VSEBINA – CONTENTS IZVIRNI ZNANSTVENI ^LANKI – ORIGINAL SCIENTIFIC ARTICLES The effect of compositional variations on the fracture toughness of 7000 Al-alloys Vpliv sprememb v sestavi na `ilavost loma aluminijeve zlitine vrste 7000 M. Vratnica, Z. Cvijovi}, N. Radovi} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Wear mechanism of duplex-coated P/M Vanadis 6 ledeburitic steel Mehanizem obrabe ledeburitnega jekla P/M Vanadis 6 z dupleksno prevleko P. Jur~i, M. Hudáková . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Analiza toplotnih razpok na orodjih za tla~no litje aluminija Analysis of thermal cracks on die casting dies D. Klob~ar, J. Tu{ek, M. Pleterski, L. Kosec, M. Muhi~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Lasersko reparaturno varjenje termorazpok na orodjih za tla~no litje aluminija Laser repair welding of thermal cracks on aluminium die casting dies M. Pleterski, J. Tu{ek, L. Kosec, D. Klob~ar, M. Muhi~, T. Muhi~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Use of artificial neural networks in ball burnishing process for the prediction of surface roughness of AA 7075 aluminum alloy Uporaba umetnih nevronskih mre` za napoved hrapavosti povr{ine pri krogelnem glajenju aluminijeve zlitine AA 7075 U. Esme, A. Sagbas, F. Kahraman, M. Kemal Kulekci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 STROKOVNI ^LANKI – PROFESSIONAL ARTICLES Merjenje obrabne obstojnosti strukturne keramike Al2O3 Wear-resistance measurement of structural Al2O3 ceramics M. Ambro`i~, S. Veskovi~ Bukudur, T. Kosma~, K. Krnel, D. Eterovi~, N. Petkovi~ Habe, I. Pribo{i~ . . . . . . . . . . . . . . . . . . . . . . . . . . 221 DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES . . . . . . . . . . . 227 1. MEDNARODNA KONFERENCA O MATERIALIH IN TEHNOLOGIJAH POD POKROVITELJSTVOM IUVSTA IN FEMS 13. – 15. oktober, 2008, Portoro`, Slovenija 1st INTERNATIONAL CONFERENCE ON MATERIALS AND TECHNOLOGY SPONSORED BY IUVSTA AND FEMS 13–15 October, 2008, Portoro`, Slovenia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 ISSN 1580-2949 UDK 669+666+678+53 MTAEC9, 42(5)189–233(2008) MATER. TEHNOL. LETNIK VOLUME 42 [TEV. NO. 5 STR. P. 189–233 LJUBLJANA SLOVENIJA SEP.–OCT. 2008 M. VRATNICA ET AL.: THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS ... THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS OF 7000 Al-ALLOYS VPLIV SPREMEMB V SESTAVI NA @ILAVOST LOMA ALUMINIJEVE ZLITINE VRSTE 7000 Maja Vratnica1, Zorica Cvijovi}2, Nenad Radovi}2 1 Faculty of Metallurgy and Technology, University of Montenegro, 81000 Podgorica, Cetinjski put b. b., Montenegro 2 Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Karnegijeva 4, Serbia majavcg.ac.yu Prejem rokopisa – received: 2008-02-12; sprejem za objavo – accepted for publication: 2008-04-03 To provide an understanding of how compositional variations affect the microstructural parameters associated with coarse intermetallic (IM) particles and the fracture toughness in AA 7000 aluminum forgings, a microstructural and fractographic analysis as well as mechanical tests were carried out on three industrially produced Al-Zn-Mg-Cu alloys with different contents of impurities (Fe+Si). Light optical microscopy and image analysis were used to assess the volume fraction, size and distribution of all the soluble and insoluble coarse (> 0.1 µm) IM particles identified in the corresponding R-C and L-R planes for T73-type heat treatments by selective etching and energy-dispersive X-ray spectroscopy. These quantitative data were correlated with the plain-strain fracture toughness, KIC, with the results being used to produce useful information on alloy design and thermomechanical processing via microstructural control. The scanning electron microscope observation of fracture surface features and an estimation of the area fractions of different fracture modes in the plastic zone segments of a test specimen showed that multiple failure mechanisms occurred with coarse voiding at the intermetallics becoming more important as the fraction of coarse IM particles increases. A quantitative assessment of the relevant microstructural and fractographic parameters will be utilized for developing and verifying a multiple micromechanisms-based model for fracture toughness. Key words : 7000 Al- alloys, chemical composition, microstructure, fracture toughness S ciljem, da se ugotovi, kako spremembe v sestavi vplivajo na parametre mikrostrukture, odvisne od velikih delcev intermetalnih spojin (IM), in na `ilavost loma v izkovkih iz zlitine AA 7000, so bile izvr{ene mikrostrukturne, mikrofraktografske in mehanske preiskave pri treh industrijskih zlitinah Al-Zn-Mg-Cu z razli~no vsebnostjo ne~isto~ (Fe + Si). Opti~na mikroskopija in analiza slike sta bili uporabljeni za dolo~itev volumenskega dele`a, velikosti in porazdelitve topnih in netopnih velikih (>0,1 µm) IM-zrn v ustreznih R-C- in L-R-ploskvah po toplotni obdelavi T73 s selektivnim jedkanjem in z disperzivno spektroskopijo rentgenskih `arkov. Ti kvantititivni podatki so bili korelirani z `ilavostjo loma KIC, dobljeni pa so bili tudi podatki, ki so koristna informacija za na~rtovanje zlitin in termomehansko obdelavo s kontrolo mikrostrukture. Analiza prelomnih povr{in z vrsti~nim mikroskopom in dolo~itev povr{ine razli~nih dele`ev preloma v plasti~ni zoni preizku{ancev je pokazala ve~ vrst mehanizmov preloma in nastanek tem ve~ velikih jamic ob IM-zrnih, ~im ve~ji je bil dele` teh velikih zrn. Kvantitativna ocena relevantnih mikrostrukturnih in mikrofraktografskih parametrov bo uporabljena za razvoj in za verifikacijo modela `ilavosti loma na podlagi ve~ mahanizmov preloma. Klju~ne besede: aluminijeva 7000 zlitina, kemi~na sestava, mikrostruktura, `ilavost loma 1 INTRODUCTION High-strength aluminum alloys of the AA 7000 (Al-Zn-Mg-Cu) series are widely used for structural applications due to their good combination of specific strength and fracture toughness1. However, the critical fracture toughness properties, especially in the short transverse direction, may be seen as questionable, since the fracture resistance is influenced by a number of parameters, including a range of microstructural features that are controlled by the chemistry and processing1,2,3,4. Furthermore, the microstructural anisotropy associated with wrought materials may influence the failure mode depending on the load and crack orientation2. It is now recognized that the coarse particles of intermetallic (IM) phases are generally detrimental to the fracture properties. This is associated with the fact that although the fracture processes in precipitation-hardened AA 7000 alloy products involve multiple micromecha- nisms, the decohesion and fracture of these particles, which are brittle and have weak interface bonding, is the first step in a sequence of events that lead to the overall material fracture1,2,5. The remaining fracture path is partitioned between intergranular fracture and micro- void-induced transgranular fracture. The undesirable coarse particles with sizes in the range of 1 µm to 20 µm are IM phases of two types: (a) insoluble Fe- and Si-bearing phases formed during the solidification process, and (b) normally soluble phases containing alloying elements that do not completely dissolve during the homogenization and solution treatment1. In order to improve the toughness, it is necessary to achieve the lowest levels of coarse IM particles. The removal of excess amounts of the soluble particles is possible by controlling all the stages of processing. But, the limits on the reduction of the Fe and Si impurities are set by the cost and the availability of high-purity materials. Consequently, these impurities are always present in commercial alloys. They react with Al and alloying elements such as Mg and Cu to form a large Materiali in tehnologije / Materials and technology 42 (2008) 5, 191–196 191 UDK 669.715:539.42 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 42(5)191(2008) number of phases6. In addition, these alloys contain Mn and Cr, which may also be present in the form of coarse IM particles, since they combine with Fe, Si and Al. Therefore, it is of interest to predict the variation in the fracture properties as a function of the micro- structural parameters, such as the volume fraction of coarse IM particles, their size and their spatial distribution. However, most of the available information is concerned with the properties of wrought alloys. Systematic and in-depth quantitative microstructural and fractographic examinations of commercial AA 7000 alloys in the form of thick plates cut out from forgings have not been widely conducted. It is the purpose of this contribution to report on a microstructural and fractographic investigation of the effect of compositional variations on the attributes associated with coarse IM particles and the fracture toughness of modern AA 7000 alloy forgings (the high-zinc variant) in the over-aged condition as a function of test orientation. The failure mechanisms are identified and the individual contri- butions to the overall fracture are quantitatively assessed. The data are then used to obtain a relationship between the microstructural parameters and the plane-strain fracture toughness, with the results being utilized for the modeling of toughness. 2 EXPERIMENTAL Three industrial alloys with Zn, Mg, and Cu levels broadly in the range of the AA 7049 composition were received in the form of hot-forged 50-mm-thick pancake-type plates. The chemical composition of each alloy is given in Table 1. The amounts of alloying elements are very near to the nominal ones. The only difference in composition between the alloys is the total (Fe+Si) content, which increases gradually from alloy 1 through alloy 3. Figure 1 shows the cutting of the tests specimens from the received plates. All three alloys were solution treated at 460 °C for 1 h, water-quenched, and aged to a T73 temper. The two-step T73 over-aged treatment consisted of the aging of the specimens for 5 h at 100 °C and 5 h at 160 °C. Light optical microscopy (LOM) and image analyses were used to characterize the microstructure of the as-heat-treated plates. Metallographic sections were taken from the corresponding R-C and L-R planes. The specimens were then prepared using standard metallo- graphic techniques. A selective etching and energy- dispersive X-ray spectroscopy (EDS) analysis on a scanning electron microscope (SEM) were used to identify the IM phases present. The volume fraction of all the soluble and insoluble coarse IM particles, VV, their size expressed by the average intercept length, L, and the mean free path, , characterizing the space distribution were assessed with the line-intercept method. The measurements were carried out on 500 uniformly sampled microstructural frames at a magnification of 1000 times. Plane-strain fracture-toughness tests were performed in accordance with ASTM E399 on the specimens of the corresponding R-C and L-R orien- tations, i.e., on the single-edge-notched three-point bending specimens (SEB) of R-C orientation and the compact-tension (CT) specimens of L-R orientation. The specimens were fatigue pre-cracked according to the ASTM standard specifications. In all cases, three specimens were tested. The KIC values for the R-C orientation specimens were obtained from the J-integral data. JIC was evaluated with the unloading compliance technique, with a single specimen for each JIC result. The J-integral and the crack growth, a, were calculated in accordance with ASTM E1152 and ASTM E813. On a broken specimen an SEM fractographic examination was performed to explain the fracture mechanism. The fracture surface morphology was investigated in the central region of the plastic zone ahead of the fatigue pre-crack. The area fraction of the microvoid-induced transgranular fracture regions, AAt, the intergranular fracture regions, AAi, and the coarse IM particles, AAp, were estimated. The area measurements were performed on SEM fractographs by tracing the areas on a digitizing M. VRATNICA ET AL.: THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS ... 192 Materiali in tehnologije / Materials and technology 42 (2008) 5, 191–196 Figure 1: (a) Schematic illustration of the specimen orientations used for the fracture-toughness tests (L-longitudinal direction, C-circumferential or tangential direction, R-radial direction) and (b) locations of the metallographic planes for the microstructural analysis (b) Slika 1: (a) Shema orientacije vzorcev, uporabljenih za preizkuse `ilavosti loma (L-vzol`na smer, C tangencialna smer, R – radialna smer) in (b) mesto odvzema vorcev za mikrostrukturno analizo tablet. These measurements provided the data to quantify the contributions of the different fracture micromecha- nisms to the plane-strain fracture-initiation process as a function of the purity degree and the specimen orien- tation. 3 RESULTS AND DISCUSSION 3.1 Analysis of the microstructural data Typical microstructures of simple uniaxially forged material after the full heat treatment are illustrated in Figure 2. All the forgings show a deformed dendrite cell structure with coarse IM particles having an average size of 1.27–2.43 µm. As expected, relatively coarse and closely spaced precipitates, mostly situated on the grain boundary surrounded by the precipitate-free zones (PFZs), were also observed (Figure 2a). The TEM characterization of the precipitation in AA 7000 alloys by previous authors1,2 indicates that these particles are variants of the -Mg(Cu,Al,Zn)2 phase. In the Al-rich matrix there was a dense population of uniformly distributed dispersoids1,2,4 and fine precipitates of the  and ' phases1,2 that contributed to the precipitation hardening. On the other hand, the coarse IM particles are inhomogeneously distributed and aligned in the direction of the prevailing deformation, as observed on the metallographic plane of L-R orientation (Figure 2b). The micrographs also illustrate the IM particles that are irregularly shaped and of different types (Figures 2c and d). The combined use of the metallographic and EDS analyses indicates that these particles are of the following types: (a) soluble Mg(Cu,Al,Zn)2, S-CuMgAl2, and, most often observed, Mg2Si, (b) the Fe-bearing phases Al7Cu2Fe, (Cu,Fe,Mn)Al3 and a very little of (Cu,Fe,Mn)Al6, (c) the Cr-bearing phase (Cu,Fe,Mn, Cr)Al7, and (d) another type of Si-containing phases (Fe,Cr,Mn,Cu)3SiAl12. The identified phases were found in all three alloys; however, variations in the composition caused large changes in their fraction and their morphological charac- teristics. This observation was also supported by the image analyses. As can be seen from the data presented in Table 2, the alloy 3 had the highest percentage of M. VRATNICA ET AL.: THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS ... Materiali in tehnologije / Materials and technology 42 (2008) 5, 191–196 193 Table 1: Chemical composition of the investigated alloys (in mass fractions, w/%) Tabela 1: Kemi~na sestava raziskanih zlitin (v masnih dele`ih, w/%) Alloy Elements Zn Mg Cu Mn Cr Zr Ti V B Fe Si 1 7.45 2.47 1.53 0.25 0.17 0.15 0.015 0.003 0.003 0.12 0.11 2 7.30 2.26 1.55 0.29 0.18 0.13 0.015 0.007 0.003 0.16 0.09 3 7.65 2.26 1.55 0.25 0.18 0.11 0.017 0.005 0.003 0.26 0.11 Table 2: Results of the image analysis and the plane-strain fracture-toughness tests Tabela 2: Razultati analize slike in dolo~itve `ilavosti loma Alloy Plane KIC/(MPa·m1/2) AA* IM phase characteristics Type VV, /% L/µm λ/µm 1 R-C 45.50 ND*** MgZn2+S 0.159 1.63 1024.8 Fe-rich** 0.227 2.00 883.5 Mg2Si 0.125 1.74 1394.1 L-R 43.16 P 0.152 MgZn2+S 0.147 1.56 1054.7 I 0.278 Fe-rich** 0.236 2.08 878.0 T 0.570 Mg2Si 0.144 1.94 1350.0 2 R-C 42.63 ND*** MgZn2+S 0.048 1.29 2685.6 Fe-rich** 0.357 1.99 557.0 Mg2Si 0.094 1.70 1806.7 L-R 40.96 P 0.299 MgZn2+S 0.095 1.27 1333.8 I 0.304 Fe-rich** 0.440 2.06 465.5 T 0.397 Mg2Si 0.134 1.92 1425.1 3 R-C 40.53 ND*** MgZn2+S 0.119 1.63 1363.4 Fe-rich** 0.590 2.43 409.8 Mg2Si 0.147 1.95 1318.7 L-R 37.67 P 0.378 MgZn2+S 0.046 1.38 3031.4 I 0.287 Fe-rich** 0.532 2.37 444.3 T 0.335 Mg2Si 0.146 2.09 1434.8 * Area fractions of microvoid-induced transgranular fracture regions (t), intergranular fracture region (i), and coarse constituent particles (p); ** Fe-rich phases = Al7Cu2Fe + (Cu,Fe,Mn)Al3 + (Cu,Fe,Mn)Al6 + (Cu,Fe,Mn,Cr)Al7 + (Fe,Cr,Mn,Cu)3SiAl12 ; *** ND = not determined * dele` povr{ine mikrojami~astega transkristalnega preloma (t), interkristalen prelom (i) in velikih IM- zrn (p); ** Z Fe bogate faze = Al7Cu2Fe + (Cu,Fe,Mn)Al3 + (Cu,Fe,Mn)Al6 + (Cu,Fe,Mn,Cr)Al7 + (Fe,Cr,Mn,Cu)3SiAl12 ; *** ND = ni dolo~eno coarse particles, with an average of volume fraction of 0.79 %, while the alloys 1 and 2 had a similar volume fraction, varying between about 0.52 % and 0.58 %. The significant increase in the amount of coarse particles, serving as the crack-initiation sites, is a direct consequence of an increase in the total (Fe+Si) content. For all the alloys, i.e., the volume fraction of phases containing Al, Mg, Cu, and Zn (Mg(Cu,Al,Zn)2 and S-CuMgAl2) is lower than 0.15 %. Note also that, since the Si content is practically unchanged from one alloy to the other, the volume fraction of Mg2Si particles is constant. This implies that the Fe content plays an important role in the formation of coarse particles. The volume fraction of grey particles (Fe-containing phases) increases almost linearly with the increase in the Fe content. As a result, the coarse particles are distributed over shorter distances. These features can provide planes of easy crack growth, thereby reducing the deformation capacity of the matrix. 3.2 Toughness behavior Table 2 shows how reducing the total (Fe+Si) content and thereby removing most of the coarse IM particles improves KIC. As expected, the toughness was the highest for the alloy 1, with the lowest (Fe+Si) content of the mass fraction (w) 0.23 %. By increasing the impurity level from 0.23 % to 0.25 % and in turn the volume fraction of the Fe- and Si-containing particles from the volume fraction () 0.380 % to 0.574 %, the KIC value in the R-C orientation decreased by approxi- mately by 6.5 %. Since in alloy 2 the Si content is w = 0.02 % and lower than that in the alloy 1, it is concluded that large variations in the amount of coarse particles and the fracture toughness can occur with a relatively small change in the Fe content. The toughness decreased further when going to a purity of w = 0.37 %. The drop in the fracture toughness, due to the presence of undesirable particles –  = 0.298 % greater than in the microstructure of alloy 1 – is almost of 11 %. The trend is similar for the L-R orientation. Although the amount of damaged particles has the greatest influence, a more probable explanation for the toughness degradation found in this work may be based on the synergistic effect of the coarse particles’ volume fraction, their sizes and spacing. Namely, as the (Fe+Si) content increases the particle size increases, while the mean free path decreases, with a concomitant decrease in toughness. Thus, although the average particle size vary between 1.70 µm and 2.08 µm for the alloys 1 and 2, no distinct variation of the Fe-containing particle size with the orientation of the metallographic plane were M. VRATNICA ET AL.: THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS ... 