
Reuse Strategies

IN SOFTWARE ENGINEERING

Razprave

Hannu Jaakkola, Boštjan Brumen1, Jyrki Kukkonen2 
Tampere University of Technology, Pori, Finland 

RO.Box 300, FIN 28101 Pori, Finland

Abstract
REUSE STRATEGIES IN SOFTVVARE ENGINEERING
Reuse must be seen vvithin a broad scope in an organization. Independently on the application level, there is always 
puestion on the changes in the existing processes, never on the technology itself. We can separate different levels: 
the organizational level, process level and practices level. The lovvest level - practices - includes generally accepted 
and adopted ways of vvorking in an organization. The view of reuse is technical and component oriented. The proces s 
level specifies the usage of these practices in an organization. In this čase the processes are improved to support 
the reuse approach in different Ufe cycle phases of the product. Higher-level abstractions than single components 
are the objects of reuse. The highest level in the hierarchy - organizational reuse - builds organizational culture and 
at the same time integrates processes and practices into daily routines. To be successful a company is expected 
to be a learning organization. Learning in this context means an ability to accept best practices both from inside and 
outside the organization. A company needs a reuse infrastructure to apply and process the use of these practices 
at an organizational level. Reuse is supported by an infrastructure that provides processes of early detection of the 
reusability (with reuse) and reuse opportunities (for reuse). This paper includes a discussion on the role of reuse 
in software development organizations. The discussion covers at first general aspects in the topič and the reuse 
strategy development. Examples of different levels of reuse are introduced.

Izvleček:
Na ponovno uporabo znotraj organizacije je vedno potrebno gledati z več vidikov. Vprašanje sprememb se vedno 
nanaša na obstoječe procese, nikoli na tehnologijo samo, neodvisno od aplikacijskega nivoja. Ločimo lahko tri 
nivoje: organizacijskega, procesnega in rešitvenega. Najnižji nivo - rešitveni - obsega splošno sprejete in upora
bljene načine dela znotraj organizacije. Pogled na ponovno uporabo je tehnično in komponentno orientiran. Proces
ni nivo določa uporabo rešitev v organizaciji. Procesi se izboljšujejo tako, da se omogoči ponovna uporaba v različnih 
življenjskih ciklih proizvoda. Višji nivo abstrakcije kot posamezna komponenta predstavljajo objekti ponovne upora
be. Najvišji nivo v hierarhiji - organizacijska ponovna uporaba - goji organizacijsko kulturo ponovne uporabe in hkrati 
uvaja procese in rešitve v dnevno rutino. Od uspešnega podjetja se pričakuje, da je v procesu učenja. Učenje v tem 
kontekstu pomeni zmožnost sprejeti najboljše rešitve tako znotraj kot izven organizacije. Podjetje potrebuje in
frastrukturo ponovne uporabe, da lahko na organizacijskem nivoju uporablja najboljše rešitve. Ponovna uporaba 
naj bo podprta z infrastrukturo, ki omogoča procese zgodnjega odkrivanja možnosti ponovne uporabe (t.i. »with 
reuse«) in priložnosti za ponovno uporabo (t.i. »for reuse«). V članku predstavljamo diskusijo o pomenu ponovne 
uporabe v podjetjih, ki razvijajo programsko opremo. V začetku so prikazani splošni pogledi na ponovno uporabo, 
nato sledi strategija razvoja ponovne uporabe. Predstavljeni so primeri različnih nivojev ponovne uporabe.

m mu

1. Introduction
The terms object oriented and reuse are usually tight- 
ly connected to each other. In code reuse this con- 
nection is reasonably clear. Object-Oriented architec- 
ture implements Solutions needed for effective reuse: 
encapsulation, controlled service interfaces, inherit- 
ance, dynamic binding and polymorphism, etc. In code 
reuse these provide a way of standardizing implemen- 
tations of different modules, to force (inherited mod- 
ules) to follovv predefined implementation details, to

separate dynamic and static parts of the system from 
each other, and also a mechanism for specifying high- 
er level system abstractions (patterns, design pat- 
terns, application framevvorks). In a vvide interpreta- 
tion the term “reuse” covers other objects also except 
code; in principle ali deliverables of softvvare (project) 
can be the objects of the reuse. This article concen- 
trates on code reuse. In code reuse different levels, 
like code components, patterns and application 
framevvorks are distinguished.

1 Visiting Researcher in Tampere University of Technology. On leave from University of Maribor, Slovenia
2 Tampere University of Technology and ICL Invia, Finland.

