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Abstract

We provide algorithms to compute and produce subgroup lattices of finite permutation
groups. We discuss the problem of naming groups and we propose an algorithm that au-
tomatizes the naming of groups, together with possible ways of refinement. Finally we
announce an atlas of subgroup lattices for a large collection of finite almost simple groups
made available online.
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1 Introduction
The Classification of the Finite Simple Groups (CFSG) emphasizes the importance of the
finite simple groups in Group Theory. It is one of the most impressive achievements in
the history of Mathematics. We refer to [26] and the references provided there for a broad
literature on this wonderful theorem. Among the amazing achievements in this branch of
Mathematics, we find the ATLAS of Finite Groups [15] as well as the online version of the
ATLAS of Finite Group Representations [1].

Over the years, the finite simple groups have received a lot of attention with respect to
the study of geometry. The Theory of Buildings due to Jacques Tits, who was awarded the
Abel Prize in 2008, illustrates this perfectly. We refer for instance to [2] and references
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provided there. Much work has been done in this respect with the study of incidence
geometries associated to finite almost simple groups (we refer to [7, 9, 20] and references
cited there for a large documentation on this aspect).

The computations of subgroup lattices and tables of marks of permutation groups, and
in particular sporadic simple groups, have been a subject of interest for many decades,
linked among others to the search for a unified geometric interpretation of all finite simple
groups. Joachim Neubüser gave in [23] the first algorithm that was implemented later on
in the computational software CAYLEY and its successor MAGMA. Francis Buekenhout
computed in 1984 the lattices of M11 and J1 [5]. Then, Herbert Pahlings did the lattice of
J2 [24] in 1987. In 1988, Buekenhout and Sarah Rees produced the lattice of M12 (see [6]
and [16] for a few corrections). In 1991, Pfeiffer computed the table of marks of J3 and
in 1997, those of M22, M23 M24, McL [25]. Also in 1997, Merkwitz got the tables of
marks of He and Co3. In 1998, Derek Holt computed all conjugacy classes of subgroups
of O′N (personal communication). In a more general setting again, John Cannon, Bruce
Cox and Derek Holt described in [11] a new algorithm to compute the conjugacy classes of
subgroups of a given group that was used in MAGMA until 2005. Progresses on the com-
putation of maximal subgroups of a given group by Cannon and Holt [12] led Leemans to
a much faster algorithm to compute the subgroup lattice of a given group that is now avail-
able in MAGMA. In 2007, Leemans computed the full subgroup lattices of HS, Ru, Suz,
O′N, Co2 and Fi22 using permutation degree reduction at each step of the computation.
Recently, Naughton and Pfeiffer produced a new algorithm to compute the table of marks
of a cyclic extension of a group [22].

The knowledge of the subgroup lattice of a group G is a powerful tool to study the
symmetrical objects on which G acts. For instance, in [10], [13] and [21], the authors
build flag-transitive coset geometries of ranks 2, 3 and 5 for O′N by identifying boolean
lattices in the subgroup lattice of O′N. In [14], the authors develop an algorithm in order to
count the number of regular maps on which a finite group G acts regularly. This algorithm
makes an intensive use of the knowledge of the subgroup lattice of G. Then they illustrate
the algorithm on the group O′N. In a more general approach, [17] discusses the problem
of enumerating regular objects with a given automorphism group. The authors introduce,
among other things, the Möbius function for a group G as a tool to enumerate regular
objects. The knowledge of the Möbius function of G relies on the knowledge of the full
subgroup lattice of G.

