© Author(s) 2020. CC Atribution 4.0 License Well-preserved cuticle of Atherfieldastacus magnus (Decapoda, Glypheida) from the Aptian of Mexico Dobro ohranjena kutikula raka Atherfieldastacus magnus (Decapoda, Glypheida) iz aptijskih plasti v Mehiki Oscar GONZÁLEZ-LEÓN1, Josep A. MORENO-BEDMAR2, Ricardo BARRAGÁN-MANZO2 & Francisco J. VEGA2 1Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, CDMX 04510, México, and Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54070 México; e-mail: oscar.gonzalez@unam.mx 2Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX 04510, Mexico; e-mails: josepamb@geologia.unam.mx, ricardor@geologia.unam.mx, vegver@unam.mx Prejeto / Received 9. 12. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Pleocyemata, Mecochiridae, cuticular structure, Lower Cretaceous, Chihuahua, Mexico Ključne besede: Pleocyemata, Mecochiridae, kutikula, spodnja kreda, Chihuahua, Mehika Abstract The cuticle structure of fossil decapod crustaceans is an important tool, not only for palaeocological and taphonomic interpretations, but also as a potential way to characterise systematically genera and even species the cuticle of which has not been severely altered by diagenetic processes. Localities with abundant decapod crustacean remains can be interpreted either as reflecting mass mortality events or just simple accumulations of exuviae, on the basis of completeness and comparison of cuticle structures between specimens of the same species from different localities. Association with anoxic events by microfacies analyses can offer clues to explain the unusual abundance of decapod crustacean remains. This is the case for the Early Cretaceous lobster Atherfieldastacus magnus (M’Coy, 1849), which is found in large numbers in different Lower Cretaceous (mainly Aptian) lithostratigraphic units across the globe. In this case, we document the well-preserved cuticle structure of specimens from the upper Aptian of Chihuahua (Mexico), preserved three-dimensionally, mainly in concretions, which were studied in different transverse sections showing the cuticle in diverse portions of the lobster body. Thin cuticle layers show the typical crustacean cuticular structure that suggest these are corpses preserved in an anoxic environment. Izvleček Analiza strukture kutikule fosilnih deseteronožcev je pomembno orodje ne le za paleoekološke in tafonomske interpretacije, ampak tudi kot možen način za sistematsko opredelitev rodov in celo vrst, v kolikor kutikula ni diagenetsko spremenjena. Na podlagi ohranjenosti in primerjave strukture kutikule med primerki iste vrste z različnih nahajališč razlikujemo nahajališča s pogostimi ostanki rakov. Ta lahko kažejo na množičen pogin ali zgolj na akumulacije levov deseteronožcev. V povezavi s prepoznanimi anoksičnimi dogodki v mikrofacialnih analizah nam lahko metoda služi za razlago množičnih nakopičenj fosilnih deseteronožcev na nekaterih lokacijah. Tak primer je zgodnjekredni jastog Atherfieldastacus magnus (M'Coy, 1849), katerega številne ostanke najdemo v različnih litostratigrafskih enotah spodnje krede (predvsem v aptiju) po vsem svetu. V prispevku predstavljamo dobro ohranjeno strukturo kutikule osebkov iz zgornjega aptija iz nahajališča Chihuahua (Mehika). Vzorce tridimenzionalno ohranjene kutikule primerkov iz konkrecij smo pregledali na različnih prečnih presekih z različnih delov telesa jastoga. Tanke plasti kutikule z značilno strukturo kažejo, da gre v našem primeru za trupla, ki so se ohranila v anoksičnem okolju. GEOLOGIJA 63/1, 39-46, Ljubljana 2020 https://doi.org/10.5474/geologija.2020.004 40 Oscar GONZÁLEZ-LEÓN, Josep A. MORENO-BEDMAR, Ricardo BARRAGÁN-MANZO, & Francisco J. VEGA Introduction An interesting factor of