ARS MATHEMATICA CONTEMPORANEA

On the Cayley Isomorphism Problem for a Digraph with 24 Vertices

Pablo Spiga
Università degli Studi di Padova
Dipartimento di Matematica Pura ed Applicata, 35131 Via Trieste 63, Padova, Italy

Received 9 January, accepted 15 May 2007, published online 19 June 2008

Abstract

In this paper we are mainly concerned with the Cayley isomorphism problem for groups containing Q_{8}. We prove that the group $Q_{8} \times C_{3}$ is not a CI-group with respect to colour ternary relational structures. Further, we prove that the non-nilpotent group $C_{3} \ltimes Q_{8}$ is not a CI-group with respect to graphs.

Keywords: Regular subgroup, Cayley isomorphism.
Math. Subj. Class.: 05E20, 05E99

1 Introduction

A k-ary relational structure X is an ordered pair (Ω, E), where E is a subset of the set Ω^{k}. A 3-ary relational structure is also referred to as a ternary relational structure. Further, if we assign a colour to each "edge" of E, then the resulting structure X is said to be a colour k-ary relational structure. Let $X=(\Omega, E)$ be a colour k-ary relational structure. We denote by Aut X the permutation group on Ω defined by $\left\{\sigma \in \operatorname{Sym}(\Omega) \mid e^{\sigma} \in E\right.$ for any $e \in$ E and e, e^{σ} have the same colour $\}$.

Let G be a permutation group on Ω and X be a (colour) k-ary relational structure on Ω. We say that X is a Cayley (colour) k-ary relational structure on the group G if the right regular representation of G is contained in Aut X. We note that in this case there is a natural bijection between Ω and G. Therefore, X is isomorphic to the (colour) k-ary relational structure (G, F), for some subset F of G^{k}. In particular, without loss of generality, we can assume that the underlying "vertex-set" of a Cayley (colour) k-ary relational structure on G is the group G itself.

[^0]Recall that if $X=(G, E)$ and $X^{\prime}=\left(G, E^{\prime}\right)$ are Cayley (colour) k-ary relational structures on G, then X and X^{\prime} are said to be Cayley isomorphic if there exists an automorphism of G that takes E to E^{\prime}.

The group G is said to be a CI-group with respect to (colour) k-ary relational structures if, for all Cayley (colour) k-ary relational structures X and X^{\prime} on G, the structures X and X^{\prime} are isomorphic if and only if they are Cayley isomorphic.

See [2] for an account of Cayley colour k-ary relational structures and CI-groups. We note that if $k=2$, then we get the usual definition of digraph, Cayley graph and CI-group. Furthermore, it is clear that if G is a CI-group with respect to Cayley colour k-ary relational structures, then G is CI-group with respect to Cayley k-ary relational structures

We recall that G is a CI-group with respect to (colour) k-ary relational structures if and only if, for any Cayley (colour) k-ary relational structure X on G, any two regular subgroups of Aut X isomorphic to G are conjugate in Aut X, see [1].

It is fairly interesting to note that, if $k \geq 4$, then the classification of CI-groups with respect to (colour) k-ary relational structures was achieved in [5].

Note that the classification of CI-groups with respect to (colour) graphs is a wide open and very interesting problem, see [4] for an overview of the main results.

We point out that the classification of CI-groups with respect to (colour) ternary relational structures is also wide open. We refer to [2] for an account of this problem.

In Theorem 6, we prove that $\mathrm{SL}(2,3)$ is not a CI-group with respect to graphs. In particular this result gives further restrictions on the structure of a CI-group and it narrows the list of possible CI-groups given in [4]. We note that $\operatorname{SL}(2,3)$ is isomorphic to $C_{3} \ltimes Q_{8}$, where the action of C_{3} on Q_{8} is non-trivial.

Also, in Theorem 8, we prove that $Q_{8} \times C_{3}$ is not a CI-group with respect to colour ternary relational structures. So, this result improves the list of possible CI-groups with respect to colour ternary relational structures given in [2].

It is worth noticing that Q_{8} and C_{3} are CI-groups with respect to colour ternary relational structures. In particular, $Q_{8} \times C_{3}$ is the only example known to the author of this paper, of a non CI-group with respect to colour ternary relational structures that is the direct product of CI-groups with respect to colour ternary relational structures of coprime order. We would like to point out that no example of this behaviour is known for CI-groups with respect to graphs.