194 Materiali in tehnologije / Materials and technology 42 (2008) 5, 191–196 Figure 2: Optical microstructures of the over-aged alloy 3 (a),(c),(d) and alloy 1 (b) observed in R-C (a),(c) and L-R planes (b),(d) etched in 10 % H3PO4 at 50 °C for 5 min (a) and Keller's reagent at 20 °C for 5 s (b), (c), (d). Type of phases: A = Mg(Cu,Al,Zn)2, B = S-CuMgAl2, C = Mg2Si, D = (Cu,Fe,Mn)Al3 or (Cu,Fe,Mn)Al6, E = Al7Cu2Fe, F = (Cu,Fe,Mn,Cr)Al7, G = (Fe,Cr,Mn,Cu)3SiAl12. Slika 2: Opti~na slika prestarane zlitine 3 (a), (b), (c) in (d) in zlitine 1 (b) v ploskvah R-C (a) in (c) ter L-R v ploskvah (b) in (d), jedkano v 10 % HPO4 5 min (a) in s Keller reagentom 5 s pri 20 °C (b), (c) in (d). Vrste faz: A – Mg(Cu,Al,Zn)2, B – S-CuMgAl2, C – Mg2Si, D – (Cu,Fe,Mn)Al3 ali(Cu, Fe,Mn) Al6, E – Al7Cu2Fe, F – Cu,Fe,Mn,Cr)Al7, G – Fe,Cr,Mn,Cu)3SiAl12 observed, whereas for the alloy 3 the particle size seemed to vary from 1.95 µm to 2.43 µm, with only minor differences between the R-C and L-R orientation planes. It should be noted that the Fe-containing particles were larger than those of the Mg2Si phase and hence, more detrimental to KIC, although a contribution from the other phases particles cannot be ruled out. Namely, larger particles are cracked more often. Also, the particles aligned in the loading direction are more prone to this type of damage. Therefore, the distribution of coarse particles is of particular importance. The metallo- graphic examination showed that the spacing of the weak paths is also affected (at least for the R-C orientation plane). Decreasing the amount of particles leads to an increase in the mean interparticle distances. The  value increases by 60 % to 80 %, going from alloy 3 to alloy 1, causing the absence of most particle stringers and decreasing the extent of coarse voiding with the IM part- icles. The comparison of the R-C and L-R orientations indicates that for a given degree of purity, the fracture toughness is different for a different direction of testing. All three alloys showed a higher toughness for the R-C-orientation specimens, as compared to that for the L-R orientation. This toughness anisotropy is parti- cularly notable for alloy 3, with the highest (Fe+Si) content. The KIC value in the R-C direction is higher by 7 % than the short-transverse value. This is primarily attributed to the anisotropic orientations of the coarse IM particles. This is consistent with the previously reported results1,5 and indicates that the alignment of these particles seriously reduces KIC and that it is even more efficient than the other possible paths of weakness, e.g., the grain boundaries with stringers of precipitates. Since coarse particles are brittle and fracture or separate from the matrix when the local strain exceeds a critical value, they provide preferential crack paths ahead of a crack at a high stress intensity. When such a stress intensity is applied, the presence of these preferential crack paths decreases the energy needed for the crack propagation. Hence, the toughness degradation can be attributed to an acceleration of the crack initiation and growth by the damaged particles. The relative contributions of the different fracture modes to the plain-strain fracture initiation process (and, therefore, to KIC) were determined from the fracture surfaces of the failed toughness specimens. SEM obser- vations of the fracture surfaces revealed the multi- mechanism of the fracture process as a competition between coarse voiding at the IM particles and trans- granular/intergranular failure. The controlling mecha- nism varies with the alloy purity, with the combination of transgranular/intergranular shearing dominating in alloy 1 (Figure 3a), and the coarse voiding becoming progressively more important as the (Fe+Si) content increases (Figure 3b). The transgranular microvoid-induced fracture gene- rated with the formation of voids around the matrix precipitates was observed in all cases. The shear planes were covered with fine dimples, commonly associated with very fine particles. Many extremely fine dimples, representing areas of extensive deformation that preceded the ductile fracture, were observed on the walls of very large dimples associated with the aggregates of mostly fractured IM particles. Places called ridges, where the crack had changed its direction of propa- gation, could also be identified. A higher magnification examination showed that they appear to be formed on the grain boundaries. Flat intergranular areas were characterized by a fine population of shallow dimples and coarse grain-boundary precipitates on some of them. The presence of the ridges suggests a competition between intergranular and transgranular shear-fracture mechanisms, although a greater extent of grain-boundary failure has not been observed. In spite of the general similarity of the fracture surfaces for the alloy 1 through alloy 3, significant differences were also observed. The crack-propagation modes and the toughness levels are dependent on the extent of the primary void growth prior to the outset of M. VRATNICA ET AL.: THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS ... Materiali in tehnologije / Materials and technology 42 (2008) 5, 191–196 195 Figure 3: SEM micrographs showing the R-C fracture plane of alloy 1 (a) and the L-R fracture plane of alloy 3 (b). Slika 3: SEM-posnetek preloma v R-C-ploskvi pri zlitini 1 (a) in L-R-preloma zlitine 3 (b) the secondary failure mode (i.e., intergranular and transgranular shear crack growth) and the intervoids linking. Since the primary voids initiate at coarse IM particles, it may be expected that an increase in the (Fe+Si) level, which in turn increases the amount of these particles, leads to an increased number of fractured particles, and therefore, a smaller extent of intergranular/ transgranular shear fracture. Figure 2b illustrates this point very clearly, and it is also confirmed by the quantitative data in Table 2. The area fraction, AAt, of the microvoid-induced transgranular fracture decreases systematically with an increase in the volume fraction of the Fe- and Si-containing particles, while the area fraction, AAp, of the coarse IM particles on the fracture surface increases, leading to a decrease in the fracture toughness. 4 CONCLUSIONS Quantitative microstructural and fractographical data showed that the coarse Fe- and S-containing particles had a very detrimental effect on the fracture toughness of over-aged Al-Zn-Mg-Cu forgings. The drop in KIC was consistent with a change in the dominant failure mechanism, from intergranular/transgranular shear to extensive coarse void growth as the (Fe+Si) content increases from w = 0.23 to 0.37 %. This effect was attributed to the amount, size and spatial arrangement of the coarse IM particles and demonstrates the orientation dependence of the fracture toughness and the morpho- logical anisotropy of the microstructure. 5 REFERENCES 1 N. U. Deshpande, A. M. Gokhale, D. K. Denzer, John Liu, Metallurgical Materials Transactions A, 29A (1998) 4, 1191 2 B. Morere, J.-C. Ehrstrom, P. J. Gregson, I. Sinclar, Metallurgical Materials Transactions A, 31A (2000) 10, 2503 3 N. Kamp, I. Sinclair, M. J. Starink, Metallurgical Materials Transac- tions A, 33A (2002) 4, 1125 4 R. C. Dorward, D. J. Beerntseen, Metallurgical Materials Transac- tions A, 26A (1995) 9, 2481 5 A. M. Gokhale, N. U. Deshpande, D. K. Denzer, J. Liu, Metallur- gical Materials Transactions A, 29A (1998) 4, 1203 6 L. F. Mondolfo, Aluminium alloys, Structure and Properties, Butter- worts, London 1976 M. VRATNICA ET AL.: THE EFFECT OF COMPOSITIONAL VARIATIONS ON THE FRACTURE TOUGHNESS ... 196 Materiali in tehnologije / Materials and technology 42 (2008) 5, 191–196 P. JUR^I, M. HUDAKOVA: WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL MEHANIZEM OBRABE LEDEBURITNEGA JEKLA P/M VANADIS 6 Z DUPLEKSNO PREVLEKO Peter Jur~i,1 Mária Hudáková2 1ECOSOND Ltd.,Prague 5, Czech republic 2MtF STU Trnava, Slovak republic p.jurciseznam.cz Prejem rokopisa – received: 2007-11-21; sprejem za objavo – accepted for publication: 2008-02-05 The wear mechanism of duplex-coated P/M Vanadis 6 ledeburitic steel was investigated. Duplex layering by plasma nitriding and PVD CrN coating increased the wear resistance substantially; however, the scattering of the results was too large. The samples differed in the adhesion of the PVD overlay to the nitrided substrate and showed a very different wear resistance and wear mechanism, too. The specimens with good adhesion showed a critical load needed for coating delamination of more than 130 N, low wear, a relatively little damaged PVD layer, and a rapid wear of counterparts. If the adhesion of the coating was smaller, the wear rate increased rapidly and the worn surface showed symptoms of massive cracking and a total collapse of the coating, a strong decrease of the friction coefficient, and of the wear rate of the counterparts. Key words: ledeburitic P/M steel, duplex coating, wear rate, wear mehanism, coating composition Raziskan je bil mehanizem obrabe jekla P/M Vanadis 6 z dupleksno prevleko. Dupleksna prevleka iz plazemskega nitriranja in PVD CrNi-prekritja je pomembno pove~ala odpornost proti obrabi, vendar je bil pri tem prevelik raztros rezultatov. Vzorci so se razlikovali v adheziji med PVD-plastjo in podlago, zato sta bila razli~na odpornost proti obrabi in mehanizem obrabe. Vzorci z dobro adhezijo so imeli kriti~no silo za delaminacijo prekritja nad 130 N in relativno majhno obrabo, relativno malo po{kodovano PVD-plast in hitro obrabo nasprotnega dela. Pri majhni adheziji prekritja, je hitrost obrabe hitro rastla, obrabljena povr{ina pa je kazala simptome masivnega razpokanja in totalnega kolapsa prekritja, veliko zmanj{anje koeficienta obrabe in hitrosti obrabe nasprotnega dela. Klju~ne besede: ledeburitno P/M-jeklo, dupleksno prekritje, hitrost obrabe, mehanizem obrabe, sestava prekritja 1 INTRODUCTION Ledeburitic steels are widely used in industrial operations like metal cutting, but also in the cold working and sheet-metal forming of large series of parts for the automotive industry. The steels are usually used in the as-heat-treated condition and with a hardness of HRC 57–60. Nevertheless, in many cases the heat treatment itself cannot ensure a sufficient service time for the tools and they must be submitted to a surface treatment that also gives them a better resistance to environmental effects. Thin layers prepared by various PVD (physical vapour deposition) methods are mostly used for the surface treatment of tool steels1-6. PVD layers can be deposited over a large range of chemical compositions and mechanical properties, at low temperatures and without any influence on the core properties of the tools. Their common disadvantage is the adhesion to the steel substrate, since PVD layers differ considerably from steels in terms of mechanical and physical properties. The surface has to meet many criteria to resist various mechanisms of wear. The first of these criteria, and established recently as not the most important, is hardness1. The ratio of the hardness to the Young’s modulus was established as being the most important criterion for sufficient wear resistance1. This ratio differs significantly for steels and for PVD layers, and may cause serious problems in the surface processing of tools. For example, the well-known layers such as TiN, TiAlN and TiB2 have a hardness of about HV 3000 (four times more than tool steels) at a Young’s modulus of 400 GPa (2 times higher than steel)3-5. Also, for the promising CrN layers, the Young’s modulus is higher than that of steels (up to 240 GPa), whereas the hardness can be varied according to the actual chemical composition across a very wide range, from HV 1500 to approximately HV 25006. The heat treatment affects the Young’s modulus in a very limited range. On the other hand, the hardness can be increased very significantly with an appropriate heat treatment. For the steel Vanadis 6, the hardness in the as-delivered state is about HB 255 (HRC 23)8, and after heat treatment a hardness of HRC 62 (HV 750) can be easily achieved. An additional surface hardness increase (and also the hardness/Young’s modulus ratio) can be achieved by nitriding. As reported9,10 for the Vanadis 6 steel after plasma nitriding, a hardness of HV 1100 can be achieved. On the other hand, the fracture toughness is lowered very significantly by the nitriding11,12. The minimizing of the undesirable effect of nitriding on the fracture toughness is a significant goal of our other Materiali in tehnologije / Materials and technology 42 (2008) 5, 197–202 197 UDK 620.178.1:669.14.018.25 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 42(5)197(2008) investigations. In this paper we report on the results of an investigation of the wear mechanism of CrN+ plasma-nitriding duplex-layers deposited on a Vanadis 6 substrate. 2 EXPERIMENTAL Specimens of the steel Vanadis 6 (2.1 % C, 7 % Cr, 6 % V, Fe bal.) were heat treated to a hardness of HRC 60, the recommended value for cold-work applications. Plasma nitriding was performed in a RUBIG Micropuls – Plasmatechnik® device at temperatures of 500 °C and 530 °C and processing times of 60 min and 120 min, respectively. The CrN layers of thickness 2 µm or 5 µm were deposited with vacuum arc sputtering in a Balzers BAI 730M device, and the adhesion of the layers was examined with a scratch test. The microstructural examinations and the analysis of the worn surfaces were performed with scanning electron microscopy. Wear testing was carried out without lubrication using the ring-on-plate configuration of the counterpart and the tested specimen, at loads of 50 N and 150 N, respec- tively. Hollow cylinders from the ball-bearing steel 100Cr6 heat treated to HRC 60 were used as the counter- parts. The total movement (sliding in a combination with slow rotation) distance was of 10 km, and the wear weight loss was determined also after (1, 2.5 and 5) km of sliding. Glow discharge optical emission spectroscopy (GDEOS) was used to determine the elements’ depth profiles in the near-surface region. The phase consti- tution of the CrN layers was identified with X-ray diffraction. 3 RESULTS In a previous paper13, the best nitriding parameters with respect to the adhesion of the PVD layers were found to be: a temperature of 530 °C, a processing time of 120 min and a reactive atmosphere with the composition N2 : H2 = 1 : 3. Tribological tests showed a large scatter in terms of the wear resistance. Therefore, it was decided to examine other combinations of nitriding parameters with the aim to reduce the dispersion of results and consider also the possibility of improving of the fracture toughness, although this was the main goal of other investigations. An example of the microstructure of a duplex-layer (CrN + plasma nitriding) is shown in Figures 1 and 2. On the surface, a CrN layer of thickness 5 µm is deposited. The nitrided inter-layer has a thickness of about 40 µm. It differs from the non-nitrided material mainly in the topography caused by the etching. Also, there is a continuous or quasi-continuous layer of nitride found at the boundaries of the original grains. No inhomogeneities were found in the surface regions and the PVD layer was free of cracks and pores. As shown in Table 1, all the newly used combinations of plasma nitriding and CrN layering produced a minimal adhesion of approximately 50 N. This indicates that the pre-treatment ahead of the plasma nitriding is a promising method for increasing the adhesion of the PVD CrN coating. On the other hand, the adhesion values again exhibited a large dispersion, even for specimens processed under the same conditions. The results of the measurements of the wear resistance for a load of 50 N in Figure 3, demonstrate the good wear behaviour of the duplex-treated material in comparison to a material without surface processing, only nitrided or only CrN layered9. When compared to specimens pre-nitrided at 530 °C for 120 min and then CrN layered14, the results of the tests were not sufficiently reliable. However, it is clear that the pre-nitriding at 500 °C for 120 min. is more efficient for the wear behaviour of the duplex layer than the pre-nitriding at 530 °C for 60 min. Also, in contrast to previous tests,9,14 it was confirmed that a thinner CrN layer had a better wear resistance. This wear behaviour is to be expected, since internal stresses, often leading to coating damage, increase with the coating thickness under given testing conditions15. P. JUR^I, M. HUDAKOVA: WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL 198 Materiali in tehnologije / Materials and technology 42 (2008) 5, 197–202 Figures 1, 2: SEM micrographs of duplex layer. Above – overview, below – detail Slika 1, 2:. SEM-posnetka dupleksnega prekritja. Zgoraj splo{ni videz, spodaj detajl The measurements gave a lower weight loss for the counterparts after sliding with the CrN layer with a thickness of 2 µm (Figure 4). No major changes in weight loss were found, which would indicate that no delamination of the coatings occurred during the sliding test. It is concluded that the cause of the different wear was the differences in the friction coefficient (Figure 5). A higher friction coefficient induced rather more wear (Figure 3). Table 1: Measurements of adhesion with a scratch test. Yellow lines – results in9,14 Tabela 1: Dolo~anje adhezije s trgalnim preskusom. Rumene vrstice – rezultati v9,14 Processing Lc3/N Lc4/N Lc5/N CrN 2 µm 18 44 60 CrN 5 µm 26 56 65 Nitriding 530 °C/120 min + CrN 2 µm 44 70 not identified Nitriding 530 °C/120 min + CrN 5 µm 90 94 99 Nitriding 500 °C/120 min + CrN 2 µm 50, not identified 79, 156 116, - Nitriding 500 °C/120 min + CrN 5 µm 55, 148 not identified 129, 158 Nitriding 530 °C/60 min + CrN 2 µm 46,135 not identified, 100 108, 138 Nitriding 530 °C/60 min + CrN 5 µm 47, 52 not identified 98, 134 The use of a higher load (150 N) led to increasing differences in the wear behaviour between the specimens processed by various combinations of plasma nitriding and CrN layering (Figure 6), and also between speci- mens processed in the same batch (Figure 8). However, the general tendency of improved wear resistance after plasma nitriding was retained. The assessment of other