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This paper focuses on the statistical based Probabilistic Neural Network (PNN) for pattern 
classification problems with Expectation – Maximization (EM) chosen as the training algorithm. This 
brings about the problem of random initialization, which means, the user has to predefine the number of 
clusters through trial and error. Global k-means is used to solve this and to provide a deterministic 
number of clusters using a selection criterion. On top of that, Fast Global k-means was tested as a 
substitute for Global k-means, to reduce the computational time taken. Tests were done on both 
homescedastic and heteroscedastic PNNs using benchmark medical datasets and also vibration data 
obtained from a U.S. Navy CH-46E helicopter aft gearbox (Westland). 
Povzetek: Opisana je metoda nevronskih mrež. 

1 Introduction 
The proposed model in this paper uses PNN as our 

choice of neural network for pattern classification 
problems. The Probabilistic Neural Network was first 
introduced in 1990 by Specht [1] and puts the statistical 
kernel estimator [2] into the framework of radial basis 
function networks. [3] We then used EM to train the 
PNN for the simple fact that it can help reduce the 
number of neurons that were committed in the network. 
The proposed model can be used in the field of condition 
monitoring which is garnering more attention due to its 
perks of time and cost savings. That is the reason why 
more focus should be spent on the creation of a more 
error tolerant and accurate yet fast diagnostic model. 

 
The EM method used as the training algorithm for 

the network has its advantages and disadvantages. In 
general it is hard to initialize and the quality of the final 
solution depends heavily on the quality of the initial 
solution. [4] Initialization of the number of clusters 
needed has to be done randomly by the user in a series of 
trial and error values. This brings about an unwanted 
stochastic nature in the model. Therefore, in order to 
build an autonomous and deterministic neural network, 
we opted to use Global k-means to help automatically 
find the optimum number of clusters based on 
minimizing the clustering error.  

 
In section 2, the PNN model is briefly discussed 

followed by section 3 where the E-step and the M-step of 
the EM method is showed together with the flaws of EM. 
Section 4 details cluster initialization with a brief 
discussion on two methods of cluster determination, 
which is Global k-means and its variant, Fast Global k-
means. Experiments on Westland and benchmark 
medical datasets were done in section 5 to compare 

results between Global k-means and random initialization 
together with Global k-means and Fast Global k-means. 
Section 6 will conclude the paper. 

2 Probabilistic neural network 
Probabilistic Neural Network was introduced by 

Donald Specht in a series of two papers, namely 
“Probabilistic Neural Networks for Classification, 
Mapping or Associative Memory” in 1988 [5] and 
“Probabilistic Neural Networks” in 1990 [1]. This 
statistical based neural network uses Bayes theory and 
Parzen Estimators to solve pattern classification 
problems. The basic idea behind Bayes theory is that it 
will make use of relative likelihood of events and also a 
priori information, which in our case would be inter-class 
mixing coefficients. As for Parzen Estimators, it is a 
classical probability density function estimator. 

 
Let us assume the dataset, X, will be partitioned into 

K number of subsets where KXXXX ∪∪∪= ...21  
and each subset having Nk number of sample size, it 

would also mean NNK

k k =∑ =1
 where N is the size of 

our sample. This four-layer, feed forward, supervised 
learning neural network reserves the lowest layer as input 
neurons and accepts d-dimensional input vectors. Each 
dimension of the input vector is passed to its 
corresponding input neuron. 

 
The second layer of the PNN calculates the Gaussian 

basis functions (GBFs). It takes the form of 
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and this specifies the GBF for m-th cluster in the k-th 
class where 2

,kmσ  is the variance, km,υ  is the cluster 
centroid and d represents the dimension of the input 
vector.  
 