2 The construction

Let Q_{H} and Q_{K} be isomorphic to Q_{8}, with generators i_{H}, j_{H} and i_{K}, j_{K} (respectively). So, $i_{H}^{2}=j_{H}^{2}=\left[i_{H}, j_{H}\right] \in \xi\left(Q_{H}\right)$ and $i_{H}^{4}=1$, and similar relations hold for the group Q_{K}. In this paper, $\xi(G)$ denotes the centre of a group G.

We denote by E the extraspecial group $Q_{H} \circ Q_{K}$, i.e. the central product of Q_{H} and Q_{K}, see [3]. In other words E is the direct product of Q_{H} and Q_{K} with their centres identified, i.e. $E=\left(Q_{H} \times Q_{K}\right) /\left\langle i_{H}^{2} i_{K}^{2}\right\rangle$. Then E is the 2-group of order 32 with generators $i_{H}, j_{H}, i_{K}, j_{K}$ and with relations

$$
\begin{aligned}
i_{H}^{4}=\left[i_{H}, i_{K}\right]=\left[i_{H}, j_{K}\right] & =\left[j_{H}, i_{K}\right]=\left[j_{H}, j_{K}\right]=1, \\
i_{H}^{2}=i_{K}^{2}=j_{H}^{2}=j_{K}^{2} & =\left[i_{H}, j_{H}\right]=\left[i_{K}, j_{K}\right] \in \xi(E) .
\end{aligned}
$$

We recall that if G is a finite group and $\varphi: G \rightarrow G$ is a function mapping a generating
set of G to another generating set of G and preserving the defining relations of G, then φ is an automorphism of G.

Now we denote by C the subgroup of $\operatorname{Aut}(E)$ generated by x, y, t, where x, y and t are defined as follows:

$$
\begin{array}{cccc}
i_{H}^{x}=j_{H}, & j_{H}^{x}=i_{H} j_{H}, & i_{K}^{x}=i_{K} j_{K}, & j_{K}^{x}=i_{K} \\
i_{H}^{y}=i_{H} j_{H}, & j_{H}^{y}=i_{H}, & i_{K}^{y}=i_{K} j_{K}, & j_{K}^{y}=i_{K} \\
i_{H}^{t}=i_{K}, & j_{H}^{t}=j_{K}, & i_{K}^{t}=i_{H}, & j_{K}^{t}=j_{H} .
\end{array}
$$

Using the previous paragraph and the relations of E given above, the reader may check that x, y and t define automorphisms of E.

Lemma 1. (i) $t^{2}=x^{3}=y^{3}=1$,
(ii) $x^{t}=x^{-1},[x, y]=1$ and $[t, y]=1$ (so y is in the centre of C),
(iii) C is isomorphic to $\operatorname{Sym}(3) \times C_{3}$, and
(iv) $x y$ centralizes i_{H}, j_{H} and $x y^{-1}$ centralizes i_{K}, j_{K}.

Proof. (i) By definition of t, we have that t^{2} fixes $i_{H}, j_{H}, i_{K}, j_{K}$. Therefore, t^{2} fixes every element of E, thus $t^{2}=1$. Now,

$$
i_{H}^{x^{3}}=\left(i_{H}^{x}\right)^{x^{2}}=\left(j_{H}^{x}\right)^{x}=\left(i_{H} j_{H}\right)^{x}=j_{H} i_{H} j_{H}=i_{H} .
$$

This yields that x^{3} centralizes i_{H}. Similarly, the reader can check that x^{3}, y^{3} centralize the generators $i_{H}, j_{H}, i_{K}, j_{K}$ of E. Therefore $x^{3}=y^{3}=1$.
(ii) We note that $i_{H}^{x^{t}}=i_{H}^{t x t}=i_{K}^{x t}=\left(i_{K} j_{K}\right)^{t}=i_{H} j_{H}=i_{H}^{x^{-1}}$. Similarly, the reader can check that $j_{H}^{x^{t}}=j_{H}^{x^{-1}}, i_{K}^{x^{t}}=i_{K}^{x^{-1}}, j_{K}^{x^{t}}=j_{K}^{x^{-1}}$. This says that $x^{t}=x^{-1}$. The proofs that $[y, t]=1$ and $[x, y]=1$ are analogous.
(iii) It follows from (i), (ii).
(iv) By definition of x and y, we have $i_{H}^{x y}=j_{H}^{y}=i_{H}$ and $j_{H}^{x y}=\left(i_{H} j_{H}\right)^{y}=i_{H} j_{H} i_{H}=$ j_{H}. Thus $x y$ centralizes i_{H}, j_{H}. Similarly, the reader can check that $x y^{-1}$ centralizes i_{K}, j_{K}.