2002 - številka 3 - letnik X i tpombi id N FOR M ATIKA



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Softvvare Engineering

It is also worth of recognizing, that the two direc- 
tions of the reuse -forand zvith - are not reached by the 
same methods. In/or reuse the component experts 
adopt disciplinary development methods. It is also 
question of the processes encountering vvhich deliv- 
erables, or parts of them, are useful for reuse, and the 
right way of organizing the development phase to 
support the future reuse activities. The luitli reuse ap- 
proach expects to focus on methods for easy retriev- 
al of reusable components and deliverables to be fur- 
ther adapted to become useful parts of a softvvare 
product under development. So, it is easy to agree 
that reuse is not a technique but firstly a change in pro
cesses and finally in the organization. The overall pur- 
pose and objective of softvvare reuse is to improve 
softvvare engineering productivity, quality and time- 
to-market.

The decision to increase reuse in an organization 
starts from occasional, not organized reuse (figure 1), 
vvhich in principle appears in some form or other in 
ali organizations. The evolution tovvard a "reusing or
ganization" is long and needs adoption of tools and tecli- 
niques supporting reuse at first. Techniques first 
change individual processes, vvhich finally are orga
nized and integrated at an organizational level to be
come a part of the organization's culture.

This paper discusses on the role of reuse at an or
ganization. In the beginning the role of reuse in an or
ganization is discussed. Based on the discussion some 
successful experiences are reported. The paper is 
based on the earlier publication of the author (Jaakko
la et al. 2001).

2. The Framevvork - Organizational 
Reuse

The framevvork originates from an assumption that ali 
the situations in softvvare development are not equal- 
ly suitable and beneficial for systematic reuse, and/or 
rather that systematic reuse can occur in several dif- 
ferent forms in different situations. The follovving 
approach suggested in figure 2 is adopted from stra- 
tegic management (Johnson&Scholes 1997).

According to this framevvork some factors assessed 
to be the most relevant from the reuse and reusabili- 
ty point of vievv are pointed out belovv.

2.1. Reuse Strategy Analysis
Reuse potential exists vvhen similar, but not identical, 
softvvare systems are developed. McClure defines the 
concept of selective reuse strategi/ (McClure 1997), 
vvhere reuse efforts are and vvill be focused vvhere the 
potential reuse benefits are the greatest, i.e. vvhere 
there is most commonality betvveen systems, suffi- 
cient knovvledge and a mature and stable application

Organi
zation

Figure 1. Reuse Evolution from Random to Organized Reuse

domain. This research goes deeper into these factors. 
Based on these requirements, three aspects are con- 
sidered to be the most relevant from a reuse point of 
vievv: the nature of softivare business and certain exter- 
nal and internat factors considering softvvare develop
ment and reuse, i.e. reuse potential and reuse capabiliti/.

The nature of softvvare business
The nature of softvvare business vvhere reuse is prac- 
ticed is considered to be one of the most meaningful 
factors that rules reuse activities. Adapting Jacobson 
et al's (1997) classification, three different types of soft
vvare business areas are identified:
1. Internal development. Softvvare developments for 

internal use, typical examples are banks and Insu
rance companies that develop softvvare-based 
products and Services for their customers.

2. Tailor-made producers. System integrators that 
provide tailor-made softvvare for large and diverse 
customer bases.

Reuse strategy 
analysls

Reuse strategy 
implementation

Reuse strategy 
selection

- Institutionalizating the reuse
- Organizing for reuse

- Identification of reuse strategy 
choices

- Reuse strategy selection

- The nature of softvvare business
- External situational factors
- Internal situational factors

Figure 2. Reuse Strategy Development

uporabna INFORMATIKA 2002-številka 3-letnik X



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Software Engineering

3. Softvvare houses. Either COTS-producers (Com- 
mercial Off-The-Shelf) or embedded softvvare pro- 
ducers.

The purpose of a business type analysis is to deter- 
mine
■ How much commonality can be found and even 

can be expected to be found betvveen different 
softvvare development projects and

■ To vvhat extent a company itself can affect the ar- 
chitectural and technical infrastructure definition 
and design of softvvare development.

In internat development the environment is beneficial to 
reuse softvvare assets on ali abstraetion levels from 
code and components to design and architectures. 
The company itself, e.g. its information systems man- 
agement department can determine and standardize 
common architectures, tools, policies and guidelines 
for data and its processing (Zmud et al. 1986) for dif
ferent domains. The situation is more or less similar in 
softzvare houses that can design their softvvare produc- 
tion independently according to decisions of their 
ovvn.

In tailor-made softioare production environment re
use is less beneficial. In many cases a company's cus- 
tomers vvant to define development tools, runtime 
platforms and even the internal softvvare structure to 
be used in a project according to customer's own inter- 
ests and guidelines, in order to ensure interoperabil- 
ity vvith their other information systems. In a čase like 
that it's difficult to practice reuse at least on physical 
asset level. This leads to defining tvvo different basic 
reuse strategy alternatives:
1. Reuse of content-independent softvvare assets
2. Reuse of domain-specific contcnt-aivare softvvare as

sets.