The third layer of the PNN is where the class 
conditional probability density function is estimated, 
given by the formula 
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= kM

m kmkmk XXf
1 ,, )()( ρβ                            (2) 

 
where kM  is the number of clusters for class k and 

km,β  is the intra-class mixing coefficient that can be 
defined as below. 
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The PNN model has a fourth layer which is used as a 

decision layer to choose the class with the highest 
probability. An inter-class mixing coefficient, kα , will be 

used to increase the accuracy of the result. kα  is 
obtained by the inverse of its sample size, Nk . Therefore 
the summation of all kα  shall be bound to 1. kο  depicts 
the probability of the input vector being class k. 
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The advantage that PNN has is that it interprets the 

network’s structure in probability density functions due 
to its statistical nature. On the downside, the number of 
nodes that is committed in the PNN can be extremely 
huge if the training dataset is large. This is because one 
neuron is created for each training pattern. This makes 
the PNN simply infeasible for large datasets. Therefore 
another training method that does not commit every 
training pattern as a node in the neural network should be 
used. And for this purpose, we have selected the 
Expectation-Maximization (EM) method. 

3 Learning algorithm 
In the learning algorithm, two parameters of the 

model are adjusted to obtain better results in 
classification. In each E-step and M-step, the mean and 
the variance parameter is constantly tweaked until the log 
posterior likelihood function shows minimal difference. 

To calculate the new mean and variance values, EM 
deploys a weight parameter which is also adjusted after 
each step. 

3.1 Expectation-Maximization 
Expectation-Maximization (EM) [6] by Dempster et. 

al. in 1977 is a powerful iterative procedure which 
converges to an ML estimate. Basically the EM method 
consists of two steps, namely the E-step and the M-step. 
Both steps will be iterated until the change in the log 
posterior likelihood function is minimal. 
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In the E-step, the missing or hidden data is estimated 

given the observed data and the current parameter 
estimate. It will use the PDF estimated in the second 
layer of the PNN as defined in Equation 1 together with 
intra-class mixing coefficient to estimate the weight 
parameter.  
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Next comes the M-step that uses the data estimated 

in the E-step, the weight parameter, kmW , , to form a 
likelihood function and determine the ML estimate of the 
parameter. It calculates the new values of the cluster 
centroid, km,υ , the variance, 2

,kmσ , and the intra-class 

mixing coefficients, km,β , using the weight calculated 
from the E-step. The equations for the parameter updates 
are given as below. 
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The EM algorithm is guaranteed to converge to an 

ML estimate [7, 8], and the convergence rate of the EM 
algorithm is usually quite fast. [9] EM also produces 
lesser neurons than the traditional PNN by Donald 
Specht. Also another plus side to it is that it does not 
require computations of gradients or Hessians, thus 
reducing the computational complexity of the network. 
Though EM is a good choice for a training method, it is 
not autonomous. This is attributed to the fact that EM 
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requires initialization in the form of, number of clusters 
to be expected of the neural network. The initialization 
quality severely affects the final outcome of the network. 
In order to aid in this matter, a method called Global k-
means will be chosen as a precursor to find out how 
many clusters are needed for a certain dataset before 
being fed into the PNN with EM for training. 

4 Cluster initialization 
Part of the problems faced by the model is 

determining the number of clusters needed prior to 
learning. This is usually inputted by the user through a 
series of trial and error values. Also the usage of random 
initialization does not provide deterministic results. 
Global k-means and Fast Global k-means can overcome 
these problems. 

4.1 Global k-means 
Introduced by A. Likas, N. Vlasis and J.J. Verbeek 

in the paper entitled “The Global k-means clustering 
algorithm” in 2003, the concept of clustering with Global 
k-means is partitioning the given dataset into M clusters 
so that a clustering criterion is optimized. The common 
clustering criterion is the sum of squared Euclidean 
distances between each data point and the cluster 
centroid. 
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Global k-means deploys the k-means algorithm to 

find locally optimal solutions by trying to keep the 
clustering error to a minimum. The k-means algorithm 
starts by placing the cluster center arbitrarily and at each 
step moves the cluster center with the aim to minimize 
the clustering error. The down side to this algorithm is 
that it is sensitive to the initial position of the cluster 
centers. To overcome this, k-means can be scheduled to 
run several times and each time with a different starting 
point. The gist of Global k-means is that instead of trying 
to find all cluster centers at once, it proceeds in an 
incremental fashion. Incremental in the sense that one 
cluster center is found at a time. 