the study of decapod crustaceans is the review and examination of their cuticule structure. At most localities, cuticle structure is obscured by mineral replacement of the original carbonate, but modified by diagenet- ic processes as well (Vega et al., 2005). In previous studies (e.g., Dennell, 1960; Hegdahl et al., 1977a, b; Roer & Dillaman, 1984), cuticle structure of Recent taxa has been studied, while other authors have demonstrated the presence of cuticle in the fossil record (e.g., Neville & Berg, 1971; Feldmann & Tshudy, 1987; Vega et al., 1994, 2005; Feld- mann & Gaździcki, 1998; Guinot & Breton; 2006; González-León et al., 2016, 2018, among others). Studies of the functional morphology and tapho- nomic implications have been addressed by vari- ous authors (Schäfer, 1951; Guinot, 1979; Plotnick et al., 1988; Savazzi, 1988; Haj & Feldmann, 2002; Waugh et al., 2004). The use of this structure for taxonomic purposes is complicated because there are only few well-established characters. With this in mind, Waugh et al. (2009) analysed the morphological characters of some decapod crus- taceans for possible future phylogenetic analysis. Decapod crustaceans rank amongst the most common animals inhabiting a number of differ- ent environments, both at the present day (Abele, 1974) and in the past (Klompmaker et al., 2013; Schweitzer & Feldmann, 2014). The calcified cu- ticle of decapod crustaceans comprises the hard exoskeleton of the animal and is composed of three layers (Haj & Feldmann, 2002); these lay- ers have been documented in some fossil decapod crustaceans as well (Neville & Berg, 1971; Taylor, 1973; Dalingwater, 1977; Vega et al., 1994, 1998; Feldmann & Gaździcki, 1998; Haj & Feldmann, 2002; Waugh & Feldmann, 2003; Vega et al., 2005; Waugh et al., 2006; Amato et al., 2008; Waugh et al., 2009; González-León et al., 2016, 2018). The decapod cuticle has a very distinctive structure when observed in cross section. In spite of the fact that decapod crustacean cuticle is frequently pre- served in material from Mesozoic and Cenozoic shelf deposits (Vega et al., 2005), very few efforts have been made as to how to distinguish corpses from exuviae. For this reason, it is important to recognise and characterise the microstructure as a potential tool in preliminary identification of, at least, major decapod crustacean groups and taphonomic interpretations (Feldmann & Tshudy, 1987; Vega et al., 1994; Klompmaker et al., 2015). The present paper analyses and complements information on cuticule structure of numerous specimens of Atherfieldastacus magnus that are preserved in concretions from the upper Aptian La Peña Formation in Chihuahua State (northern Mexico). Locality and stratigraphy The main locality is in the Cerro Chino region (Chihuahua State), close to the towns of Coyame del Sotol and Cuchillo Parado (Fig. 1). Specimens were collected from upper Aptian strata assigned to the La Peña Formation (Fig. 2); for details on these localities and local stratigraphy, reference is made to Ovando-Figueroa et al. (2017) and González-León et al. (2018). Fig. 1. Locality map showing the fossil site in northern Mexico (Chihuahua State) (modified from González-León et al., 2018). 