External situational factors
External situational factors refer most of ali to an in
dustrij and technology Ufe ci/cle concept vvhere the ma
turi ty of industry or technology is examined in differ
ent phases from emergence through accelerating and 
decelerating grovvth to maturity and eventually de- 
cline (Kotler 1994). VVhen it comes to the softvvare in- 
dustry, typical for the emergence phase is that tools, 
methods and standards are not yet formed and estab- 
lished. Thus, it's hard to knovv vvhat the mainstream 
tools and technological platforms vvill be eventually 
and vvhat the best practices softvvare to do are on 
these development platforms. Furthermore, the ver- 
sions and their properties and Services can also 
change radically even vvithin the already seleeted in
frastructure. And eventually it's possible that totally 
nevv technologies and tools vvill replace the former 
ones.

Softvvare development means commitment to some 
seleeted technologies, e.g. programming languages, 
softvvare development environments including class 
libraries, architectural platforms that provide Servic
es for developed softvvare etc., and even their ver- 
sions. If the expected life cycle of technologies to be 
used is short and turbulent, the potential for reuse can 
be small because of risk of investing in rapidly outdat- 
ed softvvare assets.

Internal situational factors
Internal situational factors refer to evaluation of an 
organization's reuse capabiliti/. Then one area of interest 
is to determine hovv mature overall softvvare develop
ment practices, consisting of both management pro- 
cess factors and development process factors are. The 
maturity of overall softvvare development (e.g. SVV- 
CMM, ŠPICE) mirrors expected reuse capability, but 
the relationship betvveen softvvare engineering matu- 
rity models and reuse is not straightforvvard (Lim 
1998) and reuse can be practiced on seve ral levels of 
improvement models. Hovvever, in order to formalize 
the practice of reuse and make it repeatable betvveen 
different softvvare development projects, it requires at 
least a second (repeatable/ managed) level defined in 
the models.

2.2. Reuse Strategy Selection
Reuse maturiti/ models have been developed to illus- 
trate an idea that reuse is spread in an organization as 
a learning process from less mature to the more ma
ture levels. Most of them inherit the basic structure 
from CMM and are usually built on five maturity le
vels from ad hoc to disciplined or optimized reuse 
practices (Sodhi 1999; McCIure 1997; Lim 1998; Karls- 
son 1996). The models vvill likely be used in assessing 
the current practice and level of reuse in organization. 
Like in CMM successive levels of reuse maturity are 
based on previous levels. From a softvvare asset point 
of vievv, reuse on lovver levels occurs in the form of 
code reuse and higher levels of maturity leverages 
higher abstraetion levels of softvvare assets like de- 
signs and architectures.

If used in reuse strategy formulation, these matu
ri ty models may lead to too linear reuse thinking and 
its implementation. Although some preconditions 
and practices on higher levels of reuse (according to 
these reuse maturity models) are built on lovver levels, 
the hypothesis of this paper is, that reuse is not that one- 
dimensional and does not necessarili/ start from lozver lev
els of maturiti/ and evolve through higher levels tozvards 
optimized reuse. Instead, it is suggested that appropri- 
ate reuse strategy be formed and seleeted based on ex- 
ternal and internal situational factors vvhen, in some cas
es, informal, minimum cost, project level reuse may be

2002 - številka 3 - letnik X uporabi ia\ NFORMATIKA



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Softvvare Engineering

the most viable strategy, vvhile in some cases strategic 
level reuse should be pursued straight away.

Thus, depending on situational factors, one of the 
follovving intentioml emphases of reuse could be suit- 
able:
■ Informal reuse. This approach pursues opportu- 

nistic reuse benefits e.g. betvveen parallel or simi- 
lar successive projects. The scope of reuse is on a 
project level vvhere reuse opportunities are sought 
beyond the boundaries of individual projects by 
being aware of vvhat has been previously built and 
what similar projects are going on simultaneous- 
ly. No specific reuse investments are needed; reus- 
able assets are documented, stored and brokered 
via normal version- and configuration manage- 
ment infrastructure used in softvvare develop- 
ment.

■ Operative reuse. An operative approach pursues 
cost reduction by increasing productivity and 
quality improvements via common and tested 
software assets. Since the scope of reuse is broad- 
er than at a project level, but more at an organiza- 
tion unit or softvvare engineering process level, 
specific reuse support mechanisms beyond normal 
softvvare development infrastructure are needed. 
These include common softvvare asset storage, 
component catalogues and documenting that take 
into consideration that the component user and 
producer may not be in close interaction betvveen 
each other.