Assume a K-clustering problem is to be solved; the 
algorithm starts by solving for a 1-clustering problem 
and the placement of the cluster center in this instance 
would equal the centroid of the given dataset. The next 
step would be to add another cluster center at its optimal 
position, given, the first cluster center has already been 
found. To do this, N-executions of k-means algorithm 
will be executed with the initial positions of the cluster 
centers being the first cluster which was found when 
solving for a 1-clustering problem and the second 
cluster’s starting position will be at nx  where 

.1 Nn ≤≤  The final answer for a 2-clustering problem 
will be the best solution from the N-executions of k-
means algorithm. Let (c1(k),…,ck(k)) denote the final 
solution for the k-clustering problem. We will solve it 
iteratively which means solving a 1-clustering problem, 

then a 2-clustering problem, until a (k-1)-clustering 
problem and the solution of k-clustering problem can be 
solved by performing N-executions of k-means algorithm 
with starting positions of (c1(k-1),…,c(k-1)(k-1),Xn). A 
simple pseudo code of it will be 

 
Problem: to solve k-clustering problem for dataset, X 

 
For i=1 to k 
{ 

If i = 1 then 
     =ic centroid of dataset, X 
Else 
     For j=1 to N 

 Run k-means with initial values of        
{ jii Xcc ,,..., 1− } 

} 
 
With the final solution, (c1(k),…,ck(k)), Global k-

means has actually found solutions of all k-cluster 
problem where k=1,…,K without needing any further 
computations. This assumption seems very natural: we 
expect that the solution of a k-clustering problem to be 
reachable (through local search) from the solution of a 
(k-1)-clustering problem, once the additional center is 
placed at an appropriate position within the data set. [10] 
Alas, the downside is that the computational time of 
Global k-means can be rather long. 

4.2 Fast Global k-means 
Using this method will help reduce the 

computational time taken by the Global k-means 
algorithm. The core difference is that, Fast Global k-
means does not perform N-executions of k-means 
algorithm with starting positions of (c1(k-1),…,c(k-1)(k-
1),Xn). Instead, what the algorithm does is to calculate the 
upper bound nn bEE −≤  on the resulting error, En, for 
every instances of Xn. We define E as the error value of 
(k-1)-clustering problem and bn as 
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with j

kd 1−  as the squared Euclidean distance 
between xj and the cluster centroid which it belongs to. 
After obtaining the value of bn, select the xi that 
maximizes bn and make it the new cluster centroid that 
will be added. This is because by maximizing the value 
of bn, we are at the same time minimizing the En value 
which as stated is our error. The new cluster centroid, xn, 
will allocate all data points which have a smaller squared 
Euclidean distance from xn rather than from their 
previous cluster centroid j

kd 1− . In view of that, the 
reduced clustering error for all those reassigned data 

points is 
2

1 jn
j

k xxd −−− . Then we execute the k-means 

algorithm to find the solution for k-clustering problem. 
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Since the k-means algorithm is guaranteed to decrease 
the clustering error at each step, nbE − upper bounds 
the error measure that will be obtained if we run the 
algorithm until convergence after inserting the new 
center at xn (this is the error measure used in the Global 
k-means algorithm). [10] 

5 Experiments and results 

5.1 General description 
First, a test is conducted using EM-based PNN with 

two types of initialization, random and Global k-means. 
The benchmark medical datasets together with the Iris 
dataset was used for this purpose. Then, a test between 
EM-based PNN with initialization from Global k-means 
and Fast Global k-means was done to observe the 
computational time and also the difference in 
classification performance. The benchmark medical 
datasets were used. Next were tests done on Westland 
vibration dataset using EM-based PNN with Global k-
means and also tests between Global k-means and Fast 
Global k-means to observe its accuracy and 
computational time. 