In the spirit of contributing to the study of the finite simple groups, we present here an
algorithm that determines the subgroup lattice of a given permutation group. This algo-
rithm, designed by Leemans in 2007, proves itself to be lighter in memory and sometimes
even faster than the already implemented function SubgroupLattice in the software
MAGMA [4]. We also present an algorithm to determine structures of groups with a com-
puter. Those two algorithms allow us to produce an atlas of subgroup lattices for a large
number of finite almost simple groups. The atlas is made available online at

http://homepages.ulb.ac.be/∼tconnor/atlaslat

Our paper is organised as follows. In section 2, we present the algorithm that computes
the subgroup lattice of a permutation group G. It features a systematic reduction of the
permutation degree of the subgroups of G and a possibility to start the computation of the
subgroup lattice of G with partial information of the lattice already available. This permits
to compute the subgroup lattice of very large groups, like the O’Nan sporadic group O′N or
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even its automorphism group, currently out of reach with the SubgroupLattice func-
tion of MAGMA, but also Co2 and Fi22. In section 3 we discuss the problem of describing
the structure of a group in an efficient way. We present an algorithm that provides a struc-
ture for a group, based on a choice of suitable normal subgroups. In section 4 we present
our atlas of subgroup lattices as an application of the algorithms presented and discussed
in this paper.

2 The subgroup lattice of a permutation group

We refer to [18] as a reference on subgroup lattices. A lattice is a partially ordered set, or
poset, any two of whose elements a, b have a least upper bound a ∪ b and a greatest lower
bound a ∩ b. The subgroups of a group G may be taken as the elements of a lattice L(G)
under the operations of union and intersection. The poset of conjugacy classes of subgroups
forms also a lattice: two conjugacy classes A and B are such that A ⊇ B provided that any
subgroup of B is contained in some subgroup of A. We call this lattice the subgroup lattice
of G, rather than the lattice of conjugacy classes of subgroups of G for the sake of brevity,
and we denote it with Λ(G). Our terminology is also the one used in MAGMA. This lattice
can be refined with the length of each conjugacy class of subgroups. Moreover, given two
conjugacy classes of subgroups A ⊃ B, we define nAB to be the number of subgroups of
class B contained in any subgroup of class A; alike we define nBA to be the number of
subgroups of class A containing a subgroup of class B. Consider the set N of numbers
nXY for every couple of classes {X,Y } such that X ⊂ Y or X ⊃ Y and there does not
exist Z such that X ⊂ Z ⊂ Y or X ⊃ Z ⊃ Y . The subgroup lattice Λ(G) together with
the length of each conjugacy class and the set N is called the weighted subgroup lattice of
G.

We describe in this section a powerful and natural algorithm to compute the weighted
subgroup lattice of a given group G. The correctness of this algorithm is obvious.

Start with a set classes which is empty and a set sgr containing just one element,
namely the group G for which we want to compute the subgroup lattice. While sgr is
nonempty, pick one element H out of sgr and put it in classes. Obviously, it is G the
first time. Reduce the permutation degree of H and let φ : H → H̃ be an isomorphism
between H and H̃ where H̃ has a reduced permutation degree. Compute the maximal
subgroups of H̃ and for each maximal M̃ , add M := φ−1(M̃) to sgr provided there is
no subgroup in sgr conjugate to M in G. During that process, keep track of inclusions
of respective subgroups considered. At the end of this process, in classes there is one
representative of each conjugacy class of subgroups of G. Moreover, we also have the
maximal inclusions between classes. So the subgroup lattice is determined. The weighted
subgroup lattice can be determined in the process by computing weighted inclusions at
each step.

A MAGMA implementation of the algorithm described above to compute the subgroup
lattice of a given group is available on the webpage of the atlas. Observe that we use the
DegreeReduction function in MAGMA to get φ and H̃ for every subgroup H above.
This improvement can save a lot of time and memory. For instance, consider L3(7) : 2,
one of the maximal subgroups of the O’Nan sporadic group O′N, acting on 122760 points
(the smallest permutation representation of O′N ). Then MAGMA v.2.19 needs 13 sec-
onds and more than 200 Mb of memory to compute its maximal subgroups on a computer
running at 2.9 GHz. If we reduce the degree of L3(7) : 2 on 5586 points by using the
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DegreeReduction function, then MAGMA computes them in less than half a second
and takes about 20 Mb of memory.

Our implementation has three main advantages.