■ Strategic reuse. On a strategic level, reuse has 
deeper effects on the way an organization operates 
and pursues not only getting better. but getting dif- 
ferent (Hamel 2000). This results in not only cutting 
the costs of current softvvare production, but gain- 
ing strategic advantages to produce softvvare bet
ter, different or more effectively than competitors 
(Johnson&Scholes 1997), e.g. improving the time- 
to-market vvhen producing nevv softvvare-based 
Services, or developing totally nevv softvvare prod- 
ucts starting vvith designs from a farm of vvell- 
known and reusable assets. The reuse scope is 
broader than in previous cases and reuse decisions 
are made on at a corporate or business unit level 
as a part of business and production strategies.

In informal reuse the emphasis is on utilizing previous- 
ly developed parts of softvvare in nevv projects. Then 
ali kind of suitable assets can be used either as-is but 
more probably adapting them to a part of that nevv 
softvvare product. Informal approach can be suitable 
e.g. vvhen the external environment (tools, technolo- 
gies architectural platforms etc.) is stili at a turbulent 
and unstabilized phase of life cycle and the risk for an 
obsolete asset base is substantial.

On an operative level of reuse, emphasis is not most- 
ly on asset utilization but more on asset production and 
effective brokering. A suitable form of practicing reuse 
depends on the nature of the business. In the čase of 
internal development, reuse can be context-avvare 
vertical and domain-specific reuse, covering ali life 
cycle products from architecture and documentation 
to code fragments. For system integrators context-in- 
dependent reuse covering higher abstraction level 
life-cycle products like duplicable concepts, designs 
and best practices, i.e. assets above customer-specific 
dependencies, can be more applicable. This approach 
could also be suitable in a turbulent technology envi
ronment, provided that enough similar projects are 
running in a time vvindovv, because higher level life- 
cycle products absorb less vvork than code compo- 
nents (Jacobsson et al. 1999) and therefore it reduces 
the risk of obsolete asset libraries.

On a strategic level of reuse, emphasis is not only on 
separate softvvare assets but also more on concepts or 
vvhole approaches to softvvare production. Meyer and 
Seliger (1998) define a softvvare product platform as a set 
of subsystems and interfaces that form a common 
structure from vvhich a stream of derivative products 
can be efficiently developed and produced. Then the 
softvvare product platform is both architecture and an 
implementation of architecture that propel a family of 
softvvare products or internal corporate applications. 
Saaksjarvi (1998) in turn, defines the term product skel
etov to mean a core product common to certain pro
duct families and that can be varied in order to pro
duce several separate but similar softvvare products.

Depending on the nature of business one of these 
approaches can be applicable. By definition, the prod
uct platform could be suitable for internal developers. 
Subsystems and interfaces unavoidably handle and 
process data that makes them content-avvare. Then 
strategic reuse in internal development could mean 
vvell-defined vertical product platforms consisting of 
a set of core components, both physical and abstract, 
on vvhich nevv softvvare products for that domain are 
intentionally designed and developed. For softivare 
liouses a similar approach can be suitable too. Product 
line reuse is defined as a form of vertical reuse vvhere 
reuse capitalizes on commonalties betvveen product 
lines (Lim 1998). Thus, softvvare houses can develop 
common product platforms, or develop product ske- 
letons, from vvhich nevv products are developed tai- 
loring these core product platforms into nevv pro
ducts.

For si/stems integrators these kinds of domain spe
cific approaches are not as vvell suited. In the čase of 
Integra tor developed softvvare for a defined custom- 
er segment, e.g. for banks and Insurance companies, 
vvhere certain core functionalities are conceptually

uporafoidNFORMATIKA 2002 - številka 3 - letnik X



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Softvvare Engineering

more or less equal (maybe even according to legisla- 
tion), there are usually too many customer-specific 
features, both in data and processing, that are too 
bard to isolate in order to make reuse meaningful in 
the same way as in domain specific reuse. Rather, re
use potential could be found from context-indepen- 
dent parts or levels of softvvare systems. Thus, strate- 
gic reuse can involve product skeletons, i.e. core prod- 
ucts for certain content and context independent pur- 
poses that can be copied and adapted for several cus- 
tomer cases. One example of this kind of reuse is ICL 
Invia's mCastor channel adapter that formats and 
adapts content-independently the output of informa- 
tion systems for different types of terminals from 
mobile handsets to digi-tv and traditional vveb-termi- 
nals (ICL 2000).

2.3. Reuse Strategy Implementation
Reuse strategy implementation covers institutiomlis- 
ing of reuse entirely. It involves both "static" issues 
like organizing and resourcing reuse and "also "dy- 
namic" dimension, i.e. transforming softvvare devel- 
opment from the current situation to reuse-exploiting 
practices according to the selected strategy. The 
amount of effort needed is dictated by the strategy 
selected.

