
Also available on http://amc.imfm.si

ARS MATHEMATICA CONTEMPORANEA 1 (2008) 38–43

On the Cayley Isomorphism Problem for a
Digraph with 24 Vertices

Pablo Spiga
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Abstract

In this paper we are mainly concerned with the Cayley isomorphism problem for groups
containing Q8. We prove that the group Q8 × C3 is not a CI-group with respect to colour
ternary relational structures. Further, we prove that the non-nilpotent group C3 nQ8 is not a
CI-group with respect to graphs.
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1 Introduction
A k-ary relational structure X is an ordered pair (Ω, E), where E is a subset of the set Ωk.
A 3-ary relational structure is also referred to as a ternary relational structure. Further, if we
assign a colour to each “edge” of E, then the resulting structure X is said to be a colour
k-ary relational structure. Let X = (Ω, E) be a colour k-ary relational structure. We denote
by AutX the permutation group on Ω defined by {σ ∈ Sym(Ω) | eσ ∈ E for any e ∈
E and e, eσ have the same colour}.

Let G be a permutation group on Ω and X be a (colour) k-ary relational structure on Ω.
We say that X is a Cayley (colour) k-ary relational structure on the group G if the right
regular representation of G is contained in AutX . We note that in this case there is a natural
bijection between Ω and G. Therefore, X is isomorphic to the (colour) k-ary relational
structure (G,F ), for some subset F of Gk. In particular, without loss of generality, we can
assume that the underlying “vertex-set” of a Cayley (colour) k-ary relational structure on G
is the group G itself.
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Recall that if X = (G,E) and X ′ = (G,E′) are Cayley (colour) k-ary relational struc-
tures on G, then X and X ′ are said to be Cayley isomorphic if there exists an automorphism
of G that takes E to E′.

The group G is said to be a CI-group with respect to (colour) k-ary relational structures
if, for all Cayley (colour) k-ary relational structures X and X ′ on G, the structures X and X ′

are isomorphic if and only if they are Cayley isomorphic.
See [2] for an account of Cayley colour k-ary relational structures and CI-groups. We

note that if k = 2, then we get the usual definition of digraph, Cayley graph and CI-group.
Furthermore, it is clear that if G is a CI-group with respect to Cayley colour k-ary relational
structures, then G is CI-group with respect to Cayley k-ary relational structures

We recall that G is a CI-group with respect to (colour) k-ary relational structures if and
only if, for any Cayley (colour) k-ary relational structure X on G, any two regular subgroups
of AutX isomorphic to G are conjugate in AutX , see [1].

It is fairly interesting to note that, if k ≥ 4, then the classification of CI-groups with
respect to (colour) k-ary relational structures was achieved in [5].

Note that the classification of CI-groups with respect to (colour) graphs is a wide open
and very interesting problem, see [4] for an overview of the main results.

We point out that the classification of CI-groups with respect to (colour) ternary relational
structures is also wide open. We refer to [2] for an account of this problem.

In Theorem 6, we prove that SL(2, 3) is not a CI-group with respect to graphs. In partic-
ular this result gives further restrictions on the structure of a CI-group and it narrows the list
of possible CI-groups given in [4]. We note that SL(2, 3) is isomorphic to C3 n Q8, where
the action of C3 on Q8 is non-trivial.

Also, in Theorem 8, we prove thatQ8×C3 is not a CI-group with respect to colour ternary
relational structures. So, this result improves the list of possible CI-groups with respect to
colour ternary relational structures given in [2].

It is worth noticing thatQ8 and C3 are CI-groups with respect to colour ternary relational
structures. In particular, Q8 × C3 is the only example known to the author of this paper, of
a non CI-group with respect to colour ternary relational structures that is the direct product
of CI-groups with respect to colour ternary relational structures of coprime order. We would
like to point out that no example of this behaviour is known for CI-groups with respect to
graphs.