41Well-preserved cuticle of Atherfieldastacus magnus (Decapoda, Glypheoidea) from the Aptian of Mexico Material and methods About 20 calcareous concretions were collect- ed near Abuja Colorada, in a fossiliferous section dominated by shale. Specimens recorded herein were recovered from concretions of varying size, between 3 and 12 cm in length (Fig. 3) and were prepared with a Paleotools ME-9100 pneumatic percutor and subsequently sectioned transversely with a diamond saw blade and glued to microscop- ic slides with resin, which were then polished by hand, using Kemet polishing abrasive. A Zeiss po- larising microscope, with an adapted Canon EOS Mark I camera, was used to take numerous images of cuticule structure. Thin sections and complete specimens are deposited in the Colección Nacion- al de Paleontología “María del Carmen Perrilli- at”, Instituto de Geología, Universidad Nacional Autónoma México (abbreviation: IGM). Systematic palaeontology Order Decapoda Latreille, 1802 Suborder Pleocyemata Burkenroad, 1963 Infraorder Glypheida Zittel, 1885 Superfamily Glypheoidea von Zittel, 1885 Family Mecochiridae Van Straelen, 1925 Genus Atherfieldastacus Simpson in Robin, Charbonnier, Merle, Simpson, Petit & Fernandez, 2016 Fig. 2. Stratigraphical sections of outcrops of upper Aptian strata in Chihuahua State, showing fossiliferous beds (modi- fied from González-León et al., 2018). Fig. 3. Atherfieldastacus magnus (M’Coy, 1849), Abuja Colorada Canyon section (locality 1), Chihuahua State, northern Mexico; a near-complete specimen (IGM 9478) preserved in a calcareous nodule. Anatomical abbreviations are as follows: a = branchiocardiac groove; ac =antennal carina; b = antennal groove; c = post-cervical groove; cd = cardiac groove; e1e = cervical groove; gc = gastro-orbital carina; hr = hepatic ridge; i = inferior groove; p1-2 = pereiopods; r1-r3 = branchial ridges; s2-6 = pleonal somites; t = telson. Scale bar in cm. Photograph: Josep A. Moreno-Bedmar (modified from González-León et al., 2018). 42 Oscar GONZÁLEZ-LEÓN, Josep A. MORENO-BEDMAR, Ricardo BARRAGÁN-MANZO, & Francisco J. VEGA Fig. 4. A-G, Several views of thin sections of Atherfieldastacus magnus (M’Coy, 1849) from the upper Aptian of Chihuahua State, northern Mexico. Abbreviations: Endo = endocuticle; Epi = epicuticle; Exo = exocuticle. 43Well-preserved cuticle of Atherfieldastacus magnus (Decapoda, Glypheoidea) from the Aptian of Mexico Fig. 5. Several views of thin sections of Atherfieldastacus magnus (M’Coy, 1849) from the upper Aptian of Chihuahua State, northern Mexico. Abbreviations: Biot = bioturbation; Endo = endocuticle; Epi = epicuticle; Exo = exocuticle; Pca = pore channels; Pyr = pyrite; Qz = quartz. Scale bars in µm. 44 Oscar GONZÁLEZ-LEÓN, Josep A. MORENO-BEDMAR, Ricardo BARRAGÁN-MANZO, & Francisco J. VEGA Type species: Meyeria magna M’Coy, 1849, by original designation. Other included species: Atherfieldastacus ra- pax (Harbort, 1905) and A. schwartzi (Kitchin, 1908). Atherfieldastacus magnus (M’Coy, 1849) (Fig. 3) Diagnosis: See González-León et al. (2018). Material examined: Specimens in 22 calcare- ous concretions, of which eight were sectioned for analysis of cuticular structure; in total, 30 thin sections of different portions of the lobster body were obtained. Cuticle structure Analysis and discussion: In our analysis of cut- icule structure, it was possible to recognise clear- ly the three cuticle layers. In some cases, only a single layer was discernible. Elements of cuticule microstructure, such as pore canals, were also observed (Figs. 4, 5). Previously, such features had been recorded by Feldmann & Tshudy (1987), Vega et al. (1994) and González-León et al. (2016, 2018), both for other species and for Atherfieldas- tacus magnus, but recrystallised cuticles do not show clear layers (González-León et al., 2016). The newly collected specimens clearly pres- ent three discrete layers of cuticle. The first layer observed is the epicuticle (epi), which normally has a thin bilaminar structure; this could not be observed. Below the epicuticle is the second layer or exocuticle (exo), composed of chitin protein fi- bres, stacked in layers with variable orientations (Green & Neff, 1972; Haj & Feldmann, 