If informal reuse is pursued, very heavy invest- 
ments are not required, but softvvare projects that 
build applications both produce and consume reus- 
able assets too, either in an intraproject manner or 
betvveen different projects. Because the assets usual- 
ly become part of the softvvare that projects produce,

no separate reuse specific asset storage is needed. 
Furthermore, reused parts are maintained as a part of 
the project softvvare vvhen no special reuse asset main- 
tenance group is needed.

If strategic or operative reuse vvas selected, imple
mentation probably requires, in the long run at least, 
nevv reuse-specific organizational units and support roles 
in the organization. Especially if the objective is to 
reuse assets as-is, i.e. black-box or grey-box reuse, the 
separation of asset development and asset usage and 
adaptation to softvvare projects can be necessary in 
order to maintain and further develop assets beyond 
the projects' limited life cycles.

Many authors on the subject suggest that imple
mentation of major change initiatives should be done 
using a number of smaller projects (Kotter 1996; 
Hamel 2000) instead one big change. Suitable way to 
proceed tovvard a selected reuse strategy could be via 
selected pilot projects the purpose of vvhich is to de- 
monstrate and test that the ideas of reuse really vvorks 
(Jacobsson et al. 1997). That holds true independent of 
the selected reuse strategy.

3. About Reuse Infrastructure
Improved reuse is based on a vvell-organized reuse 
culture in a company. The reusable assets may vary 
čase by čase (figure 3).

In addition it is also question on the approach to 
the design
■ design philosophy and
■ the management and organization of the reuse.

Applications

o
o -T>-0

Application Frameworks

Designs

o O © Jp O

o o © ©
Classes

Figure 3. Different abstraction levels of reusable assets.

2002 - številka 3 - letnik X uporabi hHNFORMATIKA



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Software Engineering

The follovving subchapters discuss a systematic 
approach to the reuse developed by an organization 
adopted reuse as a strategic level solution in their pro- 
ducts.

The practical implementation of this culture can be 
called the reuse infrastructure, vvhich includes vvell- 
defined processes and technical support. In this chap- 
ter the reuse infrastructure of Nokia3 will be intro- 
duced briefly. The presentation is based on published 
material (Jaaksi et al. 1999; Kuusela 2000) and concen- 
trates on Solutions affecting softvvare structure and 
implementation principles. The discussion on techni
cal Solutions is excluded and can be studied in more 
detail in the references.

3.1. Organizational and Product Aspects
Nokia has been a fast grovving organization, having a 
large amount of new employees ali the time. The prod- 
ucts are usually large (embedded) softvvare products 
developed incrementally and based on evolutionary 
development cycles in the long run. In this kind of 
organization, clear guidelines and generally accepted 
architectural Solutions are needed. From the softvvare 
point of vievv, the architecture includes both static 
and dynamic structural elements. Static parts are 
modeling static reality; dynamic parts have interface- 
oriented features, usually representing communica- 
tion vvith the end-users. A common architectural pat- 
tern improves understandability, helping others to un- 
derstand the architecture and functionality of the ap- 
plication. The guidelines also make it easy to maintain 
components in the long run, because ali the compo- 
nents resemble each other in their interna! structure.

The applications on the background of the discus
sion are Netvvork Management System (NMS) and 
Mobile Telephone (MT) softvvare. NMS is a central- 
ized control and management system of the opera
tor's cellular netvvork. The netvvork components in- 
clude base stations (BS; code size 2 MLOC), netvvork 
svvitch (MSC; 10 MLOC), base station controllers 
(BSC; <10 MLOC), netvvork management (NMS; 3 
MLOC) and user terminals (mobile phones, commu- 
nicators, etc.; 0,5 -1,5 MLOC). The netvvork architec
ture itself is a complex reactive real time system, hav
ing the characteristics of the embedded softvvare 
mainly. The life cycles of some netvvork components 
(base stations, netvvork svvitch, base station control
lers, netvvork management) are long and expect effec- 
tive system evolution opportunities. Mobile telephone

generations instead are introduced at an accelerating 
speed creating a primary competitive advantage to 
telephone producers. In both cases (netvvork compo
nents, telephones), there are also several variations of 
the same product made for different markets (e.g. 
currently 32 different phones are manufactured cov- 
ering six protocol standards). As a conclusion, there 
are tvvo different approaches to softvvare architecture 
to be discussed. In the čase of long life cycle products, 
the architecture solution must support an effective 
maintenance and evolutionary (and incremental) de
velopment culture. If it is a question of fast entrance 
to the market (nevv features or advanced properties of 
the equipment), the ability to benefit from existing 
softvvare components is important.