2 The construction
Let QH and QK be isomorphic to Q8, with generators iH , jH and iK , jK (respectively). So,
i2H = j2H = [iH , jH ] ∈ ξ(QH) and i4H = 1, and similar relations hold for the group QK . In
this paper, ξ(G) denotes the centre of a group G.

We denote by E the extraspecial groupQH ◦QK , i.e. the central product ofQH andQK ,
see [3]. In other wordsE is the direct product ofQH andQK with their centres identified, i.e.
E = (QH×QK)/〈i2H i2K〉. ThenE is the 2-group of order 32 with generators iH , jH , iK , jK
and with relations

i4H = [iH , iK ] = [iH , jK ] = [jH , iK ] = [jH , jK ] = 1,
i2H = i2K = j2H = j2K = [iH , jH ] = [iK , jK ] ∈ ξ(E).

We recall that if G is a finite group and ϕ : G → G is a function mapping a generating
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set of G to another generating set of G and preserving the defining relations of G, then ϕ is
an automorphism of G.

Now we denote by C the subgroup of Aut(E) generated by x, y, t, where x, y and t are
defined as follows:

ixH = jH , jxH = iHjH , ixK = iKjK , jxK = iK
iyH = iHjH , jyH = iH , iyK = iKjK , jyK = iK
itH = iK , jtH = jK , itK = iH , jtK = jH .

Using the previous paragraph and the relations of E given above, the reader may check that
x, y and t define automorphisms of E.

Lemma 1. (i) t2 = x3 = y3 = 1,

(ii) xt = x−1, [x, y] = 1 and [t, y] = 1 (so y is in the centre of C),

(iii) C is isomorphic to Sym(3)× C3, and

(iv) xy centralizes iH , jH and xy−1 centralizes iK , jK .

Proof. (i) By definition of t, we have that t2 fixes iH , jH , iK , jK . Therefore, t2 fixes every
element of E, thus t2 = 1. Now,

ix
3

H = (ixH)x
2

= (jxH)x = (iHjH)x = jH iHjH = iH .

This yields that x3 centralizes iH . Similarly, the reader can check that x3, y3 centralize the
generators iH , jH , iK , jK of E. Therefore x3 = y3 = 1.

(ii) We note that ix
t

H = itxtH = ixtK = (iKjK)t = iHjH = ix
−1

H . Similarly, the reader can
check that jx

t

H = jx
−1

H , ix
t

K = ix
−1

K , jx
t

K = jx
−1

K . This says that xt = x−1. The proofs that
[y, t] = 1 and [x, y] = 1 are analogous.

(iii) It follows from (i), (ii).
(iv) By definition of x and y, we have ixyH = jyH = iH and jxyH = (iHjH)y = iHjH iH =

jH . Thus xy centralizes iH , jH . Similarly, the reader can check that xy−1 centralizes iK , jK .

If H is a subgroup of a group G, then we say that H is a core-free subgroup of G if the
only normal subgroup of G contained in H is 1, i.e. ∩g∈GHg = 1. Recall that if H is a
core-free subgroup of G, then the action of G on the right cosets of H in G is faithful.

Now we denote by A the group C n E. Consider B = 〈iH i−1
K , t, x〉. We denote by v1

the element iH i−1
K , and set v2 = vx1 , v3 = vx2 and BE = B ∩ E.

Lemma 2. The group BE is an elementary abelian 2-group of order 4 and consists of
id, v1, v2, v3. The group B is isomorphic to Sym(4) and B ∩ By = 〈x, t〉. The group B
is a core-free subgroup of A.

Proof. The elements v1, v2, v3 have order 2 and

v1v2 = iH i
−1
K jH(iKjK)−1 = iHjHj

−1
K = v3.