2002). This layer is altered, but still discernible in almost all specimens studied (Fig. 4). The microstructure is replaced by sparry calcite, as seen in Figures 4A-C and G, although some fibres can still be not- ed (Fig. 4E). The most strongly calcified layer is the third one; this is the endocuticle (endo) which presents broad lamellae in the outer portion and thin laminations on the inner part (Feldmann & Tshudy, 1987). Vertical laminations within the endocuticle were noted in specimens from Chi- huahua and interpreted as pore channels (Figs. 4A, E; 5H, K). A pigmented layer at the top of the endocuticle could also be observed (Fig. 4D-F). This might be associated with the original pig- ment (quinona), as previously recognised by Tay- lor (1973) and Vega et al. (1994). An example of how the microstructure and boundaries between layers can be altered by diagenetic processes was observed as well (Fig. 4G). The epicuticle can be clearly recognised (Figs. 4B, E; 5F, G, I, L), but only as a single layer, not as a double lay- er, which is typical. The membranous layer was not preserved, similar to what has been recorded for other extinct species (Roer & Dillaman, 1984; Vega et al., 1994, 2005; Haj & Feldmann, 2002). Conclusions The completeness of cuticule structure (espe- cially the basis of the endocuticle) and the 3-D preservation and articulation of carapaces with appendages suggest that the Chihuahua spec- imens represent corpses that were accumulat- ed during anoxic events. The presence of small pyrite crystals in the matrix and larger ones in appendages (Fig. 5B, C, J) supports such an in- terpretation, along with bioturbations observed in some thin sections; these were possibly caused by scavengers that were feeding on cuticle re- mains and other organic matter (Fig. 5A). Abun- dant pyrite has also been observed in specimens of Atherfieldastacus magnus from the Aptian of Colombia (González-León et al., 2016). This sug- gests that localities around the world, where A. magnus is abundant, may represent anoxic events that either killed the lobster populations and/or preserved the remains of this globally distribut- ed species during the Early Cretaceous. Acknowledgements We are grateful for support from the Universidad Nacional Autónoma de México, through Dirección General de Asuntos del Personal Académico, with project PAPIIT-IN107617. Our sincere thanks go to Rok Gašparič for kindly invitating us to participate in this special volume, to Torrey Nyborg (Loma Linda University, California, USA) and Guenter Schweigert (Staatliches Museum für Naturkunde, Stuttgart, Germany) and John Jagt (Natuurhistorisch Museum Maastricht, The Netherlands) for suggestions on how to improve an earlier version of the typescript and to Marco A. Argáez Martínez (Invertebrate Paleontology Laboratory, Instituto de Geología, Universidad Nacional Autónoma de México) who produced all thin sections. References Abele, L.G. 1974: Species diversity of decapod crustaceans in marine habitats. Ecology, 55: 156–161. Amato, C., Waugh, D.A., Feldmann, R.M. & Schweitzer, C.E. 2008: The effect of calcificati- on patterns on cuticle density in crabs: a key to lifestyle. Journal of Crustacean Biology, 28/4: 587–595. https://doi.org/10.1651/08-2985.1 45Well-preserved cuticle of Atherfieldastacus magnus (Decapoda, Glypheoidea) from the Aptian of Mexico Burkenroad, M.D. 1963: The evolution of the Eucarida (Crustacea, Eumalacostraca), in re- lation to the fossil record. Tulane Studies in Geology, 2: 3–17. Dalingwater, J.E. 1977: Cuticular ultrastruc- ture of a Cretaceous decapod crustacean. Geological Journal, 12: 25–32. https://doi. org/10.1002/gj.3350120103 Dennell, R. 1960: Integument and exoskeleton. In: Waterman, T.H. (ed.): The physiology of Crustacea. New York, Academic Press, 449–472. Feldmann, R.M. & Gaździcki, A. 1998: Cuticular ultrastructure of fossil and living homo- lodromiid crabs (Decapoda: Brachyura). Acta Palaeontologica Polonica, 43/1: 1–19. Feldmann, R.M. & Tshudy, D. 1987: Ultrastructure in cuticle from Hoploparia stokesi (Decapoda: Nephropidae) from the López de Bartodano Formation (Late Cretaceous-Paleocene) of Seymour Island, Antarctica. Journal of Paleontology, 61: 1194–1203. González-León, O., Patarroyo, P., Moreno- Bedmar, J.A., Nyborg, T. & Vega, F.J. 2016: A new record and cuticular structure of Meyeria magna (Decapoda, Mecochiridae) from the lower Albian (Lower Cretaceous) of Colombia. Cretaceous Research, 57: 342–349. https://doi.org/10.1016/j.cretres.2015.08.006 González-León, O., Moreno-Bedmar, J. A., Vega, F.J., Oviedo-García, A. & Franco-Rubio, M. 2018: Review of Meyeria mexicana Rathbun, 1935 (Glypheidea, Mecochiridae) from the upper Aptian (Cretaceous) of Chihuahua, northern Mexico. Cretaceous Research, 91: 111–125. https://doi.org/10.1016/j. cretres.2018.05.009 Green, J.P. & Neff, M.R. 1972: A survey of the fine structure of the integument of the fiddler crab. Tissue and Cell, 4: 137–171. https://doi. org/10.1016/S0040-8166(72)80013-2 Guinot, D. 1979: Données nouvelles sur la morphologie, la phylogenèse et la taxono- mie des Crustacés Décapodes Brachyoures. Mémoires du Muséum national d’Histoire na- turelle Paris, A. Zoologie, 112: 3–354. Guinot, D. & Breton, G. 2006: Lithophylax tri- geri A. Milne-Edwards & Brocchi, 1879 from the French Cretaceous (Cenomanian) and placement of the family Lithophylacidae Van Straelen, 1936 (Crustacea, Decapoda, Brachyura). Geodiversitas, 28: 591–633. Haj, A.E. & Feldmann, R.M. 2002: Functional morphology and taxonomic significance of a novel cuticular structure in Cretaceous rani- nid crabs (Decapoda: Brachyura: Raninidae). Journal of Paleontology, 76/3: 472–485. https:// doi.org/10.1017/S0022336000037318 Harbort, E. 1905. Die Fauna der Schaumburg- Lippeschen Kreidemulde. Abhandlungen der Preussischen geologischen Landesanstalt, neue Folge, 14: 10–22. Hegdahl, T., Silness, J. & Gustavsen, E. 1977a: The structure and mineralization of the ca- rapace of the crab (Cancer pagurus L.). 1. The endocuticle. Zoologica Scripta, 6: 89–99. Hegdahl, T., Gustavsen, E. & Silness, J. 1977b: The structure and mineralization of the carapace of the crab (Cancer pagurus L.). 2. The exo- cuticle. Zoologica Scripta, 6: 101–105. https:// doi.org/10.1111/j.1463-6409.1978.tb00789.x Kitchin, F. L. 1908. The invertebrate fauna and palaeontological relations of the Uitenhage Series. Annals of the South Africa Museum, 7: 212–268. Klompmaker, A.A., Hyžný, M. & Jakobsen, S.L. 2015: Taphonomy of decapod crusta- ceans and its effect on the appearance as exemplified by new and known taxa from the Cretaceous-Danian crab Caloxanthus. Cretaceous Research, 55: 141–151. https://doi. org/10.1016/j.cretres.2014.11.011 Klompmaker, A.A., Schweitzer, C.E., Feldmann, R.M. & Kowalewski, M. 2013: The influence of reefs on the rise of Mesozoic marine cru- staceans. Geology, 41: 1179–1182. https://doi. org/10.1130/G34768.1 Latreille, P.A. 1802: Histoire naturelle, général et particulière des crustacés et des insectes, vol. 3. F. Dufart, Paris, 468 pp. M’Coy, F. 1849: On the classification of some British fossil Crustacea, with notices of new forms in the University Collection at Cambridge. The Annals and Magazine of Natural History, 4/2: 330–335. Neville, A.C. & Berg, C.W. 1971: Cuticle ultrastru- cture of a Jurassic crustacean (Eryma stric- klandi). Palaeontology, 14/2: 201–205. Ovando-Figueroa, J.R., Moreno-Bedmar, J.A., Minor, K.P., Franco-Rubio, M., Oviedo, A., Patarroyo, P. & Robert, E. 