – O1) Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 105 Preglednica 11. Absorpcija atrazina v odvisnosti od zemljine – K oc iz (ARS PPD, 2005). Table 11. Sorption of atrazine in dependence of soil – K oc from (ARS PPD, 2005). K oc K om peš čena ilovica (PI) / Sandy Loam (SaL) 57 33 meljasta ilovica (MI) / Silty Loam (SiL) 120 70 glina (G) / Clay (C) 87 50 pesek (P) / Sand (Sa) 90 52 Simulirali smo precedek atrazina in metolaklora na globini 10 m (najve čja globina, ki jo podpira model PEARL), kar pa ni dovolj globoko, saj podtalnica Ljubljanskega polja ponekod leži tudi 30 m pod površjem. Vendar so izra čuni pokazali, da se atrazin v globljih plasteh, kjer ni veliko organskih snovi in mikroorganizmov, skoraj ne razkraja, zato izra čunani rezultati dajejo dober približek dejanskim procesom. 3. REZULTATI IN RAZPRAVA Dobljeni rezultati (slika 3) so pokazali, da so tla na Ljubljanskem polju zaradi svoje plitvosti zelo slaba zaš čita podtalnice, saj zadržijo večjo koncentracijo atrazina samo v zgornji plasti tal (lahka tla do 29 cm, lahka in srednje težka tla do 36 cm in srednje težka tla do 65 cm). Ko pa atrazin doseže globino 1 m, se veže na tla samo v zelo majhnih koli činah, ostalo pa pronica proti podtalnici. Rezultati so pokazali tudi (slika 4), kako z globino pada koncentracija atrazina v precedku. Najve čji padec koncentracije je v plasteh nekaj centimetrov pod površjem. Naslednji padec se zgodi, ko atrazin preide iz zemljine v prod in pesek. Potem pa koncentracije v precedku z globino zelo po časi upadajo. To pomeni, da do podtalnice, ki je ponekod v globini 30 m, pridejo koncentracije, ki niso veliko manjše od koncentracij, ki so bile izra čunane za precedek na globini 10 metrov. Izra čunali smo tudi precedke na globini 10 m (sliki 5 in 6) za atrazin (za vse podlage) in metolaklor (za lahka tla). We simulated the atrazine and metolaclor percolate at a depth of 10 m (this is the maximum depth supported by the model), which is not deep enough, because the groundwater of the Ljubljansko polje in some places lies as much as 30 m deep. However, calculations have shown that the atrazine decomposes very slowly in deeper layers of soil where there is almost no organic matter or microorganisms. Thus the calculated results give a good approximation for the actual processes. 3. RESULTS AND DISCUSSION The results given on Figure 3 have shown that the shallowness of the soil of the Ljubljansko polje represents poor protection to its groundwater. A considerable amount of atrazine is retained in the top layer of soil: light soil up to 29 cm, light and moderate soil up to 36 cm, and moderate soil up to 65 cm. When the atrazine reaches the depth of 1 m, only small amounts of atrazine bind to the soil and the rest leaches into the groundwater. The results given on Figure 4 show how the concentration of the atrazine in the percolate decreases with depth. The most significant fall of the concentration happens in the layers just a few centimetres under the surface. The next fall happens when the atrazine passes from the soil into sand and gravel. After that the concentration in the percolate reduces slowly. It can be assumed that the concentrations in the percolate at 30 m depth are not much lower than the concentration at a depth of 10 m. We also calculated the percolates at 10 m depth (Figures 5 and 6) for atrazine (for all soils) and metolaclor (for light soil). Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 106 0 1 2 3 4 5 6 7 8 9 10 0.1 1 10 100 1000 10000 Koncentracija / Concentration [ µg/l] Globina / Depth [m] 13.05.1995 23.06.1995 13.01.1996 06.05.1996 Slika 3. Koncentracija atrazina v lahki in srednje težki zemljini na razli čnih globinah ob razli čnih časih. Figure 3. Concentration of atrazine in light and moderate soil at different depths and at different dates. V preglednici 12 so prikazane maksimalne koncentracije v precedku na globini 10 m. Prikazana je tudi frakcija atrazina, ki je dosegla podtalnico. Primerjali smo izra čunane vrednosti za razli čne tipe tal z izmerjenimi vrednostmi na merilnih mestih. Pokazalo se je, da obstaja neka korelacija. Težava je v tem, da so izmerjene