So, v1, v2, v1v2 are involutions and hence v1 and v2 commute. Therefore 〈v1, v2, v3〉 is an
elementary abelian 2-group of order 4. Further, vt1 = v1 and vt2 = v3. This shows that
BE = 〈v1, v2〉. In particular, BE = {id, v1, v2, v3}.
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Now, B = 〈x, t〉nBE and Lemma 1(i), (ii) yields B ∼= Sym(4).
By Lemma 1(ii), we have B ∩ By ≥ 〈x, t〉. Now, as B is isomorphic to Sym(4) and

〈x, t〉 is isomorphic to Sym(3), we have that either B ∩ By = 〈x, t〉 or B = By . Since
vy1 = iHjH(iKjK)−1 ∈ By \B, we get B ∩By = 〈x, t〉.

Thus, if B contains a normal subgroup N of A, we must have N ≤ 〈x, t〉. But 〈x, t〉 ∼=
Sym(3), and the only subgroup of Sym(3) normal in Sym(4) is 1. So N = 1. Thus B is a
core-free subgroup of A.

Define H = 〈iH , jH , xy〉, K = 〈iK , jK , xy−1〉, U = 〈iH , jH , y〉 and V = 〈iH , jH ,
xy−1〉.

Note that, by the definition of x, y and by Lemma 1(iv), the groups H,K are isomorphic
to Q8 × C3 and U, V are isomorphic to SL(2, 3) (we recall that SL(2, 3) is isomorphic to
C3 nQ8, where the action of C3 on Q8 is non-trivial).

Lemma 3. B ∩H = B ∩K = B ∩ U = B ∩ V = 1 and BH = BK = BU = BV = A.

Proof. We first prove that B ∩ H = B ∩ K = 1 and BH = BK = A. Since t lies in
B and Ht = K, it is enough to prove that B ∩ H = 1 and BH = A. We have B ∩
H ⊆ E〈x, t〉 ∩ E〈xy〉 = E. So, B ∩ H = B ∩ (H ∩ E) = B ∩ 〈iH , jH〉 = 1. Since
|A| = |E||C| = 32 · 18 = 24 · 24 = |H||B| and B ∩H = 1, we have BH = HB = A.

Now, we prove that B ∩ U = 1 and BU = A. We have B ∩ U ⊆ E〈x, t〉 ∩ E〈y〉 = E.
So, B ∩ U = B ∩ (U ∩ E) = B ∩ 〈iH , jH〉 = 1. Since |A| = |U ||B| and B ∩H = 1, we
have BU = A. Similarly, the reader can check that B ∩ V = 1 and BV = A.

Next, we consider the action of A on the right cosets Ω = A/B. Lemma 2 yields that A
is a permutation group of degree 24 with point stabilizer isomorphic to Sym(4). Lemma 3
yields that H,K,U and V are regular subgroups of A.

Lemma 4. Let ∆ be the B-orbit of the point By of Ω. We have

∆ = {By,Byv1, Byv2, Byv3}

and the action of B on ∆ is equivalent to the action of Sym(4) on four points.

Proof. By Lemma 2, we have B ∩ By = 〈x, t〉. Therefore, the group BE acts regularly
on ∆. Since y centralizes 〈x, t〉, we have that every element of 〈x, t〉 fixes By. So, ∆ =
{By,Byv1, Byv2, Byv3}. Moreover,

Byv1x = Bx(yv1)x = Byv2, Byv2x = Bx(yv2)x = Byv3.

This shows that x acts on ∆ as a 3-cycle. Similarly,

Byv1t = Btyv1 = Byv1, Byv2t = Bt(yv2)t = Byv3.

This says that t acts on ∆ as a 2-cycle. Thus the lemma is proved.

Let S be the orbital corresponding to the suborbit ∆ ofA, i.e. S = {(Ba,Bya) | a ∈ A}.
Let Γ be the orbital digraph of A corresponding to the orbital S, we recall that Γ has vertex
set Ω and edge set S. We note that, by construction, A is a subgroup of Aut Γ.

Proposition 5. A = Aut Γ.

Proof. Since B acts 4-transitively on ∆, it is enough to prove that if σ is an automorphism
of Γ fixing the vertex B and the out-neighbours of B, then σ = id. We leave this routine
exercise to the conscientious reader.
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3 SL(2, 3)

In this section, we prove that SL(2, 3) is not a CI-group (with respect to graphs). We recall
that U ∼= V ∼= SL(2, 3).