P. JUR^I, M. HUDAKOVA: WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL Materiali in tehnologije / Materials and technology 42 (2008) 5, 197–202 199 Figure 3: Weight loss of specimens as a function of sliding distance and surface treatment, load of 50 N Slika 3: Izguba mase vzorcev v odvisnosti od dol`ine drsenja in povr- {inske obdelave; obremenitev 50 N Figure 6: Weight loss of specimens as a function of sliding distance and surface treatment, load of 150 N Slika 6: Izguba mase vzorcev v odvisnosti od dol`ine drsenja in povr- {inske obdelave; obremenitev 150 N Figure 4: Weight loss of counterparts as a function of sliding distance and surface treatment, load of 50 N Slika 4: Izguba mase nasprotnega dela v odvisnosti od dol`ine drsenja in povr{inske obdelave; obremenitev 50 N Figure 5: Friction coefficient as a function of sliding distance, load of 50 N Slika 5: Koeficient trenja v odvisnosti od dol`ine drsenja; obreme- nitev 50 N effects on the wear resistance became more difficult due to sudden changes in the sliding surface due to the PVD-layer delamination. Therefore, the mean values from Figure 6 do not represent the wear behaviour accurately because of the large dispersion due to delamination on at least one specimen from the three tested. Also, the figures of weight loss for the counterparts exhibited a large scatter. The mean values in Figure 7 give only partial information about the process during the wear testing. In the cases of an absence of delamination, the weight loss of the specimen was minimal, the counterpart underwent intensive wear (Figure 8) and the friction coefficient increased slowly. On the other hand, if the adhesion of the CrN layer was poor, the wear rate on the specimen’s side changed suddenly from low to very high, and the weight loss of the counterpart became minimal. Simultaneously, the fiction coefficient also decreased as a result of the decreased surface contact between the specimen and the counterpart (Figure 9). To understand these differences in wear behaviour, selected specimens with good (71) and worse (72) adhesion were subjected to a more detailed investigation. These observations correspond well with the measurements of adhesion from the scratch test, although the type of contact differs for those during the scratch test (point contact of the diamond indenter) and during the wear-resistance test (linear contact of a hollow cylinder with approximately equal hardness) differs considerably. As shown already, the adhesion of 50 N, which is the minimum acceptable value for various industrial applications, was achieved for all the P. JUR^I, M. HUDAKOVA: WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL 200 Materiali in tehnologije / Materials and technology 42 (2008) 5, 197–202 Figure 10: Worn surface of the specimen with good adhesion of the CrN layer Slika 10: Obrabljena povr{ina vzorca z dobro adhezijo CrN-plasti Figure 8: Wear of specimen and counterpart in the case of good (yellow) and poor (red) adhesion Slika 8: Obraba vzorca in nasprotnega dela za primer dobre (rumeno) in slabe (rde~e) adhezije Figure 9: Friction coefficient for the specimen with good adhesion (yellow) and poor adhesion (red) of the CrN coating Slika 9: Koeficient obrabe za vzorec z dobro (rumeno) in slabo (rde~e) adhezijo CrN-plasti Figure 7: Weight loss of counterparts as a function of sliding distance and surface processing of the specimen, load 150 N Slika 7: Izguba mase nasprotnega dela v odvisnosti od dol`ine drsenja in povr{inske obdelave vzorca; obremenite 150 N specimens. Large differences in the wear resistance found for a load of 150 N can be attributed to the scattering of the adhesion values (ranged from 50 N to 148 N) determined during the scratch test. Figure 10 shows the surface of a specimen with excellent PVD layer adhesion. The surface shows two areas of different micro-morphology. The first area (part A) is typical for the practically undamaged layer and only the friction producing parallel tracks in the sliding direction occurred during the wear test. On the second, "B", area a slightly deformed and cracked coating without clear marks of delamination is found. The preservation of the coating on the surface in spite of the high contact pressure confirms its excellent adhesion. In the case of worse adhesion of the coating, the situation is significantly different (Figure 11). The wear process was probably equal to the case of good adhesion (Figure 10) until the occurrence of cracking in the CrN layer at various places. This was mostly, however, at the boundary between the worn and the unaffected parts of the specimen (A). From this moment on the friction coefficient started to decrease (Figure 9). The degradation of the layer continued with its crumbling, predominantly in the vicinity of the primary cracks (B), up to the total material removal in selected areas (C). The removed fragments of the CrN coating accelerated the weight loss on the specimen’s side due to the removal itself, while on the counterpart’s side, the weight loss was practically stopped due to minimizing of the sliding contact (minimizing of the surface undergoing the wear) and lowering of the friction coefficient (Figure 9). Specimens with good (71) and poor (72) wear behaviour also differ in the chemistry of the PVD layers and, as a consequence, in the phase constitution, too. The CrN layer on specimen 71 contains less chromium than that on specimen 72 (Figures 12 and 13), but it has more nitrogen. The difference is 1.5–2.0 %, depending on the depth. At the same time, the layer on specimen 71 consists mainly of the Cr2N compound, while in the layer on specimen 72, the content of nitrogen in the chromium solid solution is significantly increased (Figure 14). The specimens also differ in terms of the texture of the layer. The diffraction peaks of Cr2N(110) at 37° of the two-theta angle and Cr2N(300) at 67° are higher for specimen 72, with a poor adhesion, than for specimen 71, with good adhesion. The differences indicate a different mechanism of growth for both layers. At first sight this is surprising, since the layers were prepared on specimens processed in the same way as in the heat-treatment stage and in the nitriding stage. Another possible explanation of the different wear behaviour of the specimens, and also of those processed under the same processing conditions, is a possible exceeding of the load-carrying capacity of the substrate. Nevertheless, the scratch test indicated a large scatter of the critical load values and, therefore, the differences in the layer formation displayed by X-ray diffraction P. JUR^I, M. HUDAKOVA: WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL Materiali in tehnologije / Materials and technology 42 (2008) 5, 197–202 201 Figure 13: Depth profiles of elements throughout the near surface region – specimen with poor adhesion Slika 13: Porazdelitev elementov v CrN-plasti blizu povr{ine, vzorec s slab{o adhezijo Figure 12: Depth profiles of elements throughout the near-surface region – specimen with good adhesion Slika 12: Porazdelitev elementov v CrN-plasti blizu povr{ine, vzorec z dobro adhezijo Figure 11: Worn surface with poor adhesion of the CrN layer Slika 11: Obrabljena povr{ina vzorca s slabo adhezijo CrN-plasti measurements are more probably the primary expla- nation for the different wear resistance of the specimens. The cause of different layer growth, in a given batch, too, can probably be attributed to the positional effect of the specimen with respect to the chromium source (target) during the sputtering. No other effects with a possible influence on the layer growth are known. 4 CONCLUSIONS 1) For all the combinations of plasma nitriding and CrN coating, the critical load measured with the scratch test was at least 50 N, which is considered to be an acceptable value for industrial applications. In some cases the adhesion was much better and the critical load exceeded 130 N. However, a large scatter of adhesion values was found, also for specimens processed under the same nitriding and/or coating conditions. 2) Wear testing at a load of 50 N did not show a significant scatter of results. The wear of specimens proceeded in a steady manner and slightly better results were found for the thinner CrN layers. 3) The use of a load of 150 N emphasized the difference in the wear behaviour of the specimens, also for those prepared under the same processing conditions. For the specimens with excellent adhesion, the wear rate on the specimen’s side was low and on the counterpart’s side it was much greater. The friction coefficient increased slightly with the increased sliding distance. For the specimens with poor adhesion, a sudden and dramatic increase in the wear rate on the specimen’s side occurred during the test. This increase is connected with the decrease of the friction coefficient and the lowering of the wear on the counterpart’s side. 4) In the case of specimens with excellent adhesion the CrN coating remained on the surface, although in a slightly damaged form. Coatings with small adherence cracked and were progressively removed from the contact surface. 5) Layers with excellent adhesion differ from those with poor adhesion in chemistry and phase constitution. In the first there was less chromium in the solid solution and more Cr2N compound was found in the second. Moreover, the different texture probably also indicates a difference in the growth mechanism. ACKNOWLEDGEMENTS Authors wish to thank the Ministry of Education and Youth of the Czech Republic and the Slovak Republic for the financial support for the solution of the Project Eureka E!3437 PROSURFMET. 5 REFERENCES 1 Oberle, T.: J. of Metals, (1951) 3, 438–439 2 Matthews, A., Leyland, A.: HTM 56 (2001) 1, 5 3 Kí`, A., Zetek, M.: In.: Proc. of the Conf. Vrstvy a povlaky 2004, Ro`nov pod Radho{tm, 7.–8. 10. 2004, 12 4 [míd, M. et al.: In: Proc. of the Conf. Vrstvy a povlaky 2004, Ro`nov pod Radho{tm, 7.–8. 10. 2004, 79 5 Podgornik, B. et al.: Wear 254 (2003), 1113 6 Sokovi~, M., Panjan, P., Kirn, R.: J. Mater. Proc. Techn., 157–158 (2004), 616 7 Salas, O. et al.: Surf. Coat. Techn. 172 (2003), 117 8 Vanadis 6 – SuperClean, Uddeholm Tooling AB, Sweden, 2001 9 Jur~i, P., Panjan, P.: Surface Processing of the PM Vanadis 6 Steel with Plasma Nitriding and CrN PVD – Coating, In: Proceedings of the European Powder Metallurgy Congress, Prague, Czech Republic, 2005 10 Jur~i, P., Hnilica, F., Suchánek, J., Stola, P.: Structural Features of the Cr-V Ledeburitic Steel Saturated by Nitrogen, Mater. Tehnol., 38 (2004) 1–2, 13 11 Hnilica, P., ^makal, J., Jur~i, P.: Alterations in Fracture Behaviour of the Cr-V Ledeburitic Steel Vanadis 6 Caused by Plasma Nitriding, In.: 11th Conference on Materials and Technology, book of abstracts, Portoro`, Slovenia, October 1–3, 2003 12 Jur~i, P., Hnilica, F., ^makal, J., Pechmanová, J.: In: Proceedings of the 8th National Conference Degradation of Structural Materials, September 2.-4, 2003, Terchová, Slovakia, p. 137 13 Jur~i, P., Musilová, A., Stola, P., Hrubý, V.: In: Proceedings of the Conference Carburizing and Nitriding, November 27–28, 2001, Brno, Czech Republic, p. 81 14 Jur~i, P., Hudáková, M.: Surface Processing of the PM Vanadis 6 Steel with Plasma Nitriding and CrN PVD – Coating, In: Pro- ceedings of the 16th Int. Conf. Metal 2007, May 2007, Hradec n. Moravicí, Czech Republic, CD – ROM 15 Diao, D. F. et al.: The Maximum Tensile Stress on a Hard Coating Under Sliding Friction. Tribology Intern., 27 (1994) 4, 267–272 P. JUR^I, M. HUDAKOVA: WEAR MECHANISM OF DUPLEX-COATED P/M VANADIS 6 LEDEBURITIC STEEL 202 Materiali in tehnologije / Materials and technology 42 (2008) 5, 197–202 Figure 14: X-ray diffraction patterns from PVD CrN layers Slika 14: Difraktogram rentgenskih `arkov v PVD-plasti D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA ANALYSIS OF THERMAL CRACKS ON DIE CASTING DIES Damjan Klob~ar1, Janez Tu{ek1, Matej Pleterski1, Ladislav Kosec2, Mitja Muhi~3 1Fakulteta za strojni{tvo, Univerza v Ljubljani, A{ker~eva 6, 1000 Ljubljana, Slovenija 2Naravoslovnotehni{ka fakulteta, Univerza v Ljubljani, A{ker~eva 12, 1000 Ljubljana, Slovenija 3TKC d.o.o., Trnovska 8, 1000 Ljubljana, Slovenija Prejem rokopisa – received: 2007-09-21; sprejem za objavo – accepted for publication: 2008-02-05 Podalj{anje trajnostne dobe orodij je ekonomsko zelo pomembno, zato smo raziskali po{kodbe orodij za tla~no litje aluminijevih zlitin. Analizirali smo vzroke in mehanizme nastanka razpok, ki nastanejo zaradi temperaturnega utrujanja med tla~nim litjem. Izdelali smo napravo za potopni preskus, ki omogo~a simulacijo pogojev med tla~nim litjem teh zlitin in kontrolirano temperaturno utrujanje jekla. Epruvete iz jekla H13 so bile razli~no toplotno obdelane. Na vogale nekaj epruvet je bilo po postopku TIG navarjeno jeklo maraging, ki je bilo presku{ano v navarjenem stanju in optimalno staranem stanju. Po dolo~enem {tevilu ciklov so bile povr{ine epruvet vizualno pregledane, vzorci pa so bili razrezani in pregledani na svetlobnem in vrsti~nem elektronskem mikroskopu. Podro~ja okoli razpoke so bila analizirana z energijsko disperzijsko spektroskopijo rentgenskih `arkov (EDS). V vogalu epruvete smo izmerili {tevilo in velikost razpok ter padec trdote. Rezultati so pokazali, da je odpornost jekla proti temperaturnemu utrujanju odvisna od vrste jekla in njegove toplotne obdelave. Dobro odpornost proti temperaturnemu utrujanju ima kakovostno toplotno obdelano jeklo H13. [irjenje povr{inskih razpok dodatno pospe{i oksidacija povr{ine. Klju~ne besede: tla~no litje, aluminijeve zlitine, termi~no utrujanje, potopni preskus, orodno jeklo za delo v vro~em, jeklo maraging The aim of this research was to analyse the aluminum alloy die casting die failures with the aim of prolonging in-service die life. An extensive analysis of thermal fatigue cracks in aluminium alloy die casting was performed. An immersion test apparatus was developed that enables the simulation of conditions during aluminum alloy die casting and the controlled thermal fatigue testing of materials. Specimens of the AISI H13 tool steel were differently heat treated. On the edges of some specimens, the maraging steel was gas tungsten arc (GTA) weld cladded. These samples were tested in as-welded and in optimally aged condition. After completion of a particular number of cycles, the specimen edge surface was examined visually. The specimens were then cut and examined with light and scanning electron microscopy (SEM). The energy-dispersive X-ray spectroscopy (EDS) mapping of areas around the cracks was performed, also, and the number and length of thermal fatigue cracks were assessed and Vickers hardness profiles were determined. The results confirmed the good thermal fatigue resistance of the properly hardened H13 steel. The surface cracks growth is accelerated by surface oxidation. Keywords: aluminium alloy, die casting, thermal fatigue cracking, immersion test, hot work tool steel, maraging steel 1 UVOD Tla~no litje aluminijevih zlitin je velikoserijski postopek izdelave izdelkov zahtevnih geometrijskih oblik v ozkih dimenzijskih tolerancah. Med tla~nim litjem prite~e v orodje talina s hitrostjo od 30 m/s do 100 m/s in s temperaturo okoli 700 °C. Polnilni tlaki so od 50 MPa do 80 MPa 1. Trajnost orodij zmanj{ujejo a) tem- peraturni cikli, ki povzro~ajo temperaturne razpoke na povr{ini orodja zaradi temperaturnega utrujanja jekla, b) korozija in sprijemanje zaradi oksidacije aluminija na povr{ino gravure 2,3, c) erozija zaradi toka taline, ~) pre- lomi orodja zaradi temperaturnih {okov in d) segrevanje jekla, ki povzro~a nestabilnost mikrostrukture in degradacijo mehanskih lastnosti 4-7. Orodja za tla~no litje aluminija se najpogosteje po{kodujejo zaradi razpok, ki nastanejo zaradi tempe- raturnega utrujanja jekla. Razpoke, ki se pojavijo v orodju, povzro~ajo nesprejemljive odtise na povr{ini izdelka. Trajnost orodja lahko podalj{amo a) z zmanj{anjem temperaturnih napetosti med obratovanjem orodja, b) izbiro jekla in toplotno obdelavo, ki zagotavljata ve~jo odpornost proti temperaturnemu utrujanju, c) s povr{in- skimi prevlekami na orodjih in ~) reparaturnim varjenjem, s katerim saniramo po{kodovano orodje. Delovne napetosti v orodju zmanj{amo z bolj blagimi parametri tla~nega litja, optimalnim notranjim segre- vanjem orodja (temperiranjem), z optimalno geometrijo izdelka/orodja s ~im manj ostrimi prehodi ter z minimal- nim vnosom zaostalih napetosti med njegovo izdelavo. Povr{inske prevleke uspe{no zmanj{ujejo korozijo, spajanje in erozijo povr{ine gravure, vendar niso odporne proti temperaturnemu utrujanju 8. Novo razvite ve~slojne prevleke `e dosegajo izbolj{ano odpornost proti temperaturnemu utrujanju 9,10. Poleg klasi~nih CrMoV-jekel za delo v vro~em, imajo dobro vzdr`ljivost tudi orodja, izdelana iz jekel maraging z ni`jo vsebnostjo niklja (od 10 % do 14 %) 11,12. Njihova prednost pred klasi~nimi orodnimi jekli za delo v vro~em sta manj{i modul elasti~nosti in manj{i temperaturni raztezek, kar oboje zmanj{uje temperaturne napetosti. Ve~ja toplotna prevodnost jekel maraging pove~a prevajanje toplote po materialu in s tem zmanj{uje Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 203 UDK 669.14.018.252:669.715:539.42 ISSN 1580-2949 Izvirni znanstveni ~lanek/Original scientific article MTAEC9, 42(5)203(2008) temperaturne gradiente in napetosti, kar lahko prispeva k dalj{i obratovalni dobi orodja. Razvoj orodnih jekel za delo v vro~em gre v smeri izbolj{anja stabilnosti mehanskih lastnosti v obratovanih razmerah 12. K temu veliko prispevajo toplotne obdelave, ki prepre~ujejo oz. zavirajo spremembe mikrostrukture z oblikovanjem bolj stabilnih karbidnih izlo~kov (M(CrMoV)C) med popu{~anjem. Naloga teh izlo~kov je zaviranje gibanja dislokacij, kar pove~uje odpornost jekla proti meh~anju 13-15. Raziskave na podro~ju napovedovanja trajnosti orodij 13,14,16,17 in opisa mehanizmov po{kodb 5,18,19 pote- kajo v realnih razmerah na orodjih med obratovanjem ali v laboratorijskih razmerah. Ugotavljanje odpornosti jekla proti temperaturnemu utrujanju izvajamo s preizkusi izotermnega utrujanja (pri konstantni temperaturi se spreminja obremenitev), termomehanskega utrujanja in temperaturnega utrujanja v najrazli~nej{ih izvedbah 14,20-22. 2 EXPERIMENTALNI DEL Preizku{ali smo jeklo 1.2344 (kemi~ne sestave: 0,4 % C; 5,15 % Cr; 1,05 % Si; 0,4 % Mn; 1,35 % Mo in 1 % V) ter vare iz jekla maraging 1.6356 (kemi~ne sestave: 0,02 % C; 1,35 % Mo; 18 % Ni; 12 % Co; 0,1 % Al in 1,6 % Ti). 