vrednosti podane od 1992 naprej, na nekaterih mestih celo od leta 1995 naprej. Prva merjenja so bila izvedena s predolgimi presledki, zato je podatke težje primerjati. Pri simulaciji pa je najve čja napaka na njenem za četku zaradi privzetega za četnega pogoja, da je koncentracija atrazina v tleh in podtalnici enaka ni č. Podatki se razlikujejo tudi po tem, In Table 12 maximum concentrations in the percolate at a depth of 10 m are shown. Fractions of atrazine that leached into the groundwater are also shown. We compared the calculated results for different types of soil with values measured in the wells. The comparison showed some correlation between the measured and calculated data. The problem was that measured data were available only from 1992 onwards, and at some sampling sites even only from 1995 onwards. These first measurements were taken in long intervals, consequently it was hard to compare the data. In a simulation, however, the greatest mistake occurs at the beginning because of the assumed initial condition that the concentration of atrazine in soil and in the groundwater is zero. The Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 107 da za čnejo ra čunane vrednosti po zmanjšanju porabe atrazina mo čno padati, medtem ko merjene vrednosti le po časi padajo. Razlog temu je, da se pri ra čunanju upošteva samo plast na globini 10 m pod ra čunano površino, na merjene vrednosti pa vpliva širše prispevno obmo čje, s katerega se atrazin izceja v podtalnico. Kot primer bi lahko podal vodarno Hrastje, ki ima najbolj raztegnjeno prispevno obmo čje; to se pozna tudi pri izmerjenih vrednostih, saj so koncentracije atrazina v tej vodarni še vedno nad dovoljeno vrednostjo. difference is also that after a decreased application of atrazine the calculated values in the percolate start decreasing quickly, whereas the measured values decrease slowly. The reason for that is that in the calculated values only the layer at 10 m is considered, whereas the measured values are affected by a wide drainage basin from which the atrazine leaches into the groundwater. A good example of this is the Hrastje water pumping station, which has the most extended drainage basin. That is probably why concentrations in the water pumping station are still above the permitted values. 0 1 2 3 4 5 6 7 8 9 10 1 10 100 1000 Koncentracija / Concentration [ µg/l] Globina / Depth [m] 13.05.1995 23.06.1995 13.01.1996 06.05.1996 Slika 4. Koncentracija atrazina v precedku v lahki in srednje težki zemljini na razli čnih globinah ob razli čnih časih. Figure 4. Concentration of atrazine in the percolate of light and moderate soil at different depths and at different dates. Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 108 0 1 2 3 4 5 6 01.01.1989 01.01.1990 01.01.1991 01.01.1992 01.01.1993 01.01.1994 01.01.1995 01.01.1996 01.01.1997 01.01.1998 01.01.1999 01.01.2000 01.01.2001 01.01.2002 01.01.2003 01.01.2004 Koncentracija / Concentration µg/l Slika 5. Koncentracija atrazina v precedku v lahkih in srednje težkih tleh na globini 10 m. Figure 5. Concentration of atrazine in percolate in light and moderate soil at a depth of 10 m. 0 0.05 0.1 0.15 0.2 0.25 01.01.1989 01.01.1990 01.01.1991 01.01.1992 01.01.1993 01.01.1994 01.01.1995 01.01.1996 01.01.1997 01.01.1998 01.01.1999 01.01.2000 01.01.2001 01.01.2002 01.01.2003 01.01.2004 Koncentracija / Concentration µg/l Slika 6. Koncentracija metolaklora v precedku v lahkih in srednje težkih tleh na globini 10 m. Figure 6. Concentration of metolaclor in percolate in light and moderate soil at a depth of 10 m. Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 109 Preglednica 12. Maksimalne koncentracije atrazina v precedku na globini 10 m. Table 12. Maximum concentrations of atrazine in the percolate at 10 m depth. Maksimalna koncentracija Maximum concentration Datum maksimalne koncentracije Date of maximum concentration Frakcija atrazina, ki je pronicala v podtalnico Fraction of atrazine leached in groundwater [ µg/l] [%] Lahka tla Light soil 18.51 18.11.1991 8.9 Lahka in srednje težka tla Light and moderate soil 5.83 16.12.1991 3.2 Srednje težka tla Moderate soil 1.98 06.11.1993 1.1 Železniški nasip Railway dike 96.75 12.08.1991 67.8 Da bi se prepri čali o uporabnosti modela, smo simulirali tudi distribucijo metolaklora po zemljini. Metolaklor smo izbrali, ker se je uporabljal v približno istih koli činah kot atrazin, vendar pa ga v podtalnici niso zaznali. Rezultati so potrdili, da je metolaklor veliko manj mobilen kot atrazin, saj je model za lahka tla izra čunal do stokrat manjše vrednosti (slika 6) kot za atrazin. Vendar se te vrednosti zelo hitro spremenijo (pove čajo ali zmanjšajo) ob spremembi koeficientov, ki najbolj vplivajo na mobilnost pesticidov. Ti koeficienti so absorpcija na organsko snov (K om ), razpolovni čas in topnost v vodi. V literaturi smo za atrazin našli koeficiente K om v razli čnih zemljinah, ki so se med seboj razlikovali tudi za faktor 3. Pri atrazinu so izra čunane koncentracije atrazina v lahkih tleh tako visoke zaradi tega, ker je za zemljino, ki se nahaja na lahkih tleh Ljubljanskega polja, koeficient K om najmanjši, kar pomeni, da se pesticid na tako zemljino ne veže, ampak pronica v podtalje. Za metolaklor pa takih podatkov nismo našli. Morda je tudi to razlog za tolikšno razliko med koncentracijama. 4. ZAKLJU ČKI Slabost modela je ta, da ra čuna samo do globine 10 m. Vseeno menimo, da je model uporaben tudi za globlje podtalnice, saj se izra čunana koncentracija atrazina v precedku To check the applicability of the model we then simulated the distribution of metolaclor in the soil. Metolaclor was chosen because it was used in the same amounts as atrazine, but it was not found in the wells of the water pumping stations. Results confirmed that metolaclor is less mobile than atrazine. The calculated values (Figure 6) of metolaclor in percolate were up to a hundred times smaller than those of atrazine. But these values can change quickly (increase or decrease) by changing the coefficients that mostly influence the pesticide mobility. These coefficients include sorption on organic matter (K om ), half life, and solubility in water. In the literature, we found coefficients K om for atrazine in different soils; they vary up to a factor of 3. The calculated atrazine concentrations in light soil were found so high because coefficient K om for such soil is the lowest, meaning that the pesticides do not bound to the soil, but percolate into the groundwater. For metolaclor, no such data were found. Maybe that is the reason for such a discrepancy in percolate concentrations of atrazine and metolaclor. 4. CONCLUSIONS The weakness of the model is that the maximum depth of the calculation is 10 m. Nevertheless, we believe that the model is suitable for deeper groundwater, because the concentration in the percolate at a depth of 7.5 Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 110 na globini 7,5 m skoraj ne razlikuje od koncentracije na 10 m (glej sliko 4). Nastane samo časoven zamik zaradi potovanja pesticida po zemljini navzdol. Model se lahko uporabi za prvo oceno obnašanja pesticidov v tleh, preden se jih registrira in za čne uporabljati. Kvaliteta simulacije modela je odvisna od kvalitete vhodnih podatkov, ki jih je treba dolo čiti z laboratorijskimi preiskavami in terenskimi meritvemi. Na Ljubljansko polje je bilo po ocenah od leta 1991 do 1995 letno nanešeno 450 kg atrazina. Dinami čne zaloge podtalnice se po ocenah gibljejo med 3 in 4 m 3 /s, to je 126.144.000 m 3 /leto. Da se z atrazinom do mejne vrednosti 0,1 µg/l onesnaži 126.144.000 m 3 vode, je dovolj že 12,6 kg atrazina, kar je 2,8 % od 450 kg. Z modelom PEARL smo izra čunali, da do podtalnice skozi lahka tla pride 8,9 % atrazina, skozi lahka in srednje težka tla 3,2 %, skozi srednje težka tla 1,1 % atrazina in skozi železniški nasip 67,8 % atrazina. V podtalju ni intenzivnega mešanja vode, zato so bile vrednosti atrazina v vodarnah višje, kot pa bi bile v primeru popolnega premešanja. Iz tega lahko sklepamo, da je model kar dobro izra čunal odstotek izcejanja atrazina v podtalnico. Model PEARL omogo ča ocenjevanje posledic uporabe razli čnih vrst pesticidov na onesnaženje podtalnice in je kot tak dobro orodje za oceno razli čnih ukrepov. ZAHV ALA Avtor se zahvaljuje prof. dr. Mitji