5.2 Comparative tests between random 
initialization and Global k-means 

Tests on the benchmark medical datasets and the Iris 
dataset [11] were conducted to observe the effects of 
random initialization and using Global k-means to 
initialize the parameter values in EM. The medical 
datasets consist of data from Cancer, Dermatology, 
Hepato, Heart and Pima.  
 

The Iris dataset consists of 150 samples and 4 input 
features. It was tested on PNN trained by EM with 
randomly initialized cluster centroids and EM with 
Global k-means initialization. Both the methods were 
executed in heteroscedastic PNN and in homoscedastic 
PNN. A ten-fold validation was used. The Iris dataset 
was set as a 10-clustering problem for Global k-means 
and the number of cluster centroids returned was based 
on minimizing the squared Euclidean distance between 
each data point in a cluster and its centroid. This was 
then used to set the cluster parameter for random 
initialization to help it get a better result and assume 
under similar conditions as the Global k-means. 
 

The mean accuracy of the homoscedastic with 
random initialization is 96.29% whilst the 
heteroscedastic version reports 95.36% accuracy. But in 
both cases, they were outdone by the accuracy of EM 
with Global k-means initialization, whose mean accuracy 
was 97.86% and 95.71% respectively, for homoscedastic 
and heteroscedastic PNN. Although random initialization 
was fed with the number of clusters needed by Global k-
means, Global k-means still had the better classification 
rate. 

 
Table 1: Correct classification rates for the Iris dataset. 

 Random initialization Global  
k-means 

Accuracy Homo Hetero Homo Hetero 
Min 95.71 94.29 - - 
Mean 96.29 95.36 97.86 95.71 
Max 96.43 95.71 - - 
 

The Cancer dataset contains 569 samples with a 30 
dimension size, whilst the Dermatology dataset contains 
358 samples with a 34 dimension size and the Hepato 
dataset contains 536 samples with a 9 dimension size. 
The Heart dataset contains 270 samples with a 13 
dimension size and two output labels, which are “0” for 
absence of heart disease and “1” for presence of heart 
disease. Pima data set is available from machines 
learning database at UCI [12]. The Pima dataset contains 
768 samples with an eight dimension size and has two 
classes which are diabetes positive and diabetes negative. 
A ten-fold validation was employed. When running using 
all the above datasets, Global k-means was set with a 
higher than required clustering problem to solve and in 
every case it returns a lower number of clusters which is 
optimum to the clustering criterion. This was also fed 
into EM for random initialization.  

 
Table 2: Correct classification rates for the medical 
datasets by using homoscedastic PNN. 

Random initialization Global  
k-means Dataset 

Min Mean Max Mean 
Cancer 90.00 90.63 90.96 91.92 
Dermatology 60.76 64.28 65.50 69.31 
Hepato 37.35 38.51 39.18 39.39 
Heart 62.40 63.52 64.40 58.80 
Pima 70.29 71.07 71.43 71.29 

 

Table 3: Correct classification rates for the medical 
datasets by using heteroscedastic PNN. 

Random initialization Global 
k-means Dataset 

Min Mean Max Mean 
Cancer 94.23 94.52 94.62 95.38 
Dermatology 86.87 88.05 89.08 89.54 
Hepato 51.22 52.47 53.27 58.57 
Heart 75.60 78.00 78.80 82.80 
Pima 66.86 68.17 68.86 69.00 

 

The Medical datasets showed improved performances of 
EM with Global k-means initialization, in both 
homoscedastic and heteroscedastic PNNs, over the usage 
of random initialization. Although in practice both were 
fed with the same number of clusters required, in most 
cases of the datasets, even the maximum accuracy from 
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the EM with random initialization is not higher than the 
mean of EM with initialization from Global k-means. 