2.1 Potopni preizkus Naredili smo napravo za potopni preizkus (PP) temperaturnega utrujanja, ki omogo~a kontrolirano temperaturno utrujanje jekla (slika 1a). Cikel je trajal 21 s in je zajemal trisekundno dr`anje epruvet v emulziji (32 °C), ki prepre~i sprijemanje aluminija na epruvete, {tirisekundno gibanje epruvet do posode z raztaljeno aluminijevo zlitino, desetsekundno dr`anje epruvet v tej zlitini s temperaturo 700 °C in {tirisekundno vra~anje epruvet do posode z emulzijo. Epruvete so bile vseskozi notranje hlajene z vodo s temperaturo 20 °C. To povzro~a velike tla~ne napetosti na povr{ini epruvete, ko je le-ta potopljena v talino aluminijeve zlitine, in natezne napetosti, ko je epruveta potopljena v hladno emulzijo. Najve~je napetosti se pojavijo v vogalu epruvete. Velike tla~ne napetosti povzro~ijo v vogalu epruvete plasti~no deformacijo, saj napetosti krepko presegajo tiste pri te~enju jekla pri tej temperaturi 24. V hladni fazi cikla, ko je epruveta pomo~ena v hladno emulzijo, nastanejo natezne napetosti, ki povzro~ajo nukleacijo razpok. Razpoke nato rastejo zaradi malocikli~nega utrujanja. 2.2 Oblika in priprava epruvet Preizkusili smo dve obliki epruvet: klasi~no za potopni preskus (slika 1b) in epruveto z optimalno oblikovanim vogalom (slika 1c). Slednjo smo razvili na osnovi analize napetosti z metodo kon~nih elementov (MKE) in omogo~a ve~je temperaturne gradiente oz. napetosti med potopnim preskusom ter bolj zahtevne pogoje presku{anja. Z navojem M16 je bila epruveta pritrjena na pnevmatski manipulator. Epruvete so bile izdelane iz jekla H13 in toplotno obdelane, tj. kaljene in popu{~ene (tabela 1). Toplotna obdelava 1 pomeni kakovostno toplotno obdelavo s kaljenjem v vakuumu, toplotna obdelava 2 pa toplotno obdelavo slab{e kakovosti, s kaljenjem na zraku. Na nekaj epruvet, kaljenih v vakuumu, smo po postopku TIG navarili jeklo maraging. Varjenje je potekalo v za{~itni atmosferi plina argona s pretokom 10 L/min. Varilni tok je bil 82 A, varilna napetost 11 V, ~as varjenja je bil okoli 150 s, vnos energije pa okoli 1185 J/mm. Nekaj epruvet smo po varjenju starali 3 h pri temperaturi 480 °C, druge pa so bile presku{ene v navarjenem stanju. Epruvete so bile mehansko obdelane (slika 1c). D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA 204 Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 Slika 1: a) Shematski prikaz naprave za termi~no utrujanje materiala, b) klasi~na epruveta za presku{anje in c) optimalna oblika epruvete Figure 1: a) Scheme of the thermal fatigue test apparatus, b) shape of the classic thermal fatigue test specimen, and c) optimal test specimen geometry 2.3 Presku{anje in vrednotenje podatkov Z epruvetami smo naredili 20 000 preizkusov temperaturnega utrujanja. Robove epruvet smo po vsakih 4 000 ciklih vizualno pregledali, ali so razpokani. Po 20 000 ciklih smo epruvete razrezali preko vogala vzdol` njene dol`ine (slika 4 a) in naredili mikroobruse. Vzorce smo jedkali v 4-odstotni raztopini nitala. Analizirali smo mikrostrukturo, izmerili profil mikrotrdote po Vickersu od vogala epruvete proti centru ter na svetlobnem mikroskopu fotografirali in v programu Image Tool analizirali dol`ino in {tevilo razpok vzdol` prerezanega vogala epruvete. Izmerjene vrednosti smo statisti~no obdelali. V vrsti~nem elektronskem mikroskopu (SEM) Jeol-JSM 5610 smo z elektronsko mikroanalizo izmerili kemi~no sestavo materiala na povr{ini in v okolici razpoke. 2.4 Analiza z metodo kon~nih elementov Z MKE in s programom ABAQUS smo simulirali temperaturno utrujanje 23. Naredili smo sekven~no veza- no termomehansko analizo in dolo~ili optimalno obliko epruvete ter zahtevne pogoje potopnega preizkusa 22. 3 REZULTATI 3.1 FEM-analiza Toplotne napetosti (slika 2 b) med potopnim pre- skusom so posledica temperaturnih gradientov (slika 2 a) med povr{ino in notranjostjo epruvete. Najve~ji gra- dienti temperature oz. napetosti se pojavijo na povr{ini v za~etku pomakanja epruvete v vro~o talino in hladno emulzijo. Kasneje se le-ti zmanj{ajo zaradi prenosa toplote v notranjost epruvete. Posledice cikli~nega obremenjevanja epruvet so bile vidne kot razpoke na povr{ini. 3.2 Povr{inske razpoke Majhno {tevilo dolgih razpok se je pojavilo v jeklu H13, kaljenem na zraku (slika 3 a). V enakem jeklu, kaljenem v vakuumu, se je pojavilo ve~je {tevilo kraj{ih razpok (slika 3 b). V jeklu maraging v navarjenem sta- nju (slika 3 c) in staranem stanju (slika 3 d) se je poja- vilo veliko {tevilo kratkih in komaj opaznih razpok. 3.3 Razpoke v prerezu vogala Razpoke v epruveti iz jekla H13, kaljeni na zraku, so bile velike in redke (slika 4 b in 3 a). Njihova velikost je bila posledica razoglji~enja povr{ine pri segrevanju pred kaljenjem in ima manj{o trdoto (slika 5) in slab{e mehanske lastnosti. ^ela (vrhovi) razpok so bila najbolj pogosta na prehodu delno razoglji~enega v naoglji~eno jeklo (slika 4 b). V vogalu epruvete iz jekla H13, ki je bila toplotno obdelana v vakuumu, so bile razpoke bist- veno kraj{e (slika 4 c). Podobno velja tudi za povr{inske navare jekla maraging v navarjenem (slika 4 d) in stara- nem stanju (slika 4 e). 3.4 Trdota jekla na povr{ini epruvete Razen pri epruveti iz jekla H13, ki je bila kaljena v vakuumu, se je pomemben padec trdote pojavil pri vseh D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 205 Slika 3: Mikrorazpoke na povr{ini vogala epruvet po 20 000 ciklih: a) jeklo H13, kaljeno na zraku, b) jeklo H13, TO v vakuumu, c) jeklo maraging v navarjenem stanju in d) navarjeno jeklo maraging starano 3 h na temperaturi 480 °C Figure 3: Micro-cracks on the edge surface after 20 000 cycles of immersion: H13 tool steel quenched in a) air and b) vacuum and maraging steel in c) as-welded condition and d) welded and aged 3 h at 480 °C Slika 2: MKE-analiza a) temperatur in b) napetosti v epruveti med potopnim preskusom. Parametri potopnega preskusa: TAL = 690 °C, tAL = 10 s, TZRAK = 28 °C, tZRAK = 4 s, TEMULZIJA = 32 °C, tEMULZIJA = 3 s, THLADILNA VODA = 20 °C, tCIKLA = 21 s Figure 2: Finite element analysis of a) temperatures and b) stresses in test specimen during the immersion test. Immersion test parameters: TAL = 690 °C, tAL = 10 s, TAIR = 28 °C, tAIR = 4 s, TEMULSION = 32 °C, tEMULSION = 3 s, TCOOLING WATER = 20 °C, tCYCLE = 21 s analiziranih epruvetah (slika 5). Najve~je zmanj{anje trdote (∆HV 280) smo opazili v jeklu H13, kaljenem na zraku (slika 4 b). Nekoliko manj{a padca trdote sta se pojavila v navarih iz jekla maraging (∆HV 180) kot posledica prestaranja. 3.5 [tevilo in velikost razpok Najdalj{e razpoke so bile v jeklu H13, kaljenem na zraku (slika 6). Njihova povpre~na dol`ina je bila 72,8 µm, najdalj{e pa so bile dolge 230 µm (slika 6 a). Povpre~na gostota razpok v vogalu je bila okoli 4,7 razpoke na milimeter dol`ine vogala. Razpoke v drugih epruvetah so bile bistveno kraj{e. Pri jeklu H13, ki je bilo kaljeno v vakuumu, je bila povpre~na dol`ina 2,3 µm, pri jeklu maraging v navarjenem stanju 3,7 µm ter pri staranem jeklu maraging 5,2 µm. Povpre~na gostota D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA 206 Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 Slika 5: Potek trdote od povr{ine vogala proti centru epruvete po preizkusu utrujanja Figure 5: Hardness profile from the edge to the centre of the speci- men after the immersion test Slika 4: Razpoke na vzdol`nem prerezu kvadrastega vzorca za preizku{anje temperaturne utrujenosti: a) priprava vzorca, b) jeklo H13, kaljeno na zraku, c) H13, TO v vakuumu, d) jeklo maraging v navarjenem stanju in e) navarjeno jeklo maraging starano 3 h na temperaturi 480 °C Figure 4: Edge cracks at along immersion test specimen. a) Sample preparation, b) H13 tool steel air quenched, c) H13 tool steel vacuum quenched, d) as-welded maraging steel, and e) maraging steel welded and aged for 3 h at 480 °C Slika 6: Velikost razpok a) in {tevilo razpok b) na dol`ini milimetra robu Figure 6: Edge crack a) length and b) density D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 207 Slika 7: Kemi~na sestava jekla v okolici oksidnega klina, EDS (jeklo H13) Figure 7: Chemical composition of steel in the area of the oxide wedge, EDS (H13 tool steel) razpok na dol`ino robu je bila pri jeklu H13, ki je bilo kaljeno v vakuumu, 13,2 mm–1, pri jeklu maraging v navarjenem stanju 36,5 mm–1, pri jeklu maraging v staranem stanju pa 33,6 mm–1. 3.6 Kemi~na mikroanaliza jekla v okolici razpok Z energijsko disperzijskim spektrometrom rentgen- skih `arkov smo analizirali kemi~no sestavo materiala v okolici razpok. Zna~ilna kemi~na sestava jekla H13 ob razpoki po 20 000 ciklih PP je prikazana na sliki 7. Na temenu razpoke (slika 7 b) je pove~ana koncentracija Al in Si, kar ka`e, da je teme razpoke zapolnjeno z alu- minijevo zlitino, analiza pa je pokazala tudi sledi ogljika in kisika. V oksidni plasti ob razpoki je pove~ana koncentracija kroma. Podobno je tudi v konici razpok (slika 7 c). Kisik penetrira po razpoki do same konice in povzro~a oksidacijo. V konici razpoke nismo zaznali sledi aluminija iz taline zaradi ozke razpoke in ve~je oddaljenosti od vrha. Kemi~na sestava okolice razpoke iz jekla maraging, staranega 3 h pri temperaturi 480 °C ter po 20 000 ciklih PP je prikazana na sliki 8. Razpoka je imela na povr{ini plast oksidov `eleza, ki je nastala zaradi difuzije `eleza iz podpovr{inske plasti h kisiku. Podpovr{inka plast je bila obogatena z nikljem in kobaltom, ki difundirata v jeklo iz oksidirane plasti `eleza. V kratkih razpokah so bile sledi silicija in aluminija. 4 DISKUSIJA 4.1 Toplotne razpoke Nastajanje temperaturnih razpok lahko razdelimo v tri korake; (1) nukleacija, (2) rast razpok in (3) pora- jajo~a rast razpok do poru{itve oz. lu{~enja povr{ine 5. Tvorba razpok je tesno povezana z lokalno plasti~no deformacijo na povr{ini jekla, kar je zna~ilno za malocikli~no utrujanje. Rast razpok pospe{i oksidacija razpokane povr{ine z ve~anjem volumna te plasti, D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA 208 Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 Slika 8: Kemi~na sestava jekla v okolici oksidnega klina, EDS (jeklo maraging) Figure 8: Chemical composition of steel in the area oft the oxide wedge, EDS (maraging steel) nadaljnjo rast pa polnjenje razpok s talino, oksidacija in popu{~anje (prestaranje) jekla na povr{ini. 4.2 Tvorba in rast razpok Med vro~o fazo cikla litja se na povr{ini orodja pojavijo velike tla~ne napetosti (slika 2 b), ki jih pove~a tlak polnjenja gravure. Te napetosti sicer zavirajo nukleacijo in rast razpok, zato bi bile za`elene, vendar povzro~ajo lokalno plasti~no deformacijo. Le-ta je posebej izrazita na mestih, kjer so prisotni zarezni u~inki, ostri prehodi ali velike spremembe mase orodja. V hladni fazi cikla se na povr{ini orodja pojavijo velike natezne napetosti, ki so posledica plasti~ne deformacije. Le-te pri temperaturi obratovanja prese`ejo kriti~no vrednost nosilnosti jekla. Pri cikli~nem ponavljanju obremenitev nastane malocikli~no utrujanje, ki povzro~a nastanek in rast razpok. Rast razpok pospe{i oksidacija povr{ine jekla. @elezovi atomi iz podpovr{inskega sloja difundirajo na povr{ino h kisiku, prazna mesta pa zapolnijo legirni elementi (sliki 7 in 8). Na povr{ini orodja in razpoke se pojavi plast, sestavljena prete`no iz oksidov `eleza, tam pa so tudi oksidi aluminija in silicija, ki sta rezultat reakcije med kisikom in aluminijevo zlitino. Na meji med oksidno plastjo in jeklom (H13) se na zunanji strani nalagajo kromovi oksidi oz. oksidi kobalta in niklja pri jeklu maraging. Slabe strani oksidne plasti so nizka temperaturna razteznost, ve~ji specifi~ni volumen in krhkost. Oksidi in aluminijeve zlitine v razpokah pove- ~ajo natezne napetosti v klinu razpoke (med hladno fazo cikla), ki omogo~ajo rast razpok (slika 7 b) 5,19. Natezne napetosti povzro~ajo lokalne razpoke v oksidni plasti in v polnilu razpoke (krhkost in razlika v temperaturni razteznosti) ter odpiranje razpok. Te v nadaljevanju delujejo kot kanali za dovajanje alumi- nijeve zlitine v razpoko in omogo~ajo penetracijo kisika do vrha razpoke, kjer povzro~ajo oksidacijo. 4.3 Rast razpok zaradi popu{~anja (prestaranja) jekla Orodja za tla~no litje aluminija, izdelana iz CrMoV orodnih jekel za delo v vro~em, delujejo nad tempe- raturami sekundarnega utrjevanja 14. Pri takih pogojih se skoraj v vseh jeklih pojavi nagnjenost k popu{~anju jekla. Opazimo lahko tri stopnje meh~anja: (1) hitro meh~anje, kontrolirano z redukcijo dislokacij, (2) navi- dezno stacionarno meh~anje, ki ga vodi razvoj karbidov in (3) drasti~no zmanj{anje napetosti zaradi pojava velikih razpok 14. Ne`eleno popu{~anje jekla zmanj{uje napetost te~enja jekla in povzro~a hitro napredovanje razpok do globine popu{~ene plasti. Popu{~anje je posebej o~itno pri jeklu H13, ki je imelo zaradi kaljena na zraku razoglji~eno povr{ino (slika 5). Slab{e mehan- ske lastnosti te povr{ine so povzro~ile rast razpok, kar je sprostilo napetosti v njihovi okolici ter s tem prepre~ilo nastanek novih razpok. Rast razpok prepre~uje ve~ja trdota (sliki 5 in 6 a), zato se je v jeklu H13, ki je bilo TO v vakuumu, pojavila ve~ja gostota kraj{ih razpok. V navaru iz jekla maraging je trdota padla zaradi prestaranja med temperaturnim utrujanjem (slika 5). Kraj{e razpoke so se pojavile v nestaranem varu, ker pred preizku{anjem ni bil staran. Kljub temu pa toplotne obdelave staranja pri sanaciji orodij ne smemo izpustiti, saj s tem tvegamo pojav drugih po{kodb zaradi pre- majhne trdote delovne povr{ine. Gostota temperaturnih razpok je v korelaciji z nape- tostjo te~enja jekla (slika 6 b), ki zna{a za jeklo H13 1230 MPa, za jeklo maraging pa 1688 MPa 24,25. V materialih z vi{jo napetostjo te~enja se pojavi ve~ja gostota kraj{ih razpok. Ker je trdota jekla v korelaciji z napetostjo te~enja bi pri~akovali v jeklu maraging kraj{e razpoke oz. bolj{o odpornost proti temperaturnemu utrujanju, ~e bi prepre~ili prestaranje jekla maraging med delom. Proti prestaranju so bolj odporna jekla maraging z manj Ni (od 10 % do 14 %). Tabela 1: Toplotna obdelava epruvet iz jekla H13 Table 1: Heat treatment of H13 test specimens. TO 1 – vakuum – kakovostna TO TO 2 – brez za{~itne atmosfere – TOslabe kakovosti KALJENJE 1005 °C/35 min KALJENJE 1000 °C/30 min POPU[^ANJE 1 600 °C/150 min POPU[^ANJE 1 530 °C/150 min POPU[^ANJE 2 570 °C/240 min kaljenje = quenching, popu{~anje = tempering, vakuum = vacuum, brez za{~itne atmosfere = without protective atmosphere 5 SKLEPI V orodjih za tla~no litje ne`eleznih kovin je toplotno utrujanje glavni krivec za po{kodbe. V vro~i fazi cikla se na povr{ini orodja pojavijo velike tla~ne napetosti, ki jih dodatno zvi{uje tlak polnjenja livne votline s talino. Na mestih hitrih in ostrih prehodov se pojavi plasti~na deformacija jekla. V hladni fazi cikla se na teh mestih pojavijo velike natezne napetosti, ki povzro~ijo nukle- acijo razpok in rast s pove~evanjem {tevila ciklov. Oksidacija povr{ine orodja in povr{ine razpok ter polnjenje razpok z aluminijevo talino pove~ajo natezne napetosti v klinu med hladno fazo in omogo~ajo rast razpok. V jeklih z ve~jo napetostjo te~enja in ve~jo trdoto se pojavi ve~je {tevilo kraj{ih razpok, medtem ko se pri materialih z manj{o napetostjo te~enja in manj{o trdoto pojavi manj{e {tevilo dalj{ih razpok. Trajnost orodij za tla~no litje aluminijevih zlitin lahko podalj- {amo z uporabo trdnej{ih, trdih in `ilavih materialov, ki so bolj odporni proti popu{~anju (staranje) med obrato- vanjem. 6 LITERATURA 1 A. Srivastava, V. Joshi, R. Shivpuri, Computer modeling and prediction of thermal fatigue cracking in die-casting tooling, Wear 256 (2004), 38–43 2 V. Joshi, K. Kulkarni, R. Shivpuri, R. S. Bhattacharya, S. J. Dikshit, D. Bhat, Dissolution and soldering behavior of nitrided hot working steel with multilayer LAFAD PVD coatings. Surface and Coatings Technology 146–147 (2001), 338–343 D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 209 3 V. Joshi, A. Srivastava, R. Shivpuri, Intermetallic formation and its relation to interface mass loss and tribology in die casting dies. Wear 256 (2004), 1232–1235 4 A. Persson, S. Hogmark, J. Bergstrom, Simulation and evaluation of thermal fatigue cracking of hot work tool steels. International Journal of Fatigue 26 (2004), 1095–1107 5 A. Persson, S. Hogmark, J. Bergstrom, Failure modes in field-tested brass die casting dies. Journal of Materials Processing Technology 148 (2004), 108–118 6 A. Persson, S. Hogmark, J. Bergstrom, Thermal fatigue cracking of surface engineered hot work tool steels. Surface and Coatings Technology 191 (2005), 216–227 7 Young, W.: Why Die Casting Dies Fail, Paper No. G-T79-092, (1979), 1-7. St.Louis, Missouri, NADCA. 10th SDCE International die casting exposition & congress 8 Y. Wang, A study of PVD coatings and die materials for extended die-casting die life. Surf. and Coat. Techn. 94–95 (1997), 60–63 9 K. Kulkarni in sod., Thermal cracking behavior of multi-layer LAFAD coatings on nitrided die steels in liquid aluminum processing. Surf. and Coat. Techn. 149 (2002), 171–178 10 P. Panjan in sod., Improvement of die-casting tools with duplex treatment. Surface and Coatings Technology 180–181 (2004), 561–565 11 Marlok, Longer die life Better quality, www.metsopowdermet.com (2005). Metso Powdermet. 12 Fuchs, K. D.: Hot-work tool steels with improved properties for die casting applications, Rosso, M., Actis Grande, M, in Ugues, D. II, (2006). 17–26. Torino, Proceedings of 7th International Tooling Conference 13 Ahmer, Z. in sod., Cyclic behaviour simulation of X38CrMoV5-47HRC (AISI H11) tempered martensitic hot work tool steel, Rosso, M., Actis Grande, M, in Ugues, D. II, (2006). 513–520. Torino, Proceedings of 7th International Tooling Conference 14 Bergström, J., F. Rézai-Aria.: High temperature fatigue of tool steels, Rosso, M., Actis Grande, M, in Ugues, D. II, (2006), 545–554. Torino, Proceedings of 7th International Tooling Conference 15 Michaud, P. in sod., Influence of chemical composition on the precipitation of secondary carbides in modified AISI H11 hot-work tool steels, Rosso, M., Actis Grande, M, Ugues, D. (2006), 733–740. Torino, Proceedings of 7th International Tooling Conference 16 Daffos, C., P. Lamesle, F. Rézai-Aria.: Fatigue-oxidation interaction models for life prediction of hot foeming tools steels under transient thermomechanical loadings, Rosso, M., Actis Grande, M, in Ugues, D. II, (2006), 471–478. Torino, Proceedings of 7th International Tooling Conference 17 Medjedoub, F. in sod., Experimental conditions and enviromental effects on thermal fatigue damage accumulation and life of die-casting steel X38CrMoV5 (AISI H11), Rosso, M., Actis Grande, M, in Ugues, D. II, (2006), 461–470. Torino, Proceedings of 7th International Tooling Conference 18 B. Kosec, L. Kosec, J. Kopa~, Analysis of casting die failures. Engi- neering Failure Analysis 8 (2001), 355–359 19 F. Kosel, L. Kosec, Heat checking of hot work tools. Mechanical Engineering Journal 29, (1983), E1-E8 20 J. F. Wallace, D. Schwam, Development Studies on Selection and processing of Die Materials to Extend Die Life, Die Casting Engineer, (2000), 50–58 21 Klob~ar, D., J. Tusek, B. Taljat, G. Scavino.: Influence of thermal fatique on materials for die-casting tooling, Rosso, M., Actis Grande, M., Ugues, D. (2-5-2006). 