3.2. MVC++ as a Softvvare Architecture Style
MVC++ (Jaaksi et al. 1999, 55-60) is an application 
architecture developed based on some earlier compa- 
rable models (MVC, PAC,...). According to MVC++, 
three types of objects are separated: model, vievv and 
controller. The model layer (M) corresponds to a real 
vvorld and "static" problem domain. The view layer (V) 
is the outer softvvare layer visible to the end user. Typ- 
ically there is one vievv class for each dialog box and 
vvindovv of the user interface. The controller layer (C) 
Controls the interaction betvveen the model and the 
vievv. The model layer objects usually appear in the 
analysis class diagram and the vievv components are 
derived from the user interface specification. Control
ler classes are needed to connect the "dynamic" vievv 
part of the system to the "static" model part. Accord
ing to the softvvare life cycle model OMT + + the ana- 
lysis class diagram (model layer) is produced in the 
analysis phase. The analysis object model is the basis of 
the design object model including classes closer to the 
implementation level. In this phase the class diagram 
may be restructured, vievv components and respec- 
tive controller objects are added to the model. Con
troller objects can be seen as adapters that integrate 
the model and vievv objects in an application specific 
vvay.

One of the ideas of using MVC++ architecture is 
to separate reusable classes of the application from the 
classes that implement application-specific function- 
ality or that provide interfaces to the real vvorld. The 
features of object technology - inheritance, dynamic 
binding, association and aggregation - are used to 
implement reusability.

3 Nokia's product spectrum covers mobile communication technology in several different /eve/s from netvvork components to netvvork management 
and end user terminals. The discussion in this paper references to the reuse Solutions of the netvvork management softvvare and mobile telephones. 
Partially the Solutions are developed in “line organizations " (Nokia Telecommunications, Nokia Mobile Phones), partially as a separate activity (Softvvare 
Architecture Group) of Nokia Research Center.

upombnal NFORMATIKA 2002-številka 3-letnik X



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Softvvare Engineering

3.3. Platform - Product Line - Product
In thc čase of large systems, effective production of 
product variants and nevv features in existing prod- 
ucts is difficult. The fundamental problems caused by 
the large size of the softvvare can be avoided by using 
the system structure enabling effective project vvork 
and helping in development and delivery of nevv 
functionality in a short span of time.

In a solution by Jaaksi et al. (1999,198-210), the si/s- 
tem is considered to be a family of (reasonable inde- 
pendent) sub products. The sub products can have 
their ovvn release schedules; dependencies on other 
similar subsystems must be managed, of course. The 
deliverable grouping closely related features is called 
an application product and a tested configuration of 
these application products, a spstem product. An exam- 
ple could be a system product "office automation" 
including "application products" like text processing, 
spreadsheet, and presentation graphics. Different 
configurations of the application products for diffe
rent market segments ali constitute system products 
also.

Rational usage of the application product idea is 
the best solution for reaching the benefits of large 
monolithic system development (e.g. high reuse of 
common design Solutions) and releasable highly inde- 
pendent application products. The common parts of 
the applications are organized into one independent 
high-level subsystem of its ovvn. This subsystem is

called an application platform. Application products 
depend on it (but not vice versa). Whereas application 
products provide applications to users, the applica
tion platform provides reusable components, frame- 
vvorks and design guidelines to softvvare designers.

In addition, to manage reusable assets, the applica
tion platform also enables a product line approach4 to help 
system development in the future. The leading prin- 
ciple is to release a line of closely related products and 
product variants cost effectively over time (short time 
to market). The products are built on a common ap
plication platform that holds common softvvare assets. 
The motivation to collect reusable softvvare assets in 
an application platform is to make future variation 
easy and economical by using the results of projects 
in the past vvhen creating nevv products. The differ- 
ence to the application framevvork approach is that 
the nevv products are also created using the assets of 
the application platform. The approach is illustrated 
in figure 4.

The product line approach has been adopted by 
large-scale projects that evolve for several years. De
velopment of the application platform needs invest- 
ments vvhich vvill be paid back only by effective use 
(adopted in processes) of it. In practice hovvever, plat- 
forms grovv vvith systems: the specific solution imple- 
mented at first vvill generate the solution to platform 
Services. For this a mechanism detecting reusable as
sets must be built into the processes.