5.3 Comparative tests between Global k-
means and Fast Global k-means 

In order to minimize computational time without 
sacrificing the classification performance, we opted for 
the Fast Global k-means implementation. Below is a 
comparison between Global k-means and Fast Global k-
means using both heteroscedastic and homoscedastic 
PNNs which were trained by the EM method. Tests were 
conducted on the medical datasets using a ten-fold 
validation and as usual, Global k-means was set to solve 
a higher clustering problem than required. 
 
Table 4: Comparison of correct classification rates. 

Fast Global  
k-means 

Global 
 k-means 

Dataset homo hetero homo hetero 
Cancer 92.69 94.23 91.92 95.38 
Dermatology 68.70 93.51 69.31 89.54 
Heart 68.80 79.60 58.80 82.80 
Hepato 47.76 59.59 50.00 59.59 
Pima 70.29 71.86 71.29 69.00 
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Figure 1: Comparison of correct classification rates. 

Table 5: Comparison of computational times in seconds. 

Fast Global  
k-means 

Global 
k-means Dataset 

homo hetero homo hetero 
Cancer 5.80 14.83 563.20 622.95 
Dermatology 11.69 20.95 849.34 950.77 
Heart 2.03 5.69 71.08 93.00 
Hepato 3.97 4.05 153.88 148.14 
Pima 29.55 43.47 3299.11 3427.41 

 
As shown in the results of Table 4 and Figure 1, Fast 

Global k-means provides a comparable correct 
classification rate on the benchmark medical datasets. On 
top of that, it still manages to accomplish its purpose 
which was to cut down on computational time. And 
Table 5 clearly supports this matter. 

5.4 Westland Vibration Dataset 
A real world case study was done; to test the EM 

trained PNN with initialization parameters obtained from 
the execution of Global k-means, using the popular 
benchmark dataset Westland [13]. This dataset consists 
of vibration time-series data which is gathered from an 
aft main power transmission of a U.S. Navy CH-46E 
helicopter by placing eight accelerometers at the known 
fault sensitive locations of the helicopter gearbox. The 
data was recorded for various faults including a no-defect 
case.  

 
Table 6: Westland helicopter gearbox data description. 

Fault  
type  Description 

2 Plenetary Bearing Corrosion 
3 Input Pinion Bearing Corrosion 
4 Spiral Bevel Input Pinion Spalling 
5 Helical Input Pinion Chipping 
6 Helical Idler Gear Crack Propagation 
7 Collector Gear Crack Propagation 
8 Quill Shaft Crack Propagation 
9 No Defect 

 
This dataset consists of 9 torque levels but for our 
experiment purposes, only the 100% torque level on 
sensors 1 to 4 is used. As the number of features from 
this dataset is quite substantial, feature reduction was 
needed. Wavelet packet feature extraction [14] was used 
to reduce the dimension of the input vectors without 
sacrificing too much of the classification performance.  
 
Wavelet packets, a generalization of wavelet bases, are 
alternative bases that are formed by taking linear 
combinations of the usual wavelet functions. [15][16] 
These bases inherit properties such as orthonormality and 
time-frequency localization from their corresponding 
wavelet functions. [14] Wavelet packet functions can be 
defined as 
 

)2(2)( 2/
, ktWtW jnjn
kj −=                               (13) 

 
where n is the modulation or oscillation parameter, j is 
the index scale and k is the translation. 
 