479–485. Torino, Proceedings of 7th International Tooling Conference 22 D. Klob~ar, J. Tu{ek, B. Taljat, Thermal fatigue of materials for die-casting tooling. MSEA (2007) 23 Abaqus 6.4, (2003), Hibbit, Karlsson & Sorensen, Inc. 24 Materialne lastnosti jekla H13, www.sz-metal.si, (2003), 6-9-2003 25 QRO 90 Supreme, Hot work tool steel, Tool steel facts, www.uddeholm.com, Uddeholm. 15.9.2005 D. KLOB^AR ET AL.: ANALIZA TOPLOTNIH RAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA 210 Materiali in tehnologije / Materials and technology 42 (2008) 5, 203–210 M. PLETERSKI ET AL.: LASERSKO REPARATURNO VARJENJE TERMORAZPOK NA ORODJIH ... LASERSKO REPARATURNO VARJENJE TERMORAZPOK NA ORODJIH ZA TLA^NO LITJE ALUMINIJA LASER REPAIR WELDING OF THERMAL CRACKS ON ALUMINIUM DIE CASTING DIES Matej Pleterski1, Janez Tu{ek1, Ladislav Kosec3, Damjan Klob~ar1, Mitja Muhi~2, Tadej Muhi~2 1Univerza v Ljubljani, Fakulteta za strojni{tvo, A{ker~eva 6, 1000 Ljubljana 2TKC, d. o. o., Trnovska 8, 1000 Ljubljana 3Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, A{ker~eva 12, 1000 Ljubljana Prejem rokopisa – received: 2007-09-20; sprejem za objavo – accepted for publication: 2008-07-02 Sanacija po{kodovanih in izrabljenih orodij je ukrep, s katerim lahko v veliki meri pove~amo produktivnost in zmanj{amo proizvodne stro{ke. Zato se v zadnjem ~asu vedno ve~ uporablja laserska tehnologija, katere prednost je predvsem v ozkem lokalnem delovanju toplotne energije, majhni toplotno vplivani coni in zanemarljivih obrobnih zajedah. Orodja za tla~no litje so med delovanjem izpostavljena kompleksnim termomehanskim obremenitvam in s tem visokim napetostim na povr{ini, ki povzro~ijo utrujanje materiala in nastanek razpok. V ~lanku je predstavljena tehnologija sanacije razpok (`lebljenje, varjenje) z bliskovnim Nd:YAG-laserjem, vklju~no z analizo mikrotrdot ob sami razpoki, `lebu in varu. Rezultati ka`ejo na to, da je z laserjem mogo~e relativno hitro in enostavno odstraniti utrujeno obmo~je ob razpoki, ga navariti ter tako orodje usposobiti za obratovanje. Klju~ne besede: tla~no litje, orodja, razpoke, poprava, lasersko navarjanje, aluminij Repair welding of damaged and worn-out tools is a measure, which can increase productivity and lower production costs to a great extent. For this purpose, laser technology has recently been used with major benefits such as localized heating effect, narrow heat effected zone and negligible undercuts. In the die-casting process, dies are submitted to a complex thermo mechanical stressing and high stresses on the surfaces of dies are induced. That may lead to thermal fatigue cracking. In this paper, the technology of thermal cracks repair (grooving, welding) with pulsed Nd:YAG laser is described. A micro-hardness analysis of areas surrounding cracks, grooves and welds has been performed, also. The test results suggest that it is relatively fast and easy to eliminate the fatigue area surrounding the cracks, and with proper welding to reestablish the tool operability. Key words: die casting, dies, cracks, repairing, laser welding, aluminium 1 UVOD Lasersko varjenje je ena izmed prvih industrijskih aplikacij laserja. Ta alternativna tehnologija daje nove mo`nosti obdelave, dodelave in sanacije, kjer je varjenje z drugimi varilskimi metodami ote`eno ali celo onemo- go~eno. V to vrsto laserske obdelave spada tudi lasersko reparaturno zvarjanje in navarjanje, ki je relativno nova tehnologija in se vedno bolj uveljavlja v livarski, orodjarski ter drugi strojni industriji za sanacijo in vzdr`evanje orodij. Orodja za tla~no litje so izdelana iz kakovostnih jekel za delo v vro~em, ki so dobro odporna proti toplotnim deformacijam, {okom ter termi~nim razpokam na povr{ini. Ena izmed najpomembnej{ih karakteristik orodja je trdota. Pri orodjih za tla~no litje barvnih kovin mora biti le-ta okoli HRc = 45. Za pove~anje trajnostne dobe jih lahko {e nitriramo in s tem pove~amo njihovo povr{insko odpornost proti obrabi. Orodja so med uporabo izpostavljena kompleksnim termomehanskim obremenitvam in s tem visokim napetostim na povr{ini, ki povzro~ijo utrujanje materiala ter nastanek razpok na povr{ini, ne glede na vrsto materiala, toplotno obdelavo in vrsto oplemenitenja povr{ine orodja. Na sliki 1 je prikazana tipi~na termi~na razpoka, ki se mo~no izra`a tudi na odlitku. Tak{ni odlitki so nesprejemljivi, zato je treba orodja med obratovalno dobo sanirati. Zato so se navadno uporabljali procesi, kot so bru{enje, rezkanje in oblo~no varjenje. Z laserjem je mogo~e razpoko iz`lebiti, pa tudi Materiali in tehnologije / Materials and technology 42 (2008) 5, 211–214 211 UDK 621.791:669.715 ISSN 1580-2949 Izvirni znanstveni ~lanek/Original scientific article MTAEC9, 42(5)211(2008) Slika 1: Odtisi temen razpok zaradi termi~nega razpokanja na ulitku Figure 1: Imprints of cracks on a cast, as a result of thermal cracking zavariti. Sun in sod. 1,2 so napravili {tudiji o trajnodina- mi~ni in natezni trdnosti ter `ilavosti po pretaljevanju razpok, ki so nastale pri trajni dinami~ni obremenitvi pri povi{anih temperaturah. Treba je poudariti, da je {lo pri obeh njihovih raziskavah zgolj za pretaljevanje razpok brez dodajanja materiala. Vedani in sod. 3 so opravili {tudijo s poudarkom na razvoju mikrostuktur in meta- lur{kih problemih pri reparaturnem varjenju povr{insko obdelanih orodnih jekel. Nekateri avtorji 4,5 so razisko- vali lasersko reparaturno varjenje na razli~nih podro~jih. Brown in sod. domnevajo, da je lasersko reparaturno varjenje razpok na ladijskih plo~evinah bolj u~inkovito kot varjenje z oblo~nimi postopki zaradi kraj{ih ~asov in ni`jih stro{kov. 2 EKSPERIMENTALNI DEL Eksperimenti so bili izvedeni na obrabljenem stranskem jedru orodja za tla~no litje koluta za navijanje varnostnega pasu v avtu, vzdol` katerega je potekala razpoka. Orodje iz materiala 1.2343 (X38CrMoV5-1), kaljeno na trdoto 45 ± 2 HRc (450 ± 30 HV) je prika- zano na sliki 2. Orodje je bilo na za~etku odrezano na rezu 1. Ta kos se je rabil za analizo trdote ob razpoki. Razpoko na preostalem delu orodja se je nato po`lebilo z bliskovnim Nd:YAG-laserjem mo~i 120 W. Po `leblje- nju je bilo orodje odrezano na rezu 2. Drugi kos se je rabil za analizo trdote ob `lebu. Preostanek orodja je bil nato zavarjen z dodajnim materialom Uddeholm G3 premera 0,5 mm in odrezan na rezu 3. Uporabljeni parametri za `lebljenje in varjenje so prikazani v tabeli 1. Pri iz`lebljenju z laserskim `arkom je treba izbrati parametre z visoko gostoto energije v gori{~u laserskega `arka. Material, tj. jeklo, je bilo treba upariti in ga odstraniti iz razpoke. Za `lebljenje je zahtevana gostota energije ve~ kot 1010 W/m2. To se dose`e z nastavitvijo visoke mo~i na laserskem izvoru in izbiro le~e s kratko gori{~no razdaljo. Parametri za varjenje morajo biti prilagojeni predvsem velikosti iz`lebljenega utora in premeru uporabljene `ice. V obeh primerih je bil kot za{~itni plin uporabljen Ar ~istote 99,9996 %. Iz odrezanih delov orodja so bili napravljeni makroobrusi, na katerih so bile nato opravljene meritve mikrotrdot po Vickersu pri obremenitvi 100 g oz. sili 0,981 N. Vsi vzorci so bili jedkani z nitalom (4 %). Meritve so bile opravljene na treh globinah orodja: (0,3, 0,6 in 1) mm. Zaradi bolj{e preglednosti so v nadaljevanju predstav- ljene zgolj meritve trdot na globini 1 mm. Tabela 1: Prikaz nastavitvenih parametrov pri laserskem `lebljenju in varjenju razpok Table 1: Parameters for laser grooving and welding Parameter @lebljenje Varjenje Frekvenca las. bliskov y /Hz 6 7,4 ^as trajanja las. bliska tp /ms 6,2 6,2 Povpre~na mo~ las. bliska Ppp /W 900 400 Povp. energija las. bliska Ep /J 15,3 11,9 Gori{~na razdalja le~e fl /mm 160 200 3 REZULTATI IN DISKUSIJA Na sliki 3 je prikazan makroobrus razpoke. Z merit- vami trdote, prikazanimi na sliki 4 a, smo ugotovili, da je trdota okoli razpoke vi{ja, kar je razvidno tudi iz diagrama na sliki 4 b, kjer je trdota ob razpoki v povpre~ju za HV = 200 vi{ja od normalne trdote orodja. To sicer ni zna~ilno za podro~ja ob termi~nih razpokah, tako da lahko sklepamo, da je bilo to orodje pred na{o analizo verjetno `e sanirano. Navadno trdota materiala ob neposredni bli`ini termi~ne razpoke rahlo pade, kar je posledica kemijske nehomogenosti jekla v obmo~ju ob povr{ini razpoke. @elezovi atomi iz sloja pod povr{ino razpoke difundirajo na povr{ino proti kisiku, na prazna mesta pa difundirajo legirni elementi (Cr, Mo, V). Na povr{ini razpoke se tako pojavi plast, ki je v veliki meri sestavljena iz `elezovih oksidov in oksidov aluminija in silicija, kar je posledica reakcije aluminijeve zlitine in kisika. Na meji te oksidne plasti in osnovnega materiala pa se kopi~ijo predvsem oksidi kroma. Slaba stran oksidne plasti je nizka temperaturna razteznost, ve~ji volumen in krhkost. Oksidi in aluminijeve zlitine v razpokah pove~ajo natezne napetosti v klinu razpoke, kar povzro~a njihovo rast 6. Razpoke v nadaljevanju delujejo kot kanali za dovajanje aluminijeve zlitine v razpoko in M. PLETERSKI ET AL.: LASERSKO REPARATURNO VARJENJE TERMORAZPOK NA ORODJIH ... 212 Materiali in tehnologije / Materials and technology 42 (2008) 5, 211–214 Slika 3: Makroskopska slika termi~ne razpoke Figure 3: Macro section of a thermal crack Slika 2: Stransko jedro z ozna~enimi podro~ji razreza Figure 2: Test specimen with marked cuts omogo~ajo penetracijo kisika do konice razpoke, kjer povzro~i oksidacijo. Pri nadaljnjem obratovanju takega orodja se razpoka {e hitreje {iri, postaja vedno globlja in {ir{a. Vse skupaj vodi do nesprejemljivih ulitkov, orodje pa lahko pri nadaljnjem obratovanju v takem stanju po~i po celotni globini. Tako po{kodovana orodja se navadno sanirajo (~e je sanacija sploh {e stro{kovno upravi~ena) z rezkanjem razpoke in varjenjem po postopku TIG s predgrevanjem, zajede pa se nato popravijo z laserjem. Pri tak{ni sanaciji je treba veliko mehanske in toplotne obdelave. Na sliki 5 je prikazan makroobrus iz`lebljene raz- poke, na katerem je lepo vidno toplotno vplivano podro~je in tisto, ki je bilo med `lebljenjem pretaljeno in ponovno zakaljeno (svetel rob tik ob `lebu). Ta, pri- bli`no 0,2 mm {irok pas se izra`a tudi v diagramu meritev trdot, ki je prikazan na sliki 6. Trdote so v tem pasu tudi do HV = 300 ve~je od normalne trdote orodja (izstopajo~a meritev, ki sega nad HV = 850, je posledica kemi~ne nehomogenosti jekla v tem obmo~ju). Iz diagrama je tudi razvidno, da trdota z oddaljenostjo od zvarnega `lebu naglo pada in po 0,2 mm do 0,3 mm dose`e normalno trdoto orodja. Razlog za tako visoke trdote je predvsem v relativno veliki gostoti vnesene energije, kar je pogoj za uspe{no `lebljenje obmo~ja ob razpoki. Ker se orodja v primeru laserskega reparatur- nega varjenja varijo v hladnem, se segreti material in talina, ki se ne odstrani iz `leba, znova zakalita. Zaradi velikega temperaturnega gradienta med tem obmo~jem, segretim nad temperaturo tali{~a jekla, in osnovnim materialom (sobna temperatura) se to obmo~je izredno hitro ohladi in s tem mo~no zakali. Mikrostruktura, ki nastane v takem primeru, je prikazana na SEM-posnetku na sliki 7. Na sliki 8 je prikazan makroobrus zavarjene razpoke. Meritve trdot na varu so prikazane v diagramu slike 9. Eden izmed ciljev pri reparaturnem varjenju je, da se dose`e trdota zvara ~im bolj enaka trdoti osnovnega materiala. Na to pa lahko vplivamo predvsem z izbiro M. PLETERSKI ET AL.: LASERSKO REPARATURNO VARJENJE TERMORAZPOK NA ORODJIH ... Materiali in tehnologije / Materials and technology 42 (2008) 5, 211–214 213 Slika 6: Profil trdote ob zvarnem `lebu Slika 6: Hardness profile in the direction perpendicular to the groove Slika 4: Merilna mesta (a) in profil trdote pravokotno na razpoko (b) Figure 4: Location of measurements (a) and the hardness profile in direction perpendicular to the crack (b) Slika 7: Mikrostruktura jekla ob zvarnem `lebu (Sl. 5): A-osnovni material; B-TVP; C-meja nataljevanja; D-obmo~je celi~ne mikro- strukture, E-obmo~je aksialnih dendritov; SEM (SEI) Figure 7: Image of microstructure at the groove: A-base material; B-HAZ; C-solidification line; D-cellular dendrite area; E-axial dendrite area; SEM (SEI) Slika 5: Makroskopska slika iz`lebljene razpoke Figure 5: Macro section of the groove primernega dodajnega materiala in varilnimi parametri. Zaradi majhne koli~ine taline in velikega gradienta temperature uporabljamo pri laserskem reparaturnem varjenju dodajne materiale, ki imajo zni`an dele` C (0,2 %) in zvi{ano vsebnost Cr (1,5 %) in Mo (3 %) glede na osnovni material. Prav tako moramo biti pazljivi pri nastavitvi parametrov, da vnesena energija ni prevelika, vendar {e tolik{na, da se dodajni material pretali in v celoti zlije z osnovnim. Na sliki 10 je prikazan SEM-posnetek obmo~ja na robu zvara, ki je z me{ano celi~no-dendritno mikrostrukturo podobno tistemu ob zvarnem `lebu, zato so tudi trdote v tem prehodnem podro~ju visoke. Mikrostruktura v sredini vara pa je prikazana na sliki 11. Gre za martenzitno mikrostrukturo z redkej{imi neizrazitimi dendriti in trdoto rahlo vi{jo od osnovnega materiala. 4 SKLEPI Rezultati raziskave ka`ejo, da je z lasersko tehnolo- gijo mogo~e relativno hitro in enostavno sanirati razpo- kano orodje. Z ustreznimi parametri laserskega `arka je mogo~e razpoko iz`lebiti ter tako odstraniti utrujeni material ob razpoki. ^eprav se ob tako pripravljenem `lebu pojavi ozko pretaljeno podro~je, ki se mo~no zakali, je mogo~e ob nastavitvi primernih laserskih parametrov in izbiri pravega dodajnega materiala orodje zvariti tako, da je trdota zvara blizu trdoti osnovnega materiala. 5 LITERATURA 1 Y. Sun, S. Hanaki, M. Yamashita, H. Uchida, H. Tsujii: Vacuum 73 (2004), 655–660 2 Y. Sun, H. Sunada, N. Tsujii: ISIJ International, 41 (2001) 9, 1006–1009 3 M. Vedani: Journal of Materials Science (2004), 241–249 4 E. Capello, D. Colombo, B. Previtali: Journal of Materials Pro- cessing Technology 164–165 (2005), 990–1000 5 P. M. Brown, G. Shannon, W. Deans, J. Berd: Weld World (1999), 33 6 F. Kosel, L. Kosec: Mechanical Engineering Journal 29, (1983), E1-E8 M. PLETERSKI ET AL.: LASERSKO REPARATURNO VARJENJE TERMORAZPOK NA ORODJIH ... 214 Materiali in tehnologije / Materials and technology 42 (2008) 5, 211–214 Slika 11: Mikrostruktura v varu; fina dendritna mikrostruktura; SEM (SEI) Figure 11: Microstructure in the weld; Fine dendritic microstructure; SEM (SEI) Slika 9: Profil trdote preko zvara Figure 9: Hardness profile across the weld Slika 10: Mikrostruktura jekla na robu zvara: A-osnovni material; B-TVP; C-obmo~je celi~no-dendritne mikrostrukture; D-pasovi toplotnega vpliva zaradi ve~varkovnega polnjenja `leba; SEM (SEI) Figure 10: Microstructure at the weld boundary: A-base material; B-HAZ; C- dendrite area; D-layers of heat effect of multi-pass groove filling; SEM (SEI) Slika 8: Makroskopska slika navarjenega zvarnega `leba Figure 8: Macro section of the welded groove U. ESME ET AL.: USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS ... USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS FOR THE PREDICTION OF SURFACE ROUGHNESS OF AA 7075 ALUMINUM ALLOY UPORABA UMETNIH NEVRONSKIH MRE@ ZA NAPOVED HRAPAVOSTI POVR[INE PRI KROGELNEM GLAJENJU ALUMINIJEVE ZLITINE AA 7075 Ugur Esme1, Aysun Sagbas2, Funda Kahraman3, M. Kemal Kulekci4 Mersin University, Tarsus Technical Education Faculty, Department of Mechanical Education, 33400, Tarsus-Mersin/Turkey uesme2003hotmail.com Prejem rokopisa – received: 2008-06-25; sprejem za objavo – accepted for publication: 2008-07-09 Burnishing is a plastic deformation process, and it has become more popular as a finishing process. Thus, it is especially crucial to select the burnishing parameters to reduce the surface roughness. In the present study, a surface roughness prediction model using artificial neural network (ANN) is developed to investigate the effects of burnishing conditions during machining of AA 7075 aluminum material. The ANN model of surface roughness parameters (Ra) is developed considering the conditions as burnishing force, number of tool passes, feed rate and burnishing speed. The experimental results were trained in an ANN program and the results were compared with experimental values. It is observed that the experimental results coincided with ANN results. Keywords: Ball burnishing, surface roughness, modeling, artificial neural network Glajenje je proces plasti~ne deformacije in je postalo zelo raz{irjeno kot kon~na obdelava. Za zmanj{anje hrapavosti povr{ine je zelo je pomembna izbira parametrov glajenja.V tej raziskavi je bil z uporabo nevronske mre`e (ANN) razvit model glajenja pri obdelavi aluminijeve zlitine AA 7075. Model parametra hrapavosti povr{ine (Ra) je bil razvit z upo{tevanjem pogojev: polirna sila, {tevilo prehodov orodja, hitrost podajanja in hitrost poliranja. Eksperimentalni podatki so uporabljeni za ANN-program, rezultati modela pa primerjani z eksperimentalnimi. Rezultati ANN se dobro ujemajo z eksperimentalnimi. Klju~ne besede: krogelno glajenje, hrapavost povr{ine, modeliranje, umetna nevronska mre`a 1 INTRODUCTION The surface quality is an important parameter to evaluate the productivity of machine tools as well as machined components. Hence, achieving the desired surface quality is of great importance for the functional behavior of mechanical parts 1. Surface roughness is used as the critical quality indicator for the machined surfaces and since, it affects several properties such as wear resistance, fatigue strength, coefficient of friction, lubrication, wear rate and corrosion resistance of the machined parts 2. In today’s manufacturing industry, special attention is given to dimensional accuracy and surface finish. Thus, measuring and characterizing the surface finish can be considered as a predictor for the machining performance. Burnishing is considered as a cold-working finishing process differing from other cold-working surface treatment processes such as shot peening and sand blasting, etc. in that it produces a good surface finish and also induces residual compressive stresses at the metallic surface layers 3,4. Accordingly, the burnishing is distinguished from chip-forming finishing processes such as grinding, honing, lapping and super-finishing which induce residual tensile stresses at the machined surface layers 5. Also, burnishing is economically desirable, because it is a simple and cheap process, requiring less time and skill to obtain a high-quality surface finish 6. The burnishing process can be achieved by applying a highly polished and hard ball or roller onto a metallic surface under pressure. As indicated in Figure 1, pressure causes the peaks of the metallic surface to spread out permanently and fill the valleys 4, when the applied burnishing pressure exceeds the yield strength of the metallic material. The surface of the metallic material will be smoothed out and because of the plastic deformation the surface is Materiali in tehnologije / Materials and technology 42 (2008) 5, 215–219 215 UDK 669.715:620.17.112 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 42(5)215(2008) Figure 1: Schematic representation of ball burnishing process 7 Slika 1: Shematska predstavitev procesa krogelnega poliranja 7 work hardened and the material is left with a residual stress distribution compressive on the surface 4. The changes in surface characteristics due to burnishing will cause improvements in surface hardness, wear resi- stance, fatigue resistance, yield and tensile strength and corrosion resistance, as claimed by many authors 8–11. The aim of the present work was to investigate the effect of burnishing parameters such as burnishing force (F/N), number of tool passes (N), feed rate (f/(mm/min)) and burnishing speed (v/(r/min)) on the surface roughness (Ra/µm) of AA 7075 aluminum with the use of ANN. 2 MATERIAL AND EXPERIMENTAL PROCEDURE 2.1 Material In this study, high strength precipitation hardening 7XXX series wrought aluminum alloy AA 7075 was used. The strength and good mechanical properties make the AA 7075 aluminum alloy appropriatefor use in aerospace industry. The chemical composition and mechanical properties of the workpiece material is given in Table 1. Table 1: Chemical and mechanical properties of workpiece material Tabela 1: Sestava in mehanske zna~ilnosti obdelovanca Chemical composi- tion w/% Al Cu Mg Cr Zn 90.0 1.60 2.50 0.23 5.60 Mechani- cal pro- perties Tensile strength (MPa) Yield strength (MPa) Shear strength (MPa) Fatique strength (MPa) Hard- ness (HB 500) 220 95 150 160 60 The three part workpiece material shown in Figure 2, was prepared with the dimensions of 30 mm diameter and 60 mm in length with each segment with 20 mm in length. 