If H is a subgroup of a group G, then we say that H is a core-free subgroup of G if the only normal subgroup of G contained in H is 1 , i.e. $\cap_{g \in G} H^{g}=1$. Recall that if H is a core-free subgroup of G, then the action of G on the right cosets of H in G is faithful.

Now we denote by A the group $C \ltimes E$. Consider $B=\left\langle i_{H} i_{K}^{-1}, t, x\right\rangle$. We denote by v_{1} the element $i_{H} i_{K}^{-1}$, and set $v_{2}=v_{1}^{x}, v_{3}=v_{2}^{x}$ and $B_{E}=B \cap E$.

Lemma 2. The group B_{E} is an elementary abelian 2-group of order 4 and consists of $\mathrm{id}, v_{1}, v_{2}, v_{3}$. The group B is isomorphic to $\operatorname{Sym}(4)$ and $B \cap B^{y}=\langle x, t\rangle$. The group B is a core-free subgroup of A.

Proof. The elements v_{1}, v_{2}, v_{3} have order 2 and

$$
v_{1} v_{2}=i_{H} i_{K}^{-1} j_{H}\left(i_{K} j_{K}\right)^{-1}=i_{H} j_{H} j_{K}^{-1}=v_{3}
$$

So, $v_{1}, v_{2}, v_{1} v_{2}$ are involutions and hence v_{1} and v_{2} commute. Therefore $\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is an elementary abelian 2 -group of order 4. Further, $v_{1}^{t}=v_{1}$ and $v_{2}^{t}=v_{3}$. This shows that $B_{E}=\left\langle v_{1}, v_{2}\right\rangle$. In particular, $B_{E}=\left\{\mathrm{id}, v_{1}, v_{2}, v_{3}\right\}$.

Now, $B=\langle x, t\rangle \ltimes B_{E}$ and Lemma $1(i),(i i)$ yields $B \cong \operatorname{Sym}(4)$.
By Lemma $1(i i)$, we have $B \cap B^{y} \geq\langle x, t\rangle$. Now, as B is isomorphic to $\operatorname{Sym}(4)$ and $\langle x, t\rangle$ is isomorphic to $\operatorname{Sym}(3)$, we have that either $B \cap B^{y}=\langle x, t\rangle$ or $B=B^{y}$. Since $v_{1}^{y}=i_{H} j_{H}\left(i_{K} j_{K}\right)^{-1} \in B^{y} \backslash B$, we get $B \cap B^{y}=\langle x, t\rangle$.

Thus, if B contains a normal subgroup N of A, we must have $N \leq\langle x, t\rangle$. But $\langle x, t\rangle \cong$ $\operatorname{Sym}(3)$, and the only subgroup of $\operatorname{Sym}(3)$ normal in $\operatorname{Sym}(4)$ is 1 . So $N=1$. Thus B is a core-free subgroup of A.

Define $H=\left\langle i_{H}, j_{H}, x y\right\rangle, K=\left\langle i_{K}, j_{K}, x y^{-1}\right\rangle, U=\left\langle i_{H}, j_{H}, y\right\rangle$ and $V=\left\langle i_{H}, j_{H}\right.$, $\left.x y^{-1}\right\rangle$.

Note that, by the definition of x, y and by Lemma $1(i v)$, the groups H, K are isomorphic to $Q_{8} \times C_{3}$ and U, V are isomorphic to $\mathrm{SL}(2,3)$ (we recall that $\mathrm{SL}(2,3)$ is isomorphic to $C_{3} \ltimes Q_{8}$, where the action of C_{3} on Q_{8} is non-trivial).
Lemma 3. $B \cap H=B \cap K=B \cap U=B \cap V=1$ and $B H=B K=B U=B V=A$.
Proof. We first prove that $B \cap H=B \cap K=1$ and $B H=B K=A$. Since t lies in B and $H^{t}=K$, it is enough to prove that $B \cap H=1$ and $B H=A$. We have $B \cap$ $H \subseteq E\langle x, t\rangle \cap E\langle x y\rangle=E$. So, $B \cap H=B \cap(H \cap E)=B \cap\left\langle i_{H}, j_{H}\right\rangle=1$. Since $|A|=|E||C|=32 \cdot 18=24 \cdot 24=|H||B|$ and $B \cap H=1$, we have $B H=H B=A$.