2017: Ammonite taxonomy and biostratigraphy for the upper Aptian-lower Albian (Lower Cretaceous) of Cerro Chino, Chihuahua State, northeast Mexico. Cretaceous Research, 82: 109–137. https://doi.org/10.1016/j.cretres.2017.10.007 Plotnick, R.E., Baumiller, T. & Wetmore, K.E. 1988: Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean tapho- nomy. Palaeogeography, Palaeoclimatology, 46 Oscar GONZÁLEZ-LEÓN, Josep A. MORENO-BEDMAR, Ricardo BARRAGÁN-MANZO, & Francisco J. VEGA Palaeoecology, 63/1-3: 27–43. https://doi. org/10.1016/0031-0182(88)90089-2 Robin, N., Charbonnier, S., Merle, D., Simpson, M., Petit, G. & Fernandez, S. 2016. Bivalves on mecochirid lobsters from the Aptian of the Isle of Wight: snapshot on an Early Cretaceous palaeosymbiosis. Palaeogeography, Palae- oclimatolology, Palaeoecology, 453: 10–19. https://doi.org/10.1016/j.palaeo.2016.03.025 Roer, R.D. & Dillaman, R.M. 1984: The structu- re and calcification of the crustacean cuticle. American Zoologist, 24: 893–909. Savazzi, E. 1988: Functional morphology of the cuticular terraces in Ranina (Lophoranina) (brachyuran decapods, Eocene of N.E. Italy). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 162: 231–243. Schäfer, W. 1951: Fossilisations-Bedingungen brachyurer Krebse. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 485: 221–238. Schweitzer, C.E. & Feldmann, R.M. 2014: Lobster (Decapoda) diversity and evolu- tionary patterns through time. Journal of Crustacean Biology, 34/6: 820–847. https:// doi.org/10.1163/1937240X-00002288 Taylor, B.J. 1973: The cuticle of Cretaceous ma- crurous Decapoda from Alexander and James Ross islands. British Antarctic Survey Bulletin, 35: 91–100. Van Straelen, V. 1925: Contribution à l’étude des crustacés décapodes de la période Jurassique. Mémoires de l’Académie royale de Belgique, Classe des Sciences, 2/7: 1–462. Vega, F.J., Feldmann, R. M. & Dávila-Alcocer, V.M. 1994: Cuticular structure in Costacopluma mexicana Vega and Perrilliat, from the Difunta Group (Maastrichtian) of northe- astern Mexico, and its paleoenvironmen- tal implications. Journal of Paleontology, 68/5: 1074–1081. https://doi.org/10.1017/ S0022336000026688 Vega, F.J., Dávila-Alcocer, V.M. & Lehman, T. 1998: Cuticle structure and taphonomy of Dakoticancer australis Rathbun; paleoecolo- gical implications for a Late Cretaceous shore in northeast Mexico. In: Geological Society of America, South-Central Section, El Paso, Texas, Abstracts with Program: 34. Vega, F.J., Dávila-Alcocer, V.M. & Filkorn, F.H. 2005: Characterization of cuticle structure in Late Cretaceous and Early Tertiary deca- pod Crustacea from Mexico. Bulletin of the Mizunami Fossil Museum, 32: 37–43. Waugh, D.A. & Feldmann, R.M. 2003: Cuticle microstructure as a new tool in syste- matic paleontology. Contributions to Zoology, 72/2-3: 191–193. https://doi. org/10.1163/18759866-0720203025 Waugh, D.A., Feldmann, R.M., Thomas, B.R., Crawford, R. S. & Jakobsen, S. L. 2004: Epibiont preservational and observatio- nal bias in fossil marine decapods. Journal of Paleontology, 78/5: 961–972. https://doi. org/10.1666/0022-3360(2004)078E2.0.CO;2 Waugh, D.A., Feldmann, R.M., Schroeder, A.M. & Mutel, M.H.E. 2006: Differential cuticle ar- chitecture and its preservation in fossil and extant Callinectes and Scylla claws. Journal of Crustacean Biology, 26/3: 271–282. https:// doi.org/10.1651/S-2692.1 Waugh, D.A., Feldmann, R.M. & Schweitzer, C.E. 2009: Systematic evaluation of raninid cuti- cle microstructure. Bulletin of the Mizunami Fossil Museum, 35: 15–41. Zittel, K.A. von 1885: Handbuch der Palaeontologie, 1. Abtheilung Palaeozoologie, Band 2, Mollusca and Arthropoda. München/ Leipzig, R. Oldenbourg, 525–721.