Product Product Product

Figure 4. Product line approach to the product development

4 SEI defines product line as a group of products sharing a common, managed set of features that satisfy specific needs of a selected market or mis- 
sion. The term product family is used for a group ofsystems built from a common set of assets. Although a product famiiy may be developed without 
product line coordination and product line may be developed independently, most product lines are also product families

i/poroto///INFORMATIKA ^ 4i52002 - številka 3 - letnik X



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Softvvare Engineering

3.4 Čase NMP
Reuse experience of Nokia Mobile Phones (NMP) bas 
been reported by Kuusela (2000). NMP adopted a 
product line approach originally developed for large- 
scale system development in Nokia Telecommunica- 
tions. The application for NMP was developed by the 
Software Architecture Group at Nokia Research Cen
tre, vvhich is (was) analyzing, assessing and modeling 
the product architectures of business units to be able 
to give suggestions on improvements. NMP current- 
ly h as 32 different phones manufaetured for six diffe- 
rent protocol standards. The variations of the phones 
are also produced for different customer segments 
and cultures. Functionality of the phones also de- 
pends on the fashion (e.g. user interface design) and 
advances in technology.

The software architecture provides the basis for 
reuse vvithin a product family. Originally the softvvare 
product family vvas addressed by only the basic re- 
quirements variation in hardvvare, the communicati- 
on standards and the user interface. The need to ha- 
ve several alternatives for same functionality has driv- 
en the architecture to implement the "client-server" 
idea: it separates Service identity from the identity of 
its provider and makes Service usage and provision lo- 
cation independent. Combined vvith dynamic config- 
uration management the system supports several pro- 
viders for the same Service and the providers can be 
plugged in or taken out vvithout restarting the system.

With the architecture even the structure ofthe devel
opment organization had to be changed. The infrastruc- 
ture development group improves the application frame- 
work and ports on different hardvvare platforms. The 
component group develops application components. 
The product development projects compose their appli
cation subsystems using existing components and 
develop new components if necessary. The vvhole 
process is driven by the product development projects, 
vvhich plače requirements on the infrastructure and 
request new components.

Softvvare architecture provides a basis for reuse 
vvithin the product family. It also ties the products 
together and limits their evolution potential. Architec
ture can only be designed to accommodate anticipat- 
ed variations. If the products based on the architec
ture are successful, nevv products vvith nevv properties 
vvill be added to the family. Architecture has also to be 
periodically updated to support nevv needs. Once the 
architecture can no longer support the product fami- 
ly, it has to be changed; the change vvill be very cost- 
ly and vvill cause a need to redesign large parts of the 
system.

Wide scale reuse is expected to be economical. This 
is not alvvays true. When independent products con- 
tinue their evolution, nevv requirements are faced.

These requirements are tackled in the product devel
opment project. Later some of the nevv features may 
prove to have vvider scope and they can be tackled on 
a family level; hovvever the changes on the family lev- 
el are very costly. A product family approach also lim
its modifiability. In practice reuse and modifiability 
must be balanced, and variation management and 
reuse must be closely connected. If variation manage
ment runs into trouble, reuse must be decreased. The 
grey area betvveen perfectly organized product lines 
and complete independent development projects is 
vvide. (Kuusela 2000).

4. Summary
The paper concentrates on organizational reuse Solu
tions in softvvare development organizations. The 
main message of the paper is that reuse must be a 
planned and vvell-organized part of an organization's 
processes. There is no single best practice to organize 
reuse. Reuse strategi/ development depends on the na
ture of the industry as vvell as on several internal and 
external faetors.

"Process reuse" can be seen as an organized activi- 
ty helping companies to exchange experiences in pro
cess improvement activities. In practice it is question 
of organized and managed co-operation betvveen a 
groups of companies. This can be supported by a "pro
cess practice platform", analogically to product lines and 
product platforms. This platform could be maintained 
and organized by a support organization - center of 
expertise. The idea supports particularly small and 
medium-sized softvvare developers having limited 
resources for the ovvn improvment activities.

To integrate processes and improved softiuarc architec
ture Solutions the adopter needs to be on higher pro
cess maturity levels. Because of that, the Solutions like 
the ones introduced in chapter 3 are usually potential 
only for large companies. Although the models are 
publicly available, to tailor the basic ideas to fit the 
products and processes of a company is a resources- 
demanding operation. Again, vvith close co-operation 
betvveen small softvvare development organizations, 
the same benefits might be reached: a group of com
panies having similarity in product concepts can be 
compared to a large one having resources and capac- 
ity enough for improved reuse Solutions.

One of the sayings concerning reuse is "Models are 
not invented, but deteeted based on similarity". This 
detection question is not yet discussed in this paper. A 
proposed solution is the establishment of a reuse tcam. 
This is an (informal) organization of co-operation above 
product development teams organizing interaetion 
betvveen them. The product development teams have 
responsibility for introducing their product plan at an

uporabna! NTORMATIKA 2002 - številka 3 - letnik X



Hannu Jaakkola, Boštjan Brumen, Jyrki Kukkonen: Reuse Strategies in Software Engineering

early phase of the project. The aim is both to detect 
the components suitable for later reuse and propose 
the usage of already available (reusable) components 
in the product under development.