Theorem 6. The group SL(2, 3) is not a CI-group with respect to graphs.

Proof. The groups U, V are regular subgroups of A isomorphic to SL(2, 3). Furthermore, by
Proposition 5, the group A is the automorphism group of the digraph Γ. In particular, Γ is a
Cayley graph on SL(2, 3). Therefore, it is enough to prove that U, V are not conjugate in A.
We argue by contradiction. Let g be inA such that Ug = V . Since 〈iH , jH〉 is a characteristic
subgroup of U and V , we have 〈iH , jH〉g = 〈iH , jH〉, i.e. g ∈ NA(〈iH , jH〉) = 〈x, y〉E.
Now, g = ze for some z ∈ 〈x, y〉 and e ∈ E. The element y lies in U , therefore yg =
(yz)e = ye = y[y, e] lies in V . But V ⊆ 〈xy−1〉E and [y, e] ∈ E, so y ∈ 〈xy−1〉, a
contradiction.

4 Q8 × C3

In this section, we prove that Q8 × C3 is not a CI-group with respect to colour ternary
relational structures. We recall that H ∼= K ∼= Q8 × C3.

Set G = E〈x, y〉. Let T1 be the subset of Ω3 defined by {(Bg,Bg,Byg) | g ∈ G}.
Also, let T2 be the subset of Ω3 given by {(Bg,BiHg,Bj−1

H g) | g ∈ G}. The sets T1, T2
define two ternary relational structures on Ω. We recall that Aut Ti = {σ ∈ Sym(Ω) | tσ ∈
Ti for any t ∈ Ti}, for i = 1, 2.

Proposition 7. G = Aut T1 ∩Aut T2.

Proof. We claim that A = Aut T1. The group G is a transitive subgroup of A and, by
Lemma 4, the stabilizer in G of the point B of Ω is isomorphic to Alt(4) and acts transitively
on ∆. This says that {(Bg,Byg) | g ∈ G} = {(Ba,Bya) | a ∈ A} = S. Let σ be in
Aut T1 and e be in S. Now, e = (Bg,Byg), for some g ∈ G. Set τ = (Bg,Bg,Byg).
Now, τ ∈ T1, therefore τσ ∈ T1. So, τσ = (Bg′, Bg′, Byg′), for some g′ ∈ G. In particular
eσ = (Bg′, Byg′) ∈ S. Since e is an arbitrary element of S, we get σ ∈ Aut Γ = A. Since σ
is an arbitrary element of Aut T1, we get Aut T1 ⊆ A. By a similar argument, A ⊆ Aut T1.
Therefore, A = Aut T1.

By construction, the group G is a subgroup of Aut Ti, for i = 1, 2. The group G has
index 2 in A and A = G〈t〉. Therefore G = Aut T1∩Aut T2 if and only if t /∈ Aut T2. Now,
by Lemma 1, (B,BiH , Bj−1

H )t = (Bt,BiHt, Bj−1
H t) = (B,BiK , Bj−1

K ). Since there is
no element g ∈ G such that (Bg,BiHg,Bj−1

H g) = (B,BiK , Bj−1
K ), we have t /∈ Aut T2.

Thus the proposition is proved.

Theorem 8. The group Q8 × C3 is not a CI-group with respect to colour ternary relational
structures.

Proof. The groups H,K are regular subgroups of G. Furthermore, by Proposition 7, the
group G is the automorphism group of a colour ternary relational structure (indeed, with just
two colours: T1, T2). In particular, Ti is a Cayley ternary relational structure on Q8 × C3,
for i = 1, 2. So, it is enough to prove that H,K are not conjugate in G. We argue by
contradiction. Let g be in G such that Hg = K. Clearly, 〈iH , jH〉g = 〈iK , jK〉. Since
〈iH , jH〉 is a normal subgroup of G, we get a contradiction.
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