Now, we prove that $B \cap U=1$ and $B U=A$. We have $B \cap U \subseteq E\langle x, t\rangle \cap E\langle y\rangle=E$. So, $B \cap U=B \cap(U \cap E)=B \cap\left\langle i_{H}, j_{H}\right\rangle=1$. Since $|A|=|U||B|$ and $B \cap H=1$, we have $B U=A$. Similarly, the reader can check that $B \cap V=1$ and $B V=A$.

Next, we consider the action of A on the right cosets $\Omega=A / B$. Lemma 2 yields that A is a permutation group of degree 24 with point stabilizer isomorphic to $\operatorname{Sym}(4)$. Lemma 3 yields that H, K, U and V are regular subgroups of A.

Lemma 4. Let Δ be the B-orbit of the point $B y$ of Ω. We have

$$
\Delta=\left\{B y, B y v_{1}, B y v_{2}, B y v_{3}\right\}
$$

and the action of B on Δ is equivalent to the action of $\operatorname{Sym}(4)$ on four points.
Proof. By Lemma 2, we have $B \cap B^{y}=\langle x, t\rangle$. Therefore, the group B_{E} acts regularly on Δ. Since y centralizes $\langle x, t\rangle$, we have that every element of $\langle x, t\rangle$ fixes $B y$. So, $\Delta=$ $\left\{B y, B y v_{1}, B y v_{2}, B y v_{3}\right\}$. Moreover,

$$
B y v_{1} x=B x\left(y v_{1}\right)^{x}=B y v_{2}, B y v_{2} x=B x\left(y v_{2}\right)^{x}=B y v_{3} .
$$

This shows that x acts on Δ as a 3 -cycle. Similarly,

$$
B y v_{1} t=B t y v_{1}=B y v_{1}, B y v_{2} t=B t\left(y v_{2}\right)^{t}=B y v_{3} .
$$

This says that t acts on Δ as a 2 -cycle. Thus the lemma is proved.
Let \mathcal{S} be the orbital corresponding to the suborbit Δ of A, i.e. $\mathcal{S}=\{(B a, B y a) \mid a \in A\}$. Let Γ be the orbital digraph of A corresponding to the orbital \mathcal{S}, we recall that Γ has vertex set Ω and edge set \mathcal{S}. We note that, by construction, A is a subgroup of Aut Γ.
Proposition 5. $A=\operatorname{Aut} \Gamma$.
Proof. Since B acts 4-transitively on Δ, it is enough to prove that if σ is an automorphism of Γ fixing the vertex B and the out-neighbours of B, then $\sigma=\mathrm{id}$. We leave this routine exercise to the conscientious reader.

$3 \mathrm{SL}(2,3)$

In this section, we prove that $\mathrm{SL}(2,3)$ is not a CI-group (with respect to graphs). We recall that $U \cong V \cong \mathrm{SL}(2,3)$.

Theorem 6. The group $\mathrm{SL}(2,3)$ is not a CI-group with respect to graphs.
Proof. The groups U, V are regular subgroups of A isomorphic to $\operatorname{SL}(2,3)$. Furthermore, by Proposition 5, the group A is the automorphism group of the digraph Γ. In particular, Γ is a Cayley graph on $\mathrm{SL}(2,3)$. Therefore, it is enough to prove that U, V are not conjugate in A. We argue by contradiction. Let g be in A such that $U^{g}=V$. Since $\left\langle i_{H}, j_{H}\right\rangle$ is a characteristic subgroup of U and V, we have $\left\langle i_{H}, j_{H}\right\rangle^{g}=\left\langle i_{H}, j_{H}\right\rangle$, i.e. $g \in N_{A}\left(\left\langle i_{H}, j_{H}\right\rangle\right)=\langle x, y\rangle E$. Now, $g=z e$ for some $z \in\langle x, y\rangle$ and $e \in E$. The element y lies in U, therefore $y^{g}=$ $\left(y^{z}\right)^{e}=y^{e}=y[y, e]$ lies in V. But $V \subseteq\left\langle x y^{-1}\right\rangle E$ and $[y, e] \in E$, so $y \in\left\langle x y^{-1}\right\rangle$, a contradiction.

$4 Q_{8} \times C_{3}$

In this section, we prove that $Q_{8} \times C_{3}$ is not a CI-group with respect to colour ternary relational structures. We recall that $H \cong K \cong Q_{8} \times C_{3}$.