References
Hamel Gary (2000).

Leading the Revolution. Harvvard Business School Press 
2000.

ICL Invia Oyj (2000).
ICL Invia offering a solution for multi-channel mobile.
Press release 6.9.2000.
URL: http://www.iclinvia.com/icl_pages/ 
pressreleases_frames.htm. Downloaded 2.4.2001.

Jaakkola H., Kukkonen J., Varkoi T.,
Best Practices as Reuse Infrastructure. In Koloumdjian J., 
Mayr H., Erkollar A. (editors), Proceedings of the 
ReTIS’2001 - Data and Document Re-engineering for the 
Web. Osterreichische Computer Gesellschaft, Vienna, 
2001. pp. 9-31.

Jaaksi A., Aalto J-M., Aalto A., Vatto K. (1999),
Tried & True Object Development. Industry Praven 
Approach with UML. Cambridge University Press.

Jacobson Ivar, Booch Grady, Rumbaugh James (1999).
The Unified Software Development Process. Addison 
Wesley Longman 1999.

Jacobson Ivar, Griss Martin, Jonsson Patri k (1997).
Software Reuse. Architecture, Process and Organization 
for Business Success. Addison Wesley Longman 1997.

Johnson Gerry, Scholes Kevan (1997).
Exploring Corporate Strategy. 4"1 edition. Prentice Hall 1997.

Karlsson Even-Andre’ (edited by) (1996).
Software Reuse. A Holistic Approach. John Wiley & Sons 
1996.

Kotler Philip (1994).
Marketing Management. Analysis, Planning, 
Implementation and Control. Prentice Hall 1994.

Kotter John R (1996)
Leading Change. Harvard Business School Press 1996. 

Kuusela Juha,
Arahitectural Evolution. Nokia Mobile Phone Čase. Nokia 
Research Center, 2000.

Lim Wayne C.(1998)
Managing Software Reuse. A Comprehensive Guide to 
Strategically Reengineering the Organization for Reusable 
Components. Prentice Hall PTR 1998.

McCIure Carma (1997).
Software Reuse Technipues: Adding Reuse to the System 
Development Process. Prentice Hall PTR 1997.

Meyer Marc H, Sel iger Robert (1998).
Product Platforms in Software Development. Sloan 
Management Review, Fali 1998, Volu me 40, Nr. 1.

Sod hi Jag, Sodhi Prince (1999).
Software Reuse. Domain Analysis and Design Process. 
McGraw Hill 1999.

Saaksjarvi Markku (1998),
Tuoterunko. Uusi ajattelu ohjelmistotuotteiden 
strategisessa kehittamisessa. Teknologiakatsaus 62/98. 
Teknologian kehittamiskeskus Tekes, Helsinki 1998. In 
Finnish.

Zmud Robert W, Boynton Andrew W, Jacobs Gerry C. (1986), 
The Information Economy: A New Perspective for Effective 
Information Systems Management. Data Base.

♦

Dr. Hannu Jaakkola is professor of software engineering in Tampere University of Technology, director of Center of 
Software Expertise (CoSE) and head of the Regional Institute of Tampere University of Technology in Pori. His research 
interests cover softvvare engineering and technology management. In softvvare engineering the research focus is especially 
in softvvare process improvement and object technologies. In technology management he has vvide research in the area 
of technology diffusion and technology transfer. Professor Hannu Jaakkola has received PhD degree (engineering) in 
Tampere University of Technology and BSc (business economics) in University of Tampere.

♦

Mr. Jyrki Kukkonen is a manager of softvvare project business in Financial Services department of Fujitsu Invia Group. He is 
also a postgraduate študent at Tampere University of Technology vvhere his primary research interests include softvvare 
engineering and softvvare development methodologies, particularly softvvare reuse. Kukkonen received a B.S (mech.eng) 
from Helsinki Institute of Technotogy, a M.S (eng) in Computer Science from Tampere University of Technology and a M.S 
(econ) in Information systems Science from Helsinki School of Economics.

♦

Boštjan Brumen is a teaching assistant at Faculty of Electrical Engineering and Computer Science, University of Maribor. 
His teaching areas are Databases I and II and Data Security, on both university and college level. Research interests include 
data mining, data analyses, data security and data reusability. As a member of Database Technologies Laboratory he 
actively participates in several International and national projects, related to data issues. He has been cooperating vvith 
researchers at Tampere University of Technology since 1999, vvith results, published at several International conferences 
and in journals.

♦

2002 - številka 3 - letnik X uporabualNFORMATIKA