2.2 Machines and Equipments A 18 mm diameter steel ball was used for burnishing. The detailed drawing is shown in Figure 3. When the ball or roller is pressed against the surface of the metallic specimen, a pre-calibrated spring was compressed used mainly to reduce the possible sticking of the tool onto the surface. The experiments were performed on a FANUC GT-250B CNC machining center. The burnishing tool was mounted on the CNC turret as shown in Figure 4. Dry turning and burnishing were used in all the experimental work and alcohol was used to clean the specimens before burnishing. The cleaning of the ball was carried out continuously in order to prevent any hard particles from entering the contact surface between the tool and the specimen, such hard particles usually leaving deep scratches that may damage the burnished surface of the specimen. The Phynix TR-100 model surface roughness tester was used to measure the surface roughness of the burnished samples. Cut off length was chosen as 0.3 for each roughness measurement. Six measurements of surface roughness were taken from the samples and average of the roughness was used in modeling. U. ESME ET AL.: USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS ... 216 Materiali in tehnologije / Materials and technology 42 (2008) 5, 215–219 Figure 4: Ball burnishing experimental set up Slika 4: Eksperimentalna priprava za krogelno glajenje Figure 2: Dimensions of workpiece material Slika 2: Mere obdelovanca Figure 3: Detailed drawing of the ball burnishing tool: (1) casing; (2) adapter cover; (3) spring Slika 3: Na~rt orodja za krogelno glajenja. (1) ohi{je, (2) prilago- ditveni pokrov, (3) vzmet 3 MODELING WITH ARTIFICIAL NEURAL NETWORK (ANN) Computers are an integral part of day to day activities in engineering design and engineers have utilized various applications to assist them improve their design 12. ANN mimics some basic aspects of the brain functions 13–15. It is based on the neural structure of the human brain, which processes information by means of interaction between many neurons 13,16. In the past few years there has been a constant increase in interest of neural network modeling in different fields of materials science. The basic unit in the ANN is the neuron. The neurons are connected to each other with weight factor. A network is usually trained using a large number of input with corresponding output data 17. The ANN architecture used modeling of surface roughness is illustrated in Figure 5. It consists of many simple processing neurons organized in a sequence of layers: input, intermediate (hidden) and output layers. The simulation problem consists of finding a satisfactory relationship between a set of neurons representing the input data and associated known output. The selection of the input parameters is a very important aspect of neural network modeling 17. All relevant input parameters must be represented as the input data of the neural network. In this study burnishing force, number of passes, feed and burnishing speed were used as inputs while surface roughness was used as an output. The ANN model used is 4 : 5 : 5 : 1 multilayer architecture as shown in Figure 5. Yj (j = 1, 2,..,5) and Yi (i = 1, 2,..,5) are the output of the hidden neurons. 3.1 The Training of the Network Generally, there are three different learning strategies. First, the trainer may tell the network what it should learn (Supervised Learning), second, the trainer may indicate whether or not the output is correct without telling what the network should learn (Reinforcement Learning) and finally, the network learns without any intervention of the trainer (Unsupervised Learning). The learning set consists of the inputs and the outputs used in training the network. The required outputs take place in this set in the case of supervised learning, while in other cases, they are not found in it 17,18. In the present study, the supervised learning approach was used. The com- puter program has been developed under MATLAB 19 and as given in Table 2, a database of 30 experimental results was used to train the ANN model. Table 2: Experimental results and training set of ANN modeling Tabela 2: Eksperimentalni rezultati in u~ni podatki za ANN-mode- liranje Exp.no Burnishing force F/(9,86 N) Number of passes N Feed rate f/(mm/min) Burnishing speed v/(r/min) Measured surface roughness Ra/µm 1 9 2 0.62 200 0.30 2 10 3 0.80 400 0.37 3 11 2 0.60 500 0.37 4 12 3 0.45 800 0.47 5 13 2 0.45 1000 0.44 6 14 4 0.45 600 0.65 7 15 4 0.45 600 0.71 8 16 2 0.27 200 0.60 9 17 3 0.62 600 0.69 10 18 4 0.45 600 0.89 11 19 3 0.27 400 0.85 12 20 2 0.27 500 0.78 13 21 3 0.45 600 0.91 14 22 4 0.27 1000 1.12 15 23 2 0.62 700 0.75 16 24 3 0.45 600 1.06 17 25 2 0.27 200 1.02 18 9 4 0.27 200 0.38 19 10 2 0.62 300 0.33 20 12 4 0.45 400 0.54 21 16 3 0.80 500 0.63 22 13 3 0.60 600 0.51 23 15 2 0.27 700 0.55 24 16 3 0.62 800 0.64 25 17 4 0.45 900 0.82 26 20 3 0.62 1000 0.81 27 14 2 0.45 400 0.49 28 16 4 0.80 600 0.76 29 11 3 0.27 800 0.42 30 10 2 0.45 800 0.33 3.2 Testing Stage In order to understand whether an ANN is making good predictions, test data that has never been presented to the network are used and the results are checked at this stage. The statistical methods of root mean square error (RMSE), the coefficient of multiple determination (R2) values have been used for making comparisons 17,20–23. These values are determined by the following equations: RMSE n a pj j j = − ⎛ ⎝ ⎜ ⎞ ⎠ ⎟∑1 2 1 2/ (1) ( ) ( ) R a p p j j j j j 2 2 2 1= − −⎛ ⎝ ⎜ ⎜ ⎜⎜ ⎞ ⎠ ⎟ ⎟ ⎟⎟ ∑ ∑ (2) U. ESME ET AL.: USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS ... Materiali in tehnologije / Materials and technology 42 (2008) 5, 215–219 217 Figure 5: The constructed ANN model Slika 5: Razviti ANN-model where; p is the predicted value, a the actual value and n the number of samples. 4 RESULTS AND DISCUSSION The comparisons of experimental results with the ANN predictions have been depicted in terms of percentage error for validation set of experiments. From Table 3 it is evident that for our set of data the neural network predicts the surface roughness nearer to the experimental values. In the prediction of surface roughness values the average errors for ANN is found to be as 3.30 %. The average RMSE was found to be as 0.0048. The value of the multiple coefficient of R2 between experimental results and ANN prediction is obtained as 0.998. This value showed that ANN model fits well with U. ESME ET AL.: USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS ... 218 Materiali in tehnologije / Materials and technology 42 (2008) 5, 215–219 Table 3: Validation set used for ANN analysis Tabela 3: Podatki za preverjanje ANN-analize Exp.no Burnishing force F/(9,81 N) Number of passes N Feed rate f/(mm/min) Burnishing speed v/(r/min) Measured surface roughness Ra/µm ANN Predicted surface roughness Rap/µm Error % RMSE R2 1 10 2 0.62 200 0.34 0.36 -6.75 0.0051 0.9960 2 10 3 0.80 600 0.36 0.38 -4.23 0.0034 0.9984 3 11 4 0.27 200 0.50 0.52 -4.42 0.0049 0.9982 4 12 3 0.45 400 0.47 0.45 5.22 0.0055 0.9970 5 13 3 0.45 1000 0.49 0.48 1.91 0.0021 0.9996 6 15 3 0.10 600 0.64 0.63 2.22 0.0032 0.9995 7 17 4 0.27 600 0.84 0.87 -3.46 0.0065 0.9989 8 18 4 0.27 800 0.89 0.91 -2.12 0.0042 0.9996 9 21 2 0.62 800 0.72 0.74 -3.25 0.0052 0.9990 10 22 3 0.45 600 0.96 0.96 0.50 0.0011 1.0000 11 23 2 0.27 300 0.92 0.91 1.36 0.0028 0.9998 12 24 4 0.62 200 1.09 1.04 4.59 0.0112 0.9977 13 25 2 0.80 1000 0.87 0.89 -2.29 0.0045 0.9995 14 10 3 0.62 900 0.37 0.39 -4.64 0.0038 0.9980 15 11 4 0.45 800 0.47 0.48 -1.72 0.0018 0.9997 16 12 2 0.80 300 0.39 0.38 1.57 0.0014 0.9997 17 13 3 0.80 600 0.46 0.45 2.94 0.0030 0.9991 18 14 4 0.60 700 0.64 0.63 1.88 0.0027 0.9996 19 9 2 0.27 800 0.37 0.38 -2.38 0.0020 0.9995 20 25 4 0.27 1000 1.16 1.06 8.62 0.0224 0.9911 Average error: 3.30% Average RMSE: 0.0048 Average R2: 0.998 Figure 7: Learning behavior of ANN model Slika 7: U~no vedenje ANN-modela Figure 6: Actual average surface roughness against ANN prediction Slika 6: Dejanska hrapavost proti ANN-napovedi the experimental results. Figure 6 illustrates the ANN predictions against the experimental results. The training of the neural network was performed with an allowable error of 0.01 (sum of squared error over the output neurons). The learning behavior of this particular network is shown in Figure 7. 5 CONCLUSION In this study, for the modeling of the effects of ball burnishing parameters (burnishing force, number of passes, feed rate and burnishing speed) on the surface roughness of the AA 7075 aluminum alloy depending on various processing parameters, an ANN-based approach has been suggested and successfully implemented. As Figure 6 indicates for each average surface roughness value the predictions of the ANN are very close to the experimental results. It may be concluded that the ANN may be used as a good alternative for the analysis of the effects of burnishing parameters on the average surface roughness. In the field of surface roughness, ANNs are good alternative to conventional empirical modeling. The advantages of the ANN compared to classical methods are speed, simplicity and capacity to learn from the experimental results and also none need for a wider experimental study. Because of this fact that, engi- neering effort may be reduced in the areas where ANN modeling is preferred. In this study the focus was to predict the average surface roughness in ball burnishing process. The results from ANN model will allow to improve determination of the average surface roughness value and help to deter- mine in a short time the behavior of the experimental results. 6 REFERENCES 1 P. G. Benardos, G. C. Vosniakos, Robotics and Computer Integrated Manufacturing, 18 (2002), 343–354 2 C. Feng, X. Wang, In.t J. Adv. Manuf. Technol., 20 (2002), 1–8 3 A. M. Hassan, Journal of Materials Processing Technology, 72 (1997), 385–391 4 C. Wick, R. F. Veilleux, Tool and manufacturing engineers hand- book, Soc. Manuf Eng, (1985), 16–38 5 T. Siva Prasad, B. Kotiveerachari, J. Inst. Eng. India, 69 (1998), 55–58 6 N. H. Loh, S.C. Tam, S. Miyazawa, Int. J. Mach. Tools Manuf., 33 (1993), 841–852. 7 A. M. Hassan, A. S. AL-Bsharat, Wear, 199 (1996), 1–8 8 A. M. Hassan, A. S. AL-Bsharat, J. Mater. Process. Technol., 59 (1996), 250–256 9 R. L. Murthy, B. Kotiveerachari, Prec. Eng., 3 (1981), 172–179 10 R. Rajasekariah, S. Vaidyanathan, Wear, 34 (1975), 183–188 11 Y. G. Shneider, Mach. Tooling, 38 (1967), 19–22 12 H. K. Durmus, E. Ozkaya, C. Meric, Materials and Design, 27 (2006), 156–159 13 M. Perzyk, A.W. Kochanski, Journal of Materials Processing Tech- nology, 109 (2001), 305–307 14 M. Y. Rafiq, G. Bugmann, D.J. Easterbrook, Comput. Struct., 79 (2001), 1541–1552 15 S. Kenig, A. B. David, O. M. Sadeh, Eng. Appl. Artif. Intel., 14 (2001), 819–823 16 R. Song, Q. Zhang, M. Tseng, B. Zang, Mater. Sci. Eng., C3 (1995), 39–41 17 M. Nalbant, H. Gokkaya, I. Toktas, G. Sur, Robotics and Computer Integrated Manufacturing, 2008, doi:10.1016/j.rcim.2007.11.004 18 E. Oztemel, Integrating expert systems and neural networks for intelligent on-line statistical process control. PhD thesis, School of Electrical, Electronic and Systems Engineering, University of Wales, Cardiff, (1992), 1–38 19 MATLAB 6.5, The Language of Technical Computing release 13, Natick, The MathWorks, Inc., (2002) 20 E. Arcaklýoglu, I. J. Energy Res., 28 (2004), 1113–1125 21 A. Sozen, E. Arcaklýoglu, M. Ozalp, N. Caglar, Renewable Energy, 30 (2005), 1075–1090 22 A. Sozen, E. Arcaklýoglu, M. Ozkaymak: Appl. Energy, 81 (2005), 209–210 23 I. Toktas, N. Akturk, A new approach using artificial neural Net- works for conceptual design of cylindrical helical gears. In Proceed- ings of the MTET 2005 1st international vocational and technical education technologies congress, Marmara University, Istanbul/ Turkey, (2005), 754–762 U. ESME ET AL.: USE OF ARTIFICIAL NEURAL NETWORKS IN BALL BURNISHING PROCESS ... Materiali in tehnologije / Materials and technology 42 (2008) 5, 215–219 219 M. AMBRO@I^ ET AL.: MERJENJE OBRABNE OBSTOJNOSTI STRUKTURNE KERAMIKE Al2O3 MERJENJE OBRABNE OBSTOJNOSTI STRUKTURNE KERAMIKE Al2O3 WEAR-RESISTANCE MEASUREMENT OF STRUCTURAL Al2O3 CERAMICS 1Milan Ambro`i~, 2Stojana Veskovi~ Bukudur, 1Toma` Kosma~, 1Kristoffer Krnel, 1Darko Eterovi~, 1Natalija Petkovi~ Habe, 1Irena Pribo{i~ 1Odsek za in`enirsko keramiko (K6), Institut "Jo`ef Stefan", Jamova 39, Ljubljana, Slovenija 2Hidria AET, d. o. o., Poljubinj 89, Tolmin, Slovenija Prejem rokopisa – received: 2008-02-15; sprejem za objavo – accepted for publication: 2008-03-31 Obstojnost keramike proti obrabi med vsakdanjo uporabo je poleg drugih mehanskih lastnosti – trdote, togosti, tla~ne in natezne trdnosti ter `ilavosti – velikega pomena. Pri obrabni obstojnosti so pomembne mnoge lastnosti, kot so trdota, `ilavost, koeficient trenja med sti~nimi povr{inami, morebitne kemi~ne reakcije zaradi mo~no povi{ane temperature in nastanek »triboplasti«, tako da je zelo te`ko najti enoli~no povezavo med danimi veli~inami. Zato je treba obrabno obstojnost posebej kvantitativno opredeliti in jo izmeriti v ponovljivih razmerah. V ~lanku opisujemo preprost in poceni na~in merjenja obrabne obstojnosti strukturne korundne keramike z obi~ajno napravo za bru{enje in poliranje kerami~nih vzorcev. Klju~ne besede: strukturna keramika, obrabna obstojnost, faktor obrabe Wear resistance of ceramics in the every-day use is of great importance, besides other mechanical properties, e.g., hardness, stiffness, compressive and tensile strength and toughness. Several characteristics contribute to wear resistance, such as hardness, toughness, coefficient of friction between the surfaces in contact, possible chemical reactions due to highly increased temperature, and the formation of tribofilm, making the search for the unique connection between these quantities very difficult. Therefore, it is necessary to define the wear resistance quantitatively and measure it in repeatable circumstances. A simple and cost-efficient method for wear-resistance measurement of the structural ceramic material alumina with the help of the ordinary grinding/polishing machine for ceramic samples is presented. Key words: structural ceramics, wear-resistance, wear factor 1 UVOD Pomembni podro~ji uporabe strukturne keramike sta in`enirska in proteti~na keramika. Strukturna keramika mora imeti zadovoljive mehanske lastnosti: veliko trdnost in trdoto ter ~im bolj{o `ilavost. Kjer pa je njena povr{ina izpostavljena vsakodnevnemu trenju z drugimi sti~nimi povr{inami, npr. v sklepnih kerami~nih prote- zah, mora imeti tudi dobro obstojnost proti obrabi. Zato je treba obrabno obstojnost kvantitativno opredeliti in jo meriti v ~im bolj ponovljivih razmerah. Osnova sodobnih meritev na komercialnih napravah je preprosta: z dolo~eno silo je treba pritisniti povr{ino merjenca ob referen~no povr{ino (referen~na povr{ina je lahko iz enakega ali pa druga~nega materiala kot presku- {ani vzorec), spraviti drsni povr{ini v relativno gibanje in nazadnje izmeriti u~inke obrabnega preskusa, npr. izmeriti zmanj{anje prostornine merjenca. Veliko obrab- nih preskusov je bilo narejenih na dveh pomembnih in`enirskih in biomedicinskih kerami~nih materialih: aluminijevem in cirkonijevem oksidu (Al2O3 in ZrO2) in njunih kompozitov.1-11 Aluminijev oksid (Al2O3) – ko- rundna keramika – ima veliko trdoto in zato tudi veliko obrabno obstojnost. Danes se veliko uporablja merilo, da je material dobro obrabno obstojen v vsakdanji uporabi, ~e ima faktor obrabe po ena~bi (1) manj{i od vrednosti 10–6 mm3/J.8,10 Za vedenje trdih materialov pri trenju in obrabi se je uveljavilo tudi ime "tribolo{ke lastnosti materialov". Ime izhaja iz tega, ker pri stiku in relativnem gibanju raz- meroma gladkih povr{in dveh trdih materialov nastane med njima {e tretja plast, na kratko triboplast, in sicer iz aglomeriranih odkru{enih del~kov z ene ali obeh kera- mi~nih povr{in.6 Kemijsko in fazno sestavo triboplasti ter njeno hrapavost, ki seveda mo~no vpliva na koeficient trenja, lahko preu~imo z vrsti~nim in presevnim elektronskim mikroskopom (SEM in TEM), rentgensko spektroskopijo, mikroskopom na atomsko silo (AFM), ramansko spektroskopijo, opti~nim mikroskopom – profilometrom itd.1-10 Ve~ poskusov ka`e na to, da se po za~etnem spreminjanju koeficient trenja med sti~nima povr{inama ustali pri neki vrednosti, kar ka`e na to, da ga zares dolo~a nastala triboplast.6,7,11 Krell in Klaffke sta primerjala obrabo povr{in vzorcev Al2O3, tetragonalnega ZrO2 (z molskim dele`em Y2O3 3 %) in kompozita Al2O3/TiC (TiC je titanov karbid) pri drgnenju ob krogle iz Al2O3 pri razli~nih pogojih (npr. razli~ni vla`nosti zraka).3 Pri tem je imela keramika Al2O3 razli~ne povpre~ne velikosti zrn, od 0,4 µm do 3 µm, odvisno od majhne koli~ine dodatkov, npr. MgO, ki imajo bistven vpliv na potek sintranja. Za Al2O3 sta ugotovila, da se z zmanj{anjem kristalnih zrn zmanj{a faktor obrabe. Nadalje, vla`en zrak ali teko~a voda med sti~nima povr{inama zmanj{ata koeficient Materiali in tehnologije / Materials and technology 42 (2008) 5, 221–225 221 UDK 620.178.1:666.3/.7 ISSN 1580-2949 Strokovni ~lanek/Professional article MTAEC9, 42(5)221(2008) trenja, kar v glavnem vodi do zmanj{anja faktorja obrabe. Faktorja obrabe Al2O3 in kompozita Al2O3/TiC sta podobna, obraba ZrO2 pa je ve~ja. Liu in sodelavci so ugotovili, da dodatek 6 % (pro- storninski dele`) diopsida, MgCa(SiO3)2 precej izbolj{a tribolo{ke lastnosti keramike Al2O3.10 Med drugim so potrdili splo{no znano dejstvo, da pri ve~jih normalnih silah med drsnimi povr{inami nastane bolj izrazito puljenje celih zrn, s ~imer se mo~no pove~a obraba. Njihova najpomembnej{a ugotovitev pa je verjetno ta, da se faktor obrabe k = 10–6 mm3/J za ~isti Al2O3 pri danih pogojih preskusa zmanj{a na desetino vrednosti pri 12-odstotnem dele`u diopsida. ^eprav obstajajo komercialne naprave za merjenje obrabne obstojnosti materialov na osnovi ena~be (1), pa si lahko pomagamo tudi z improviziranimi preskusi na obi~ajni napravi za bru{enje in poliranje kerami~nih vzorcev. Na tak na~in smo na Odseku za in`enirsko keramiko Instituta "Jo`ef Stefan" izmerili obrabno ob- stojnost keramike Al2O3, pripravljene na razli~ne na~ine in z razli~nimi primesmi. 