For a function, f, the wavelet packet coefficients can be 
calculated as below 
 

∫== dttWtfWfw n
kj

n
kjknj )()(, ,,,,                (14) 

 
In brief, the steps are; firstly, decompose the vibration 
signal using Wavelet Packet Transform (WPT) to extract 
out the time-frequency-dependant information. For each 
vibration signal segment, full decomposition is done up 
to the seventh level. This will produce a group of 

22 1 −+r sets of coefficients where r is the resolution 
level. Therefore, in our case it shall produce a group of 
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254 sets of coefficients where each set corresponds to a 
wavelet packet node. For the coefficients of every 
wavelet packet node, the wavelet packet node energy , 

nje , , is computed and this acts as the extracted feature.  
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After that, apply a statistical based feature selection 
criterion to help identify the features that provide the 
most discrimination amongst the classes of the dataset in 
focus, Westland. The Fisher’s criterion was used. [17] As 
a result, the number of features for Westland was 
reduced to eight and this modified dataset was fed into 
our model to test for classification rate by usage of 
Global k-means. 
 
Table 7: Correct classification rates for Westland using 
homoscedastic and heteroscedastic PNNs. 

Accuracy Sensor Hetero Homo 
1 96.06 86.06 
2 94.51 88.45 
3 95.92 87.89 
4 95.21 91.41 

 
The performance obtained by the proposed system 

on the 8-feature, 776-sample Westland dataset 
strengthens the positive performance that was marked in 
testing done on benchmark medical datasets. 

 
We then performed further testing on the Westland 

dataset using Global k-means and its variant, Fast Global 
k-means. It was tested on both homoscedastic and 
heteroscedastic PNNs and again ten-fold validation was 
applied. As can be seen in Figure 2, the performance in 
terms of accuracy is comparable between the two 
methods. Not much accuracy degradation is shown by 
Fast Global k-means on the Westland sensor 1 to 4 data. 
Though comparable in terms of accuracy, the time taken 
by both methods is very different. Global k-means is a far 
slower method in comparison to the computational time 
of Fast Global k-means. This justifies our proposal of 
using Fast Global k-means with our model because 
though admittedly classification performance degrades, 
but it is by an acceptable margin and the time reduction 
is significant. 

 
Table 8: Comparison of correct classification rates for 
Westland dataset. 

Fast Global  
k-means 

Global 
k-means Sensor 

homo hetero homo hetero 
1 84.93 96.48 86.06 96.06 
2 87.46 93.38 88.45 94.51 
3 86.76 95.77 87.89 95.92 
4 90.99 94.79 91.41 95.21 
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Figure 2: Comparison of correct classification rates. 

 
Table 9: Comparison of computational times in seconds. 

Fast Global  
k-means 

Global 
k-means Sensor 

homo hetero homo hetero 
1 6.38 7.99 237.30 234.41 
2 5.84 6.63 228.89 226.28 
3 5.97 8.42 230.64 234.51 
4 6.27 7.55 236.02 229.42 

6 Conclusion 
Although EM is a good choice to be used alongside 

PNN as its training algorithm, it has its downside. To rid 
of the stochastic nature that EM brings into our model, 
the Global k-means algorithm was used prior to EM to 
deterministically find the number of clusters based upon 
minimizing the clustering error. With this, the random 
trial and error values that the user was suppose to provide 
EM can be eliminated. Comparative test results indicated 
that even when set with the same number of clusters as 
Global k-means, EM with random initialization still had a 
poorer performance. This shows that EM with Global k-
means initialization will help instil in the PNN model, 
autonomous and deterministic traits. We further try to 
improve the model by doing comparative tests between 
Fast Global k-means and Global k-means to observe their 
correct classification rates and their computational times. 
The results were favourable to Fast Global k-means as it 
provided relatively close accuracy and yet much 
improved computational time. Then EM-based PNN with 
Global k-means initialization was tested on Westland 
with positive results. Also tested on Westland was Fast 
Global k-means and Global k-means to determine the 
accuracy and timing differences. Results further justified 
the usage of Fast Global k-means in our model. The 
model presented in this paper is a pattern classifier that is 
both autonomous and deterministic. Possible application 
of it is as a diagnosis model that can be used in the 
business industry to monitor the condition of assets, such 
as machines, and to classify them into their fault modes 
based on the input vectors received from sensors placed 
on the machine. 
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