Set $G=E\langle x, y\rangle$. Let \mathcal{T}_{1} be the subset of Ω^{3} defined by $\{(B g, B g, B y g) \mid g \in G\}$. Also, let \mathcal{T}_{2} be the subset of Ω^{3} given by $\left\{\left(B g, B i_{H} g, B j_{H}^{-1} g\right) \mid g \in G\right\}$. The sets $\mathcal{T}_{1}, \mathcal{T}_{2}$ define two ternary relational structures on Ω. We recall that Aut $\mathcal{T}_{i}=\left\{\sigma \in \operatorname{Sym}(\Omega) \mid t^{\sigma} \in\right.$ \mathcal{T}_{i} for any $\left.t \in \mathcal{T}_{i}\right\}$, for $i=1,2$.

Proposition 7. $G=$ Aut $\mathcal{T}_{1} \cap$ Aut \mathcal{T}_{2}.
Proof. We claim that $A=$ Aut \mathcal{T}_{1}. The group G is a transitive subgroup of A and, by Lemma 4, the stabilizer in G of the point B of Ω is isomorphic to Alt(4) and acts transitively on Δ. This says that $\{(B g, B y g) \mid g \in G\}=\{(B a, B y a) \mid a \in A\}=\mathcal{S}$. Let σ be in Aut \mathcal{T}_{1} and e be in \mathcal{S}. Now, $e=(B g, B y g)$, for some $g \in G$. Set $\tau=(B g, B g, B y g)$. Now, $\tau \in \mathcal{T}_{1}$, therefore $\tau^{\sigma} \in \mathcal{T}_{1}$. So, $\tau^{\sigma}=\left(B g^{\prime}, B g^{\prime}, B y g^{\prime}\right)$, for some $g^{\prime} \in G$. In particular $e^{\sigma}=\left(B g^{\prime}, B y g^{\prime}\right) \in \mathcal{S}$. Since e is an arbitrary element of \mathcal{S}, we get $\sigma \in$ Aut $\Gamma=A$. Since σ is an arbitrary element of Aut \mathcal{T}_{1}, we get Aut $\mathcal{T}_{1} \subseteq A$. By a similar argument, $A \subseteq$ Aut \mathcal{T}_{1}. Therefore, $A=$ Aut \mathcal{T}_{1}.

By construction, the group G is a subgroup of Aut \mathcal{T}_{i}, for $i=1,2$. The group G has index 2 in A and $A=G\langle t\rangle$. Therefore $G=$ Aut $\mathcal{T}_{1} \cap$ Aut \mathcal{T}_{2} if and only if $t \notin$ Aut \mathcal{T}_{2}. Now, by Lemma $1,\left(B, B i_{H}, B j_{H}^{-1}\right)^{t}=\left(B t, B i_{H} t, B j_{H}^{-1} t\right)=\left(B, B i_{K}, B j_{K}^{-1}\right)$. Since there is no element $g \in G$ such that $\left(B g, B i_{H} g, B j_{H}^{-1} g\right)=\left(B, B i_{K}, B j_{K}^{-1}\right)$, we have $t \notin$ Aut \mathcal{T}_{2}. Thus the proposition is proved.

Theorem 8. The group $Q_{8} \times C_{3}$ is not a CI-group with respect to colour ternary relational structures.

Proof. The groups H, K are regular subgroups of G. Furthermore, by Proposition 7, the group G is the automorphism group of a colour ternary relational structure (indeed, with just two colours: $\mathcal{T}_{1}, \mathcal{T}_{2}$). In particular, \mathcal{T}_{i} is a Cayley ternary relational structure on $Q_{8} \times C_{3}$, for $i=1,2$. So, it is enough to prove that H, K are not conjugate in G. We argue by contradiction. Let g be in G such that $H^{g}=K$. Clearly, $\left\langle i_{H}, j_{H}\right\rangle^{g}=\left\langle i_{K}, j_{K}\right\rangle$. Since $\left\langle i_{H}, j_{H}\right\rangle$ is a normal subgroup of G, we get a contradiction.

References

[1] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), 329-336.
[2] E. Dobson, On the Cayley isomorphism problem for ternary relational structures, J. Combin. Theory Ser. A 101 (2003), no. 2, 225-248.
[3] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Mathematical Society Monographs. New Series, 27, Oxford Science Publications, Oxford University Press, Oxford, 2002. xii+334 pp.
[4] C. H. Li, On Isomorphisms of finite Cayley graphs - a survey, Discrete Math. 246 (2002), 301-334.
[5] P. P. Pálfy, Isomorphism problem for relational structures with a cyclic automorphism, European Journal of Comb. 8 (1987), 35-43.

[^0]: E-mail address: spiga@math.unipd.it (Pablo Spiga)