2 OPREDELITEV OBRABNE OBSOJNOSTI KERAMIKE Obraba materiala pri drgnenju ob enak ali druga~en material je tem ve~ja, ~im ve~ja je sila trenja med povr{inama, ta sila pa nara{~a s pravokotno silo, ki ti{~i podlagi eno ob drugo. Obraba nara{~a tudi s ~asom drgnjenja oziroma z relativnim premikom med sti~nima povr{inama. Zato je smiselno opredeliti faktor obrabe k takole: k V F s = ∆ n (1) kjer je ∆V zmanj{anje volumna materiala oz. pre- skusnega vzorca zaradi obrabe, Fn je pravokotna (normalna) sila med sti~nima povr{inama, s pa je razdalja, ki jo pri trenju naredi ena povr{ina relativno glede na drugo. Primerna enota za faktor obrabe je npr. mm3/J. Ena~ba (1) je v skladu s pri~akovanjem, da je zmanj{anje volumna materiala sorazmerno z delom zunanje sile, saj je za trganje medatomskih vezi v materialu potrebna energija, {tevilo potrganih vezi pa je sorazmerno tako z volumnom odnesenega materiala kot z dovedeno notranjo energijo. Zavedati pa se moramo, da ta sorazmernost velja le do dolo~ene mere, saj so prisotni razli~ni mehanizmi odna{anja materiala s povr{ine. Po drugi strani je sila trenja Ftr med sti~nima pov{inama bolj vplivna od normalne sile Fn, saj je delo sile trenja, ki je vzporedna z relativnim gibanjem obeh povr{in, razli~no od ni~, medtem ko je delo normalne sile ni~. Sila trenja je sicer sorazmerna z normalno silo, vendar pa je odvisna tudi od koeficienta trenja ktr: Ftr = ktrFn. Tako je lahko pri isti normalni sili Fn in pri sicer enaki keramiki hitrost obrabe zelo razli~na, ~e imamo razli~ne koeficiente trenja med sti~nima povr{inama, npr. zaradi oblivanja povr{in z vodo. Vendar, ~e je pri neki aplikaciji koeficient trenja vedno enak, je normalna sila sorazmerna s silo trenja, tako da je ena~ba (1) smiselna. 3 EKSPERIMENTALNO DELO Zaradi sodelovanja z industrijo (AET – Hidria, Tolmin) nas je zanimala obrabna obstojnost aluminije- vega oksida Al2O3. Obrabne preskuse lahko naredimo kar na napravi za poliranje kerami~nih vzorcev, ~e poskrbimo za ponovljive pogoje presku{anja. Postopek obrabnih preskusov na okroglih plo{~icah (tabletkah) z uporabo diamantne paste z delci povpre~ne velikosti 45 M. AMBRO@I^ ET AL.: MERJENJE OBRABNE OBSTOJNOSTI STRUKTURNE KERAMIKE Al2O3 222 Materiali in tehnologije / Materials and technology 42 (2008) 5, 221–225 Slika 1: a) Struersova polirna naprava z nastavkom Pedepin 2; b) Pove~an izrez naprave z nosilcem vzorcev in vpetim preskusnim vzorcem Figure 1: a) Struers polishing machine with the part Pedepin 2; b) Enlarged section of the machine with the sample holder and attached testing sample µm je bil podrobneje opisan v reviji Vakuumist.12 Tu opi{emo obrabne preskuse, kjer smo vzorce brusili na napravi Pedepin 2 danskega podjetja Struers (slika 1a). Iz podjetja AET smo prejeli vzorce v obliki votlih valjev z merami v tabeli 1. Vzorci so gredi vodnih ~rpalk iz serijske proizvodnje. Od celotne dol`ine vzorcev smo za posamezni preskus odrezali kose, dolge okrog 20 mm (slika 1b). Keramik je bilo {est vrst, glede na vrsto uporabljenih kerami~nih prahov in dodanih primesi. Na primer oznaka AET (tip 6) pomeni keramiko iz me{anice ve~ vrst za~etnih prahov, ki jih v AET navadno upo- rabljajo za serijsko proizvodnjo bele korundne keramike, medtem ko ima rjava keramika (tip 5) prime{an man- ganov in titanov oksid. Zna~ilna temperatura sintranja teh vzorcev je bila 1640 °C, le za rjavo keramiko je bila ta temperatura 1300 °C. Gostote keramik so bile izmer- jene z Arhimedovo metodo, ~eprav bi jih lahko preprosto izra~unali iz mase in dimenzij vzorcev. @e pri `aganju preskusnih dvocentimetrskih kosov z diamantno `ago pri ponovljivih pogojih (enaka obte`ba, temeljito o~i{~enje lista `age pred `aganjem itd.) smo dobili prvo dokaj zanesljivo informacijo o obrabni obstojnosti razli~nih keramik. ^asi `aganja, ki so se gibali okrog vrednosti 5 min ali ve~, so se namre~ za razli~ne skupine zelo razlikovali, medtem ko so si bili za vzorce iz iste keramike med seboj podobni. Dalj{i ~as `aganja nakazuje ve~jo obrabno obstojnost keramike (tabela 2). Sam obrabni preskus na napravi Pedepin je potekal takole: Vzorec smo pritrdili na natan~no ozna- ~eno mesto na nosilcu in ga najprej na kratko zbrusili z bolj grobo brusno plo{~ico z diamantnimi zrni, tako da smo poskrbeli za planparalelnost obdelovalne povr{ine z drugo brusno plo{~ico v nadaljevanju preskusa. Vzorec smo stehtali, nato pa ga obrusili s finej{o plo{~ico trikrat po 1 min (za preskus ponovljivosti). Po vsaki minuti bru{enja s finej{o plo{~ico smo vzorec ponovno stehtali in izra~unali izgubo mase/volumna. Pred vsakim tehta- njem smo vzorec o~istili v ultrazvo~ni kopeli z aceto- nom. Zelo pomembno za ponovljivost rezultatov je bilo tudi ~i{~enje brusnih plo{~ic pred vsakim preskusom. 4 REZULTATI IN DISKUSIJA Ker smo preskuse izvajali pri nespremenljivih po- gojih (stalna normalna sila Fn ≈ 50 N, frekvenca vrtenja brusne plo{~ice 917 min–1, frekvenca vrtenja nosilca vzorcev 300 min–1 itd.), nismo vsaki~ ra~unali faktorja obrabe po ena~bi (1), temve~ nam je zadostovala primerjava zmanj{anja njihove prostornine. Izidi meritev so prikazani v tabeli 2. Naprava Pedepin nima vgraje- nega merilnika normalne sile, zato je zgoraj omenjena vrednost 50 N le groba ocena, ki smo jo dobili z uporabo tehtnice. Na osnovi podatkov iz tabele ( ≈ 100 mm3), ocenjene sile (Fn ≈ 50 N) in relativne drsne poti (s ≈ 65 m, izra~unali smo jo na osnovi frekvenc vrtenja ({tevila obratov na minuto) polirne plo{~ice in nosilca vzorca, ekscentri~nosti osi obeh vrtenj in ~asa preskusa) smo ocenili faktor obrabe: k ≈ 0,03 mm3/J. Ta vrednost je zelo velika v primerjavi s tistimi, navedenimi pri obi~aj- nih preskusnih pogojih v literaturi, vendar pa je bru{enje z brusno plo{~ico veliko bolj agresivno kot npr. med- sebojno drgnjenje gladkih kerami~nih povr{in. @aganih povr{in vzorcev nismo spolirali pred preskusom z bru{enjem in pri~akovati je bilo, da bi bila obraba na za~etku spoliranih povr{in veliko manj{a. Dodatni preskusi so pokazali, da zmanj{anje volumna vzorcev ni premo sorazmerno s ~asom, temve~ se hitrost obrabe zaradi nastanka triboplasti hitro zmanj{uje. Za primer- javo: faktor obrabe za laboratorijske Al2O3-tabletke, na katerih smo naredili predhodne obrabne preskuse z drgnjenjem ob fino polirno plo{~o, na katero smo poli- vali redko vodno suspenzijo diamantnih delcev pov- pre~nega premera 45 µm,12 je bil 6 · 10–4 mm3/J, vrstni red razli~nih keramik po obrabni obstojnosti pa je bil podoben kot pri preskusu z brusno plo{~ico. Ena najpomembnej{ih veli~in pri obrabi materiala, koeficient trenja, namre~ zelo variira pri razli~nih preskusnih pogojih. Kljub tem razlikam pa je preskus z diamantno brusno plo{~ico poceni, preprost in hiter, daje osnovno informacijo o obrabni obstojnosti in tudi obdelovalnosti razli~nih keramik, obe lastnosti (oziroma kompromis med njima) pa sta pomembni za industrijsko tehnologijo. ^asa `aganja pri vzorcih skupin 3 in 6 sta samo informativna, saj imajo ti vzorci bistveno druga~no plo{~ino prereza (tabela 1), ~as `aganja pa je seveda odvisen tudi od te veli~ine. Po drugi strani smo ugotovili, da razli~ni prerezi vzorcev skoraj ni~ ne vplivajo na zmanj{anje volumna med preskusom; to smo preverili s primerjavo zmanj{anja volumna za isto keramiko (isti votli valj na njegovem koncu, ki ima druga~en premer votline kot v sredini valja). Iz tabele 2 je razvidno, da imajo keramike skupin 2, 3 in 6 pribli`no M. AMBRO@I^ ET AL.: MERJENJE OBRABNE OBSTOJNOSTI STRUKTURNE KERAMIKE Al2O3 Materiali in tehnologije / Materials and technology 42 (2008) 5, 221–225 223 Tabela 1: Vrsta in mere vzorcev: ρ = gostota, M = masa, Dzun in Dnot = zunanji in notranji premer, L = dol`ina Table 1: Type and dimensions of the samples: ρ = density, M = mass, Dzun and Dnot = outer and inner radius, respectively, L = length Skupina Tip /(g/cm3) M/g Dzun/mm Dnot/mm L/mm 1 MR52-23 3,76 20,66 9,95 2,30 77,07 2 MR32-23 3,76 20,78 9,95 2,30 77,13 3 KMS96 3,77 21,45 10,21 2,10 77,17 4 Alcoa 3,92 21,52 9,95 2,30 77,22 5 Rjava 3,92 24,08 9,95 2,77 89,13 6 AET 3,78 22,60 10,53 2,30 76,8 enako obrabno obstojnost, sledi keramika 1, manj obstojni pa sta keramiki 4 in 5. ^asi `aganja potrjujejo rezultate za zmanj{anje volumna med preskusi: ve~ji volumenski obrabi ustreza dalj{i ~as `aganja vzorcev. Tabela 2 Rezultati `aganja in obrabnega preskusa: in δt sta povpre~ni ~as in standardna deviacija ~asa `aganja vzorcev z diamantno `ago (3 ali 4 meritve), in δV sta povpre~no zmanj{anje volumna vzorcev med enominutnim preskusom in ustrezna standardna deviacija (3 meritve) Table 2 Results of sawing and wear test: and δt are average time of sawing of samples with the diamond saw and its standard deviation, respectively (3 or 4 measurements), and δV are average volume loss of samples after 1-minute test and the corresponding standard deviation, respectively (3 measurements) Skupina /(min:s) t /s /mm3 V/mm3 1 6:44 7 106 6 2 7:28 7 79 2 3 6:26 (inf) – 78 3 4 5:11 12 147 10 5 4:08 4 158 1 6 8:09 (inf) – 83 1 Povr{ine vzorcev po `aganju in preskusnem bru{enju smo si ogledali z vrsti~nim elektronskim mikroskopom (SEM). Slika 2 prikazuje zna~ilno povr{ino po `aganju in bru{enju. Slike za vse vrste keramike so si podobne. S slike lahko razberemo, da je glavni mehanizem pri `aganju in bru{enju abrazija kristalnih zrn z diamantnimi delci, puljenje celih kristalnih zrn s povr{ine pa je manj pomembno. Izmerili smo tudi trdoto razli~nih keramik z Vickersovim odtisom z diamantno piramido pri dveh obte`itvah, 2 kg in 5 kg. Pri tej metodi izra~unamo trdoto z velikostjo odtisa (pod opti~nim mikroskopom vidimo kvadrat, slika 3, sicer pa ima odtis obliko pravilne 4-strane piramide). Zna~ilne vrednosti trdote so okrog 15 GPa, med razli~nimi keramikami so sicer vidne razlike v trdoti, a precej manj{e kot razlike v obrabnem preskusu in tudi ni o~itne korelacije med trdoto in obrabno obstoj- nostjo. Na slikah z opti~nega mikroskopa smo ocenili poroznost keramik: le-ta je velikostnega reda 10 % in ni opaziti bistvenih razlik za razli~ne keramike. Enako velja za povpre~no velikost in velikostno porazdelitev por: pore so v povpre~ju velike nekaj mikrometrov in so pri rjavi keramiki nekaj manj{e kot drugod. Povpre~no velikost kristalnih zrn smo izra~unali z analizo SEM (Scanning Electron Microscope = vrsti~ni elektronski mikroskop)-slik poliranih in termi~no jedkanih povr{in kerami~nih vzorcev, njena vrednost pa je okrog 3 µm. Razli~ne keramike torej nimajo o~itnih razlik v mikrostrukturi in je verjetno za njihovo razli~no obrabno obstojnost odlo~ilna morebitna razlika v strukturi snovi med kristalnimi zrni. 5 SKLEP Tudi z improviziranimi preprostimi preskusi na standardni napravi za bru{enje in poliranje vzorcev se da dokaj zanesljivo primerjati obrabno obstojnost razli~nih kerami~nih materialov. 6 LITERATURA 1 Birkby I., Harrison P., Stevens R., The effect of surface trans- formation on the wear behaviour of zirconia TZP ceramics, J. Eur. Ceram. Soc. 5 (1989), 37–45 M. AMBRO@I^ ET AL.: MERJENJE OBRABNE OBSTOJNOSTI STRUKTURNE KERAMIKE Al2O3 224 Materiali in tehnologije / Materials and technology 42 (2008) 5, 221–225 Slika 3: Fotografija slike opti~nega mikroskopa povr{ine keramike skupine 3 z odtisom Vickersove piramide. Na sliki je dobro opazna tudi poroznost keramike. Figure 3: Optical-microscope photograph of the surface of ceramics from group 3 with the Vickers-pyramid indentation. The porosity of the ceramic material is also evident. Slika 2: SEM-fotografija `agane (a) in bru{ene (b) povr{ine keramike skupine 3 Figure 2: SEM-photograph of the sawed (a) and ground (b) surface of the ceramics from group 3 2 Fischer T., Anderson M. P., Jahanmir S., Influence of fracture tough- ness on the wear resistance of yttria-doped zirconium oxide, J. Am. Ceram. Soc. 72 (1989) 2, 252–257 3 Krell and D. Klaffke, Effects of grain size and humidity on fretting wear in fine-grained alumina, Al2O3/TiC, and zirconia, J. Am. Ceram. Soc. 79 (1996) 5, 1139–1146 4 Gee M. G., Jennett N. M., High resolution characterisation of tribo- chemical films on alumina, Wear 193 (1996) 2, 133–145 5 Morita Y., Nakata K., Ikeuchi K., Wear properties of zirconia/ alumina combination for joint prostheses, Wear 254 (2003) 1–2, 147–153 6 Kalin M., Hockey B., Jahanmir S., Wear of hydroxiapatite sliding against glass-infiltrated alumina, J. Mater. Res. 18 (2003) 1, 27–36 7 Basu B., Vleugels J., Van der Biest O., Microstructure-toughness- wear relationship of tetragonal zirconia ceramics, J. Eur. Ceram. Soc. 24 (2004) 7, 2031–2040 8 Kerkwijk B., Garcya M., Van Zyl W. E. et al., Friction behaviour of solid oxide lubricants as second phase in α–Al2O3 and stabilised ZrO2 composites, Wear 256 (2004), 182–189 9 Novak S., Kalin M., Lukas P., Anne G., Vleugels J., Van der Biest O., The effect of residual stresses in functionally graded alumina- ZTA composites on their wear and friction behaviour, J. Eur. Ceram. Soc. 27 (2007) 1, 151–156 10 Liu C., Zhang J., Sun J., Zhang X., Tribological properties of pressureless sintered alumina matrix ceramic materials improved by diopside, J. Eur. Ceram. Soc., in print 11 Singha Roy R., Guchhait H., Chanda A., Basu D., Mitra M. K., Im- proved sliding wear-resistance of alumina with sub-micron grain size: A comparison with coarser grained material, J. Eur. Ceram. Soc., 27 (2007), 4737–4743 12 Ambro`i~ M., Obrabna obstojnost keramike, Vakuumist 27 (2007) 3, 10-15 M. AMBRO@I^ ET AL.: MERJENJE OBRABNE OBSTOJNOSTI STRUKTURNE KERAMIKE Al2O3 Materiali in tehnologije / Materials and technology 42 (2008) 5, 221–225 225 DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES DOKTORSKA DELA – DOCTOR'S DEGREES Na Naravoslovnotehni{ki fakulteti Univerze v Ljubljani je dne 7.7.2008 pred komisijo v sestavi: red. prof. dr. Radomir Turk kot predsednik in ~lani: red. prof. dr. Ladislav Kosec, red. prof. dr. Anton Smolej in izr. prof. dr. Toma` Rodi~ Ale{ Nagode, univ. dipl. in`. materialov in metalurgije zagovarjal doktorsko disertacijo z naslovom: Analiza lezenja jekla 9Cr-1Mo-0,2V z upo{tevanjem napetostno odvisne aktivacijske energije An analysis of the creep behaviour of 9Cr-1Mo-0.2V steel based on the stress-dependent activation energy Doktorska disertacija je izdelana pod mentorstvom red. prof. dr. Ladislava Kosca. ANALIZA LEZENJA JEKLA 9Cr-1Mo-0,2V Z UPO[TEVANJEM NAPETOSTNO ODVISNE AKTIVACIJSKE ENERGIJE UDK: 539.3:669.14.018 POVZETEK Vedenja jekla 9Cr-1Mo-0,2V pri kratkotrajnih preiz- kusih lezenja ni mogo~e opisati z navadnim poten~nim zakonom Arrheniusovega tipa, saj je izmerjen napetostni eksponent n, definiran kot ( ln εmin/ ln )T, zelo odvisen od temperature, izmerjena navidezna aktivacijska ener- gija lezenja Qc, definirana kot ( ln εmin/(–1/RT)), pa od napetosti. Problema opisa vedenja tega jekla pri lezenju smo se najprej lotili z uporabo koncepta napetostnega praga (threshold stress), to je z uvedbo mejne napetosti, pod katero je lezenje zanemarljivo. Izpeljali smo ena~bo, ki sicer dobro opi{e vedenje jekla pri lezenju, vendar pa se je izkazalo, da je mejna napetost th mo~no odvisna od temperature in/ali uporabljene napetosti ter celo spre- minja predznak. Nizka vrednost izra~unane navidezne aktivacijske energije lezenja, ki je dosegla le 185 kJ mol–1, kar je celo manj od aktivacijske energije za samodifuzijo v Fe-, pa je v tem primeru irelevantna za pojasnjevanje delujo~ih mehanizmov lezenja. Za opis vedenja jekla 9Cr-1Mo-0,2V pri lezenju smo zato teoreti~no razvili nov model poten~nega zakona lezenja z napetostno odvisno energijsko pregrado. Glede na standardni model temelji na{ na hipotezi, po kateri delujo~a napetost neposredno vpliva tudi na aktivacijsko Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 227 DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES AN ANALYSIS OF THE CREEP BEHAVIOUR OF 9Cr-1Mo-0.2V STEEL BASED ON THE STRESS-DEPENDENT ACTIVATION ENERGY UDC: 539.3:669.14.018 ABSTRACT The creep behaviour of 9Cr-1Mo-0.2V steel during short-term creep tests cannot be accurately described by a simple Arrhenius-type power-law model because the apparent stress exponent n, defined as ( ln εmin/ ln )T, shows a strong temperature dependence, whereas the apparent activation energy of the creep Qc, defined as ( ln εmin/(–1/RT)), shows a strong stress dependence. The problem of describing the creep behaviour of the examined steel was first dealt with by applying the threshold-stress concept, i.e., the introduction of the threshold stress th, below which the creep deformation is assumed to be negligible. An equation that satisfac- torily describes the creep behaviour of the examined steel was derived. However, it was observed that the threshold stress th strongly depends on the temperature and/or the applied stress, and that sometimes it can even change its sign. The low value of the calculated activation energy of the creep, which was only 185 kJ mol–1, is considerably smaller than the activation energy for self-diffusion in Fe-, and thus it is irrelevant for an explanation of the acting creep mechanism. For this reason, a power-law, stress-dependent energy-barrier model was theoretically developed in order to describe the creep behaviour of 9Cr-1Mo-0.2V energijo oziroma na energijsko pregrado, ki jo je treba pri aktiviranju mehanizmov premagati, in ne samo na potencialno energijo za~etnega in kon~nega stanja mikrostrukturnih obmo~ij, v katerih se lezenje odvija. Nov model poten~nega zakona smo izbolj{ali {e z upo{tevanjem linearne odvisnosti aktivacijskega volumna od temperature ter z normiranjem napetosti z uvedbo stri`nega modula. Prvi~ smo ta model v {e ne povsem kon~ni obliki uspe{no uporabili za opis lezenja jekla 9Cr-1Mo-0,2V na osnovi literaturnih podatkov, nato pa {e za opis vedenja tega jekla pri kratkotrajnem lezenju (ang. short term