1. For permutation groups of large degree, say at least 1000, our algorithm will perform
faster;

2. Our algorithm will also need less memory for these groups;

3. This algorithm permits to compute the subgroup lattices of a group G unreachable
for the SubgroupLattice function of MAGMA when MAGMA does not know the
maximal subgroups of G, as for instance the O’Nan group, Fi22, Co2, etc. Indeed,
feeding the function with the maximal subgroups, or even part of the subgroup lattice
for groups like Aut(ON), of the group permits to proceed further.

On the other end, of course, if the permutation degree of the group is small, MAGMA
will tend to work faster as it is based on our algorithm without the degree reduction and the
degree reduction step will slow down the process instead of speeding it up.

3 The structures of a group
3.1 Preliminary remarks

Given any finite group G, it is always desirable to identify G in some sense. This identi-
fication can be done for instance in a geometrical way by determining the action of G on
some set or by algebraic means. In particular, most finite simple groups can be named after
their action on some structured set or after the mathematician that discovered them (like the
Suzuki groups or most of the sporadic groups). However some groups carry very different
names, depending on the incarnation of the group that the context requires to emphasise.
This is the case for instance of U4(2). Indeed,

S4(3) ∼= U4(2) ∼= O5(3) ∼= O−6 (3) ∼= W (E6).

Each of the names of this group emphasizes one of its actions on a structured set of partic-
ular interest. Therefore, when speaking about this group, one has to choose carefully the
name that should be used depending on the context. This observation means that one has
to be aware of possible isomorphisms between different incarnations of a group.

In MAGMA, there exists a database of finite simple groups. Given a simple group G,
one can thus ask MAGMA to name G by using the function NameSimple. This function
returns a triple of integers that permits to identify G as a group of one of the infinite fami-
lies of finite simple groups, or as one of the sporadic groups. Many non simple groups can
also be identified in a canonical way. This is the case of most of the almost simple groups
for instance, but also the case of the dihedral groups, or the groups AGL(n, q). Abelian
groups are also identified easily by a name thanks to the classification theorem of abelian
groups. However, most of the finite groups are not almost simple, and identifying them in
an efficient way by a name can be tricky. For instance, Leemans exhibited two non iso-
morphic primitive groups in [19] that satisfy the following property: they have isomorphic
posets of conjugacy classes of subgroups and for each normal subgroupN of the first, there
is a normal subgroup isomorphic to N in the second group such that the quotients by N
are isomorphic. In other words, it is not possible to make a difference between those two
groups by giving them names based on any quotient by a normal subgroup. This shows
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that the taxonomy of groups is a difficult and possibly not solvable problem. Hence we
should not look for a deterministic algorithm that gives names to groups since it is readily
impossible.

The case of p-groups is also particularly difficult to handle. For instance, there are
roughly 50 billions pairwise non-isomorphic groups of order 1024 and hence, finding a way
to give distinct names to each of them is hopeless, unless we decide to assign a number to
each of them, as is done for instance in the SMALLGROUPS database provided by [3].

3.2 Algorithmic approach

Let G be a group and let N be a normal subgroup of G. Denote by Q the quotient group
G/N . Then G can be written as N.Q where the dot “ . ” denotes an extension that can be
split (that is, a direct or a semi direct product) or non split. We denote a direct product by
“ × ”, a semi direct product by “ : ” and a non split extension by “ · ”.

We recall that a composition series forG is a sequence of subgroupsHi, i ∈ {0, . . . , n+
1} such that

1 = H0 / H1 / H2 / . . . / Hn / Hn+1 = G

where all inclusions are strict, i.e. Hi is a maximal normal subgroup of Hi+1. This is
equivalent to require that the composition factors Qi = Hi+1/Hi are simple groups,
i = 0, . . . , n. Clearly the group G can be written Hn.Qn. Alike, Hn can be written
Hn−1.Qn−1 and thus G can be written (Hn−1.Qn−1).Qn. Proceeding inductively, we can
finally write

G = (. . . (Q0.Q1).Q2) . . .).Qn.