Brillyju in prof. dr. Branetu Mati či ču za strokovno pomo č. Za podatke, ki jih je uporabil pri pripravi članka, se zahvaljuje Kmetijskemu inštitutu Slovenije in Agenciji RS za okolje. m is almost identical to the concentration at 10 m (see Figure 4). The difference is only in terms of time when the concentration reaches the maximum. The reason for that is the travel of a pesticide through soil. The model can be used for a first evaluation of pesticide mobility before they are registered and used. Quality of simulation is depended upon the quality of input data, which must be defined with laboratory analysis and field measurements. It has been evaluated that from 1991 to 1995, 450 kg of atrazine was applied yearly to the fields of the Ljubljansko polje. According to evaluations, dynamic groundwater storages are in a range of 3–4 m 3 /s, which amounts to 126,144,000 m 3 /year. For contamination of 126,144,000 m 3 of groundwater with atrazine up to the boundary value, which is 0.1 µg/l, 12.6 kg of atrazine is enough, this being just 2.8 % of 450 kg. With the PEARL model we calculated the amounts of atrazine, which leach into the groundwater. Through light soil, 8.9 % of the whole application percolates into the groundwater, through light and moderate soil 3.2 %, through moderate soil 1.1 %, and through the railway dike 67.8 % of atrazine. In the aquifer, intensive mixing of water is not present, and because of that values of atrazine in water plants were higher than they would be in the case of absolute mixing. Therefore we can assume that the model yielded quite a good estimation of the atrazine leaching into the groundwater. ACKNOWLEDGMENTS The author would like to thank Prof. Mitja Brilly and Prof. Brane Mati či č for their professional support. For the data used for the preparation of the article the author would like to thank the Agricultural Institute of Slovenia and the Environmental Agency of the Republic of Slovenia. Klemen či č, S.: Uporaba modela PEARL za simulacijo emisije pesticidov v podtalnico Ljubljanskega polja – Usage of model PEARL for simulation of pesticide emission into the Ljubljansko polje groundwater © Acta hydrotechnica 22/37 (2004), 95–111, Ljubljana 111 VIRI – REFERENCES Andjelov et al. (2005). Podtalnica Ljubljanskega polja. Ljubljana, 251 p. ARS PPD (2005). Agriculture Research Service Pesticide Properties Database. http://www.ars.usda.gov/Services/docs.htm?docid=6433 (20. 1. 2004) Leistra, M., van der Linden A. M. A., Boesten, J. J. T. I., Tiktak, A. & van der Berg, F. (2001). PEARL model for pesticide behaviour and emissions in soil–plant systems – Descriptions of the processes in FOCUS PEARL version 1.1.1. Research Report. Wageningen. RIVM, ALTERRA Green World Research, Wageningen University and Research Center. http://www.alterra-research.nl/pls/portal30/docs/folder/pearl/pearl/pdf/pearlthe.pdf (20. 1. 2004) Simon či č, A., Zupan, M., Knapi č, M., Vrš čaj, B., Suhadolc, M., Šporar, M., Rupreht, J., Bukovec, P. & Ti č, I. (2004). Izdelava meril za pripravo postopkov in programov uporabe fitofarmacevtskih sredstev na obmo čjih z omejeno uporabo (Drawing-up of criteria for preparation of procedures and programs concerning plant-protection products in areas of limited use). Final Report. Žalec. Inštitut za hmeljarstvo, gozdarstvo in prehrano RS, Univerza v Ljubljani, Biotehni čna fakulteta, Kmetijski inštitut Slovenije. (In Slovenian) SWCHPC (2004). Soil Water Characteristics Hydraulic Properties Calculator. Washington DC, USDA Agricultural Research Service. Tiktak, A., van den Berg, F., Boesten, J. J. T. I., van Kraalingen, D., Leistra M. & van der Linden A. M. A. (2000). Manual of FOCUS PEARL version 1.1.1. Research Report. Wageningen. RIVM, ALTERRA Green World Research, Wageningen University and Research Center. http://www.alterra-research.nl/pls/portal30/docs/folder/pearl/pearl/pdf/pearlman.pdf (20. 1. 2004) Naslov avtorja – Author's Address Sašo Klemen či č Univerza v Ljubljani – University of Ljubljana Fakulteta za gradbeništvo in geodezijo – Faculty of Civil and Geodetic Engineering Jamova 2, SI-1000 Ljubljana, Slovenia E-mail: saso.klemencic@siol.net