creep test) v tem delu, pri ~emer smo primerjali razli~ne vrste preizku{ancev oz. obremenitve. Jeklo 9Cr-1Mo-0,2V smo toplotno obdelali po standardni toplotni obdelavi, nato pa opravili enoosne stati~no natezne preizkuse lezenja pri konstantni obremenitvi oz. konstantni napetosti ter merili lezenje {e z upogibanjem tankih diskov s centralno delujo~o obremenitvijo (ang. small-punch test), ki v preizku{ancu povzro~i ve~osno rotacijsko simetri~no ter izrazito heterogeno napetostno in deformacijsko stanje. Pri enoosnih nateznih preizkusih lezenja so bile temperature lezenja 625 °C, 650 °C oz. 675 °C, napetosti pa od 120 MPa do 240 MPa, medtem ko so bile temperature preizku{anja pri merjenju lezenja z upogibanjem tankega diska 650 °C, 675 °C oz. 690 °C, obremenitve pa od 350 N do 550 N. Preizkusi merjenja lezenja z upogibanjem tankega diska so bili opravljeni na diskih razli~nih debelin, in sicer 0,44 mm, 0,47 mm oz. 0,50 mm. Ugotovili smo zelo dobro ujemanje med eksperimen- talnimi podatki in izra~unanimi vrednostmi po modelu poten~nega zakona z napetostno odvisno energijsko pregrado. Navidezna aktivacijska energija za lezenje postane v na{em modelu le {e nekoliko odvisna od napetosti. Pri enoosnih stati~no nateznih preizkusih lezenja se s pove~anjem napetosti od 120 MPa do 240 MPa napetostno odvisna navidezna aktivacijska energija lezenja Qc, izra~unana iz minimalne hitrosti lezenja εmin zni`uje od pribli`no 645 kJ mol–1 do 600 kJ mol–1, izra~unana iz ~asa do poru{itve tr pa od pribli`no 580 kJ mol–1 do 548 kJ mol–1. Napetostni eksponent n pa je v obeh primerih enak, n = 4,5. Pri merjenju lezenja z upogibanjem tankega diska je bila eksperimentalno potrjena veljavnost Monkman- Grantove odvisnosti med minimalno hitrostjo upogibanja diskov δmin in ~asom do poru{itve tr,SP. Zato smo lahko v izbolj{anem modelu poten~nega zakona z napetostno odvisno energijsko pregrado minimalno hitrost upogi- banja diska δmin ustrezno zamenjali s ~asom do poru{itve tr,SP, saj sta obe koli~ini skoraj obratno sorazmerni. Ugotovili smo, da je optimalna debelina diska odvisna od geometrije naprave za merjenje lezenja in je v na{em primeru med 0,48 mm in 0,50 mm. Izra~unana navidezna aktivacijska energija lezenja Qc je nekoliko odvisna od obremenitve in je za debelino diska 0,50 mm pri obremenitvi 550 N enaka 543 kJ mol–1, pri obremenitvi 228 Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES steel. In contrast to the standard model, this model was based on the hypothesis that the application of stress also affects the activation energy, i.e., the energy barrier that needs to be overcome when a local region transforms, and not just the potential energy of the initial and final local states. The new power-law model was additionally improved by applying the linearity between the activation volume and temperature as well as by normalising the applied stress with the shear modulus. This model was then used in a not-completely-final version for the first time to describe the already published creep data of 9Cr-1Mo-0.2V steel and then also for a description of the short-creep data in the present work, where different types of test specimens and loadings were compared. The 9Cr-1Mo-0.2V steel underwent a standard heat treatment. After this uniaxial static-tensile creep tests at a constant load and a constant stress were conducted as well as small-punch creep tests, which led to a multiaxial, rotary-symmetric, heterogeneous stress and deformation state in the sample. While the uniaxial tensile creep tests were performed at temperatures of 625 °C, 650 °C and 675 °C and initial stresses ranging from 120 MPa to 240 MPa, the small-punch tests were performed at temperatures of 650 °C, 675 °C and 690 °C and at loads ranging from 350 N to 550 N. In the case of the small punch the creep properties were measured on disks with different thickness, i.e., 0.44 mm, 0.47 mm and 0.50 mm. A very good correlation between the power-law, stress-dependent energy-barrier model and the experi- mental data was obtained. However, the apparent activation energy shows less stress dependence than when using the Arrhenius-type power-law. During uniaxial static-tensile creep tests the stress-dependent activation energy Qc calculated from the minimum creep rate εmin decreased from approximately 645 kJ mol–1 to 600 kJ mol–1 as the stress increased from 120 MPa to 240 MPa, while the stress-dependent activation energy calculated from the time-to-rupture tr decreased from approximately 580 kJ mol–1 to 548 kJ mol–1. The stress exponent n was the same in both cases, i.e., n = 4.5. The validity of the Monkman-Grant relationship between the minimum deflection rate δmin and the time-to-rupture tr,SP for the small-punch creep test was experimentally confirmed. Thus, the minimum deflec- tion rate δmin in the improved power-law, stress-depen- dent energy barrier model was replaced by the time-to-rupture tr,SP, since both parameters are almost inversely proportional. It was found that the optimum disk thickness is dependent on the geometry of the small-punch apparatus for measuring the creep properties. In our case the optimum disk thickness was found to be between 0.48 mm and 0.50 mm. The calculated apparent activation energy of the creep Qc was slightly load dependent. The value of the apparent activation energy for a disk thickness of 0.50 mm was 350 N pa 533 kJ mol–1. Vrednost obremenitvenega eksponenta nSP pa je pri vseh debelinah diska 4,5, kar je enako kot pri standardnih enoosnih nateznih preizkusih lezenja. DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 229 543 kJ mol–1 at a load of 550 N, and 533 kJ mol–1 at a load of 350 N. The value of the stress exponent nSP was 4.5 for all the disk thicknesses and was the same as during the conventional uniaxial tensile creep tests. Na Fakulteti za elektrotehniko Univerze v Ljubljani je dne, 2.7.2008, pred komisijo v sestavi prof. dr. Stanislav Kova~i~ in ~lani prof. dr. Drago Matko, prof. dr. Borut Zupan~i~ in izr. prof. dr. Toma` Kolenko Franci Vode, univ. dipl. in`. zagovarjal doktorsko disertacijo z naslovom: Razvoj sistema vodenja kontinuiranih pe~i za ogrevanje vlo`ka po predpi- sanih krivuljah ogrevanja Development of continuous furnace control system for stock reheating according to the prescribed reheating curves Doktorska disertacija je izdelana pod mentorstvom red. prof. dr. Draga Matka. RAZVOJ SISTEMA VODENJA KONTINUIRANIH PE^I ZA OGREVANJE VLO@KA PO PREDPISA- NIH KRIVULJAH OGREVANJA UDK: 621.771:519.68 POVZETEK V disertaciji je predstavljen splo{en koncept kontroliranega ogrevanja vlo`ka v kontinuirnih pe~eh v jeklarski industriji, predstavljen na primeru potisne pe~i v podjetju ACRONI, d. o. o. Vodenje ogrevanja slabov je izvedeno z regulacijskim sledenjem referen~ni krivulji ogrevanja (RKO) vsakega posameznega slaba, pri ~emer regulacija temelji na matemati~nem modelu ogrevanja slabov, ki deluje v realnem ~asu. RKO je podana kot funkcija ~asa. ^asovno podan potek RKO omogo~a elegantno in natan~no obravnavo zastojev. Sistem vodenja kot odziv na zastoj v proizvodnji premakne ~asovno definirano RKO za ~as trajanja zastoja. S tem je omogo~eno zaprtozan~no vodenje ogrevanja slabov tudi med zastoji, in sicer {e vedno po RKO. Od u~inkovite in natan~ne obravnave zastojev je najbolj odvisna u~inkovitost ter energetski prihranki na pe~i pri uporabi razvitega sistema. Zastoje zato sistemati~no razdelimo v pet razli~nih vrst. Najprej jih lo~imo na tiste, katerih trajanja ne poznamo, in na tiste, katerih trajanje poznamo. Zadnje delimo na predvidene, nepredvidene, na zastoje zaradi razli~nih ~asov ogrevanja razli~nih jekel oz. debelin jekel ter na zastoje zaradi sinhronizacije z valjarskimi ogrodji. Slednji omogo~ajo upo{tevanje kapacitet valjarskih prog pri na~inu ogrevanja v pe~i. Za vsako vrsto zastoja dolo~imo ~asovno premaknitev RKO in podalj{anje intervala pomika slabov. RKO so lo~eno definirane za razli~ne za~etne temperature s korakom 50 °C. Za potrebe prehoda iz ro~nega v avtomatsko vodenje so za~etne RKO posnetek stacionarnega poteka ogrevanja, kakr{nega predpisujejo tehnolo{ka navodila o ogrevanju. S tem se izognemo spremembi na~ina ogrevanja ob uvajanju sistema v proizvodnjo. RKO je mo`no kadarkoli optimizirati in spremembe vnesti v tabelo RKO v podatkovni zbirki. Na koncu dela je DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES 230 Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 DEVELOPMENT OF CONTINUOUS FURNACE CONTROL SYSTEM FOR STOCK REHEATING ACCORDING TO THE PRESCRIBED REHEATING CURVES UDC: 621.771:519.68 ABSTRACT In the Ph.D. thesis is presented general concept of controlled stock reheating in continuous furnaces for steel industry, presented in the pusher-type furnace in ACRONI, d. o. o. Controlled stock reheating is achieved by the use of tracing reference reheating curves (RRC), where the control of stock temperature is based on real-time mathematical model of slab reheating process. RRC is defined as a function of time. Such a definition of RRC enables an exact and elegant consideration of delays. A response of furnace control system to the delay in production line is a time shift of RRC for the value of delay duration. This enables closed-loop control of the slab reheating process during normal operation as well as during delays. Efficiency and precision of furnace control during delays is the main factor for overall efficiency and energy savings of furnace operation. Delays are therefore systematically divided into five delay types. Firstly, delays are divided into those, for which the duration is not known and for those with known duration. The last are further divided on scheduled, unscheduled, delays due to different reheating times of different steel grades and delays due to synchronization with rolling mills. The last delay type enables consideration of rolling mills capacities at the reheating process in the furnace. For each delay type is determined a time shift of RRC and a prolongation of drop out interval. RRC are separately defined for different initial temperatures with a step of 50 °C. To introduce the presented furnace control system (FCS), initial RRC are imitation of stationary reheating process, which is defined by technological guidelines of the reheating in furnace. Using such a RRC for introducing FCS the material is reheated in the same way as by primerjava rezultatov ro~nega vodenja z rezultati simulacije avtomatskega vodenja. Avtomatsko vodenje omogo~a za faktor 3 tesnej{e sledenje kon~ni tem- peraturi slabov in za faktor 2 tesnej{e sledenje celotni temperaturni krivulji v primerjavi z ro~nim vodenjem. DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 231 manual control. RRC can be optimized any time and the changes can be updated in the table of RRC in database. A comparison of manual and simulation of automatic control is presented at the end. Automatic control by FCS enables three times tighter tracing of end material temperature and two times tighter tracing of whole RRC in comparison to manual control. Na Naravoslovnotehni{ki fakulteti Univerze v Ljubljani je dne 20. 2. 2008 pred komisijo v sestavi: red. prof. dr. Radomir Turk kot predsednik in ~lani: izr. prof. dr. Anton Smolej, doc. dr. Jelena Vojvodi~ Tuma, red. prof. dr. Franc Vodopivec, red. prof. dr. Ivan An`el in izr. prof. dr. Bo{tjan Markoli, Gorazd Kosec, univ. dipl. in`. materialov in metalurgije zagovarjal doktorsko disertacijo z naslovom: Krhki prelom v coni toplotnega vpliva zvarov jekla Niomol 490 K Brittle fracture in the heat affected zone of welds of steel Niomol 490 K Doktorska disertacija je izdelana pod mentorstvom izr. prof. dr. Antona Smoleja in somentorstvom doc. dr. Jelene Vojvodi~ Tuma. KRHKI PRELOM V CONI TOPLOTNEGA VPLIVA ZVAROV JEKLA NIOMOL 490 K UDK: 621.791.05:669.14.018.298 POVZETEK Cilj na{ega dela je bil ugotoviti, zakaj je prehodna temperatura `ilavosti po Charpyju zvarov tanj{ih plo{~ (15 mm) opazno vi{ja, kot pri zvarih debelej{ih (25 mm) plo{~ jekla Niomol 490 K, ~eprav je bilo varjenje opravljeno z isto tehnologijo in z enako elektrodo. Da bi na{el razlago za to razliko sem pripravil z razli~nimi toplotnimi obdelavami jeklo razli~nih mikrostruktur, ki so se razlikovale tudi po velikosti kristalnih zrn. Segrevanje pri nanosu naslednjega varka sem simuliral s kratkim segrevanjem v dvofazno temperaturno podro~je, kjer sta obstojna avstenit in ferit. Preizkusi so obsegali merjenje `ilavosti po Charpyju v razponu od popolnoma krhkega do popolnoma duktilnega preloma, meritve trdot, natezne preizkuse pri temperaturi krhkega loma ter preiskave mikrostruktur in prelomnih povr{in. Na podlagi eksperimentalnih rezultatov in njihove analize sklepam, da ima jeklo z mikrostrukturo iz spodnjega bainita mnogo ve~jo `ilavost, kot jeklo z mikrostrukturo martenzita. Po ogrevanju v dvofazno podro~je (750 °C) se mo~no zmanj{a `ilavost pri temperaturi 0 °C in povi{a prehodna temperatura `ilavosti v primeru, ko je bila za~etna mikrostruktura iz bainita, pri jeklu z za~etno mikrostrukturo iz martenzita pa so spremembe mnogo manj{e in druga~ne. Vpliv pogrevanja je druga~en in mnogo manj{i pri drugih lastnostih, razlaga pa je v na~inu in v hitrosti obremenjevanja oz. meritve. Vpliv ogrevanja na `ilavost in prehodno temperaturo je mogo~e razlo`iti na podlagi dveh podmen, tako da pri temperaturi ogrevanja ni neposredne premene martenzita v avstenit, ampak nastane sekundarni martenzit v pro- cesu martenzit ferit + cementit (popu{~eni martenzit) avstenit sekundarni martenzit, ~e pa je izhodni mikrostrukturi iz ferita in cementita (bainit), pa je proces, ko nastane sekundarni martenzit v naslednjih stopnjah: ferit + cementit (bainit) avstenit sekun- darni martenzit, ter da je porazdelitev ferita in sekun- DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES 232 Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 BRITTLE FRACTURE IN THE HEAT AFFECTED ZONE OF WELDS OF STEEL NIOMOL 490 K UDC: 621.791.05:669.14.018.298 SUMMARY The aim of this investigation was to determine, why for the the low carbon Nb microalloyed steel Niomol 490 K and for identical welding procedure the Charpy transition temperature was higher for welds of thinner (15 mm) than for welds of thicker (25 mm) plates. With thermal treatment specimens of the steel were prepared with a different microstructure and grain size and the reheating at the next pass deposition was simulated with short time annealing in the two phase austenite + ferrite temperature of 750 °C. For all types of investigated microstructure the investigations consisted of: the determination of the dependence Charpy notch toughnes versus temperature from below the lower shelf threshold up to to 60 °C, the determination of the tensile strength by brittle fracturing and hardness; SEM examination of microstructure and of fracture surfaces and the deter- mination of the space orientation of clevage facets of the brittle fracture. It was found that notch toughness was much higher with lower bainite, also for the steel quenched from 1250 °C in lead bath at 400 °C, than for martensite. After reheating, the transition temperature was increased and the 20 °C notch toughness was decreased very much for bainite, while, both vere virtually unchanged for martensite. The effect of reheat is much lower for other properties. The different effect of reheating on notch toughness can be explained assuming that: – no direct tranformation martensite austenite takes place and secondary martensite is formed with the process: martensite ferrite + cementite austenite secondary martensite, while for bainite the proces is bainite (ferrite + cementite) austenite secondary martensite – and the distribution of secondary martensite and ferrite is identical or very similar to the distribution darnega martenzita enaka, ali zelo podobna porazdelitvi ferita in cementita pred premeno v avstenit. Morfologija mikrostrukture, predvsem porazdelitev ferita in sekun- darnega martenzita po ogrevanju najmo~neje vplivata na `ilavost in prehodno temperaturo `ilavosti in to tem bolj, ~im ve~ja so bila kristalna zrna avstenita iz katere je nastala primarna mikrostruktura. Mikrostruktura ne vpliva na orientacijo oz. prostorsko lego cepilnih ploskev, ki so 110 pri izhodni primarni mikrostrukturi iz martenzita ali bainita in pri mikrostrukturah, ki so nastale z ogrevanjem le-teh. Lokalna krhka podro~ja (LBZ local brittle zone) zmanj{ajo `ilavost in povi{ajo prehodno temperaturo `ilavosti v pasu najve~jih kristalnih zrn avstenita v coni toplotnega vpliva (CTV). Dokazal sem, da je premena avstenita v bainit (primarni) pri nanosu predhodnega varka mnogo bolj neugodna za `ilavosti po nanosu naslednjega varka, kot ~e se avstenit v CTV premeni v primarni martenzit. Zato je po primarni premeni avste- nita v bainit mnogo verjetneje, da bo po nanosu nasled- njega varka nastala LBZ, ki bo bistveno bolj neugodna kot v primeru primarne mikrostrukture iz bainita, kot po premeni v martezit, ~eprav je izhodna trdota ve~ja pri martenzitu. Pri jeklu Niomol 490 K in njemu podobnih jeklih, se je pri varjenju izogibati premene avstenita v bainit v pasu najve~jih kristalnih zrn avstenita v CTV, posebej {e, ~e lahko pri gradnji ve~varkovnega vara nastanejo LBZ. Notranje napetosti, ki so povezane z nastankom sekundarnega martenzita (LBZ) povzro~e plastifikacijo matice in so najve~je pri temperaturi okolice. Prispevajo k nukleaciji in propagaciji razpoke pri udarnem preiz- kusu, pa tudi k lokalni poru{itvi delcev sekundarnega martenzita (LBZ), s ~imer {e olaj{ajo nukleacijo razpoke pri udarnem preizkusu. DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES Materiali in tehnologije / Materials and technology 42 (2008) 5, 227–233 233 od ferrite and cementite before the transformation to austenite at reheating. The distribution of ferrite and austenite before the reheating affects the notch toughness and notch transition temperature the strongest, the coarse were the austenite grain size before the formation of secondary martensite. The type of the initial and reheat microstructure does not affect the cleavage lattice plane 110. Local brittle zones (LBZ), which may form in the heat affected zone of welds, decrease the notch tougness and increase the transition temperature the most in the layer of coarsest austenite grain size heat affected zone. Thus, for the steel Niomol 490 K, the transformation austenite to lower bainite is more harmfull for after reheat notch toughness than the transformation austenite to primary martensite, as the microstructure of bainite is more propensive to the formation of LBZ than that of martensite, although the hardness is higher for martensite. It is consluded that by welding of the steel Niomol 490 K and similar structural steels, it is recommended to avoid the trasformation of coarse austenite to lower bainite in the coarse grained part of the heat affected zone.