However in order to reduce the notations, we always suppose that the products are left as-
sociate and we can thus avoid to write parentheses whenever there is no possible confusion.
Therefore by G ∼= A.B.C we mean G ∼= (A.B).C.

The Jordan–Hölder theorem states that every finite group has a unique composition
series up to the order of the terms [26]. Obviously, two non isomorphic groups can have
the same composition series. This is the case for instance of S5 andA5×2. In this particular
example, it is not enough to use the composition series of those two groups to distinguish
them. However S5

∼= A5 : 2 but S5 � A5 × 2.
On basis of the previous observations, we detail an algorithm that produces a name

for a group G in terms of a product of its composition factors. We detail afterwards an
improved algorithm that we actually used in order to produce the lattices of our atlas.
First of all, given N / G we need to check whether the extension N.Q is split or not, i.e.
G ∼= N : Q or G ∼= N · Q, where Q ∼= G/N as usual. If N is a maximal normal
subgroup of G, then Q is simple. We can use the database of simple groups in MAGMA
to identify Q and give it a name. We can now easily extract the following algorithm from
the previous observations. If G is simple, we are done. Suppose G is not simple. Compute
a composition series of G and the corresponding composition factors. At step n − i + 1,
identify the simple group Qi and check whether Hi.Qi is split or non split. If it is split,
check moreover if the extension is a direct product. The procedure returns the group G
written asG ∼= Q0.0Q1.1 . . . Qn−1.n−1Qn. where .i is a symbol in {×, :, ·}. Applying this
procedure to S5 for instance would produce A5 : 2. Applying it to the dihedral group D40

would produce 5× 2 · 2 : 2. Unfortunately, this could also be the result after applying this
algorithm to 5×D8. Finally applying it to an elementary abelian group 25 would produce
2× 2× 2× 2× 2.
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if G is simple then identify G
else if G is in the database then identify G
else if G has a ‘desirable property’ then identify G
else
compute the list L of normal subgroups of G
for each subgroup N in L in decreasing order do
if N is simple or has a ‘desirable property’ or is in the database then
identify N and identify the extension between N and G/N
proceed inductively on G/N
else if G/N has a ‘desirable property’ or is in the database then
identify G/N and identify the extension between N and G/N
proceed inductively on N
else if no N and no G/N is desirable then
take the largest N and proceed inductively

Figure 1: An improved naming algorithm

There is an obvious improvement of this algorithm. The guideline is that some non-
simple groups can be identified in a canonical way like the symmetric groups or the dihedral
groups for instance. Moreover in the process of building the Atlas that we describe in this
article, we observed for example that the group S3×S3 would not be named correctly most
of the time, or A4 would be written 22 : 3. Therefore we produced a database of selected
groups that our algorithm checks prior to computing the list of normal subgroups of G.
The algorithm also checks possible isomorphisms of G with ‘classical’ groups (like the
symmetric groups or the dihedral groups, for instance). IfG is not immediately identifiable,
our algorithm computes the list of normal subgroups of G. If a normal subgroup N or a
quotient G/N is appealing then our algorithm would select it and proceed inductively.

4 The atlas
For every almost simple group of order at most 1,000,000 appearing in the online version

of the Atlas of Finite Groups [1], we computed its subgroup lattice with the MAGMA im-
plementation of our algorithm, available on the homepage mentioned below. Given such a
lattice Λ, we ran the algorithm described in Figure 1 on every subgroup in Λ. We also pro-
ceeded in this way for some groups of order larger than 1,000,000 like some large sporadic
groups. The result is an atlas of more than a hundred subgroup lattices of almost simple
groups with a structure provided for every subgroup of each group. The atlas of subgroup
lattices is available online at

http://homepages.ulb.ac.be/∼tconnor/atlaslat.

Groups are subdivided in several families, namely almost simple groups of sporadic type,
alternating type, linear type, symplectic type, orthogonal type, unitary type and exceptional
Lie type. For each group G in the atlas, a pdf file containing the subgroup lattice of G is
available for download.
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