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Abstract

Consider a simple graph G with no isolated edges and at most one isolated vertex. A
labeling w : E(G) → {1, 2, . . . ,m} is called product - irregular, if all product degrees
pdG(v) =

∏
e3v w(e) are distinct. The goal is to obtain a product - irregular labeling that

minimizes the maximal label. This minimal value is called the product irregularity strength
and denoted ps(G). We give the exact values of ps(G) for several families of graphs, as
complete bipartite graphs Km,n, where 2 ≤ m ≤ n ≤

(
m+2

2

)
, some families of forests,

including complete d-ary trees, and other graphs with δ(G) = 1.
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1 Introduction
Assume we are given simple undirected graph G = (V (G), E(G)) with neither loops
nor isolated edges and with at most one isolated vertex. Let us define integer labelling
w : E(G)→ {1, 2, . . . , s}. For every vertex v ∈ V (G) we define the product degree as

pdG(v) =

{ ∏
e3v w(e), dG(v) > 0,

0, dG(v) = 0
(1.1)

(where dG(v) denotes the degree of vertex v in G).
We call w product-irregular if for every pair of vertices u, v ∈ V (G), u 6= v

pdG(u) 6= pdG(v). (1.2)

The product irregularity strength ps(G) ofG is the smallest value of s that allows some
product-irregular labelling.
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The concept was introduced by M. Anholcer in [4]. As we can see, it is the multi-
plicative version of the well known irregularity strength introduced by Chartrand et al. in
[5] and studied by numerous authors (the best result for general graphs can be found in
Kalkowski, Karoński and Pfender [6], while e.g. trees and forests have been studied e.g.
by Aigner and Triesch [1], and Amar and Togni [3]). On the other hand, the problem of
founding the product irregularity strength of graph is connected with the product antimagic
labellings investigated e.g. by Pikhurko [7]. Indeed, the result from the last publication
implies that for sufficiently large graphs

ps(G) ≤ |E(G)| .

Let nd denote the number of vertices of degree d, where δ(G) ≤ d ≤ ∆(G). In [4] M.
Anholcer showed that

ps(G) ≥ max
δ(G)≤d≤∆(G)

{⌈
d

e
n

1/d
d − d+ 1

⌉}
.

This reduces to
ps(G) ≥

⌈r
e
n1/r − r + 1

⌉
.

in the case of r-regular graph. Note that these bounds are not tight. Also the bounds on
ps(Cn) were given, where Cn is cycle on n vertices. It was proved that if n > 17, then

ps(Cn) ≥

⌈(
n

1− ln 2

)1/2
⌉
,

while for every ε > 0 there exists n0 such that for n > n0

ps(Cn) ≤ d(1 + ε)
√

2n lnne.

Similarly the upper bounds on the irregularity strength of grids and toroidal grids were
proved:

ps(Tn1×n2×···×nk
) ≤ d(1 + ε)

√
2(

k∑
j=1

√
nj) ln (

k∑
j=1

nj)e,

ps(Gn1×n2×···×nk
) ≤ d(1 + ε)

√
2(

k∑
j=1

√
nj) ln (

k∑
j=1

nj)e.

In [9] Skowronek-Kaziów showed, that

Proposition 1.1. For every n ≥ 3

ps(Kn) = 3.

Let us recall that nd denotes the number of vertices of degree d in G, where δ(G) ≤
d ≤ ∆(G). In this paper we are going to give the exact value of ps(G) for complete
bipartite graphs Km,n, where 2 ≤ m ≤ n ≤

(
m+2

2

)
, and some families of graphs with

δ(G) = 1. The main results are as follows.
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Proposition 1.2. Let m and n be two integers such that 2 ≤ m ≤ n. Then

ps(Km,n) = 3

if and only if n ≤
(
m+2

2

)
. Otherwise ps(Km,n) ≥ 4.

Theorem 1.3. Let D ≥ 3 be arbitrary integer. For almost all forests F such that

(i) ∆(F ) = D, n2 = 0 and n0 ≤ 1,

(ii) if we remove all the pendant edges, then in the resulting forest F ′, n2 = 0,

the product irregularity strength equals to

ps(F ) = n1.

The proofs of the above results are given in two following sections.

2 Complete bipartite graphs
Proof of Proposition 1.2

Let Km,n = (U, V,E), where U = {u1, . . . , um}, V = {v1, . . . , vn} and E = {{ui, vj},
1 ≤ i ≤ m, 1 ≤ j ≤ n}. If we used only labels 1 and 2, we would be able to obtain
at most n + 1 distinct products, 1, 2, . . . , 2n while we have n + m ≥ n + 2 vertices.
Thus ps(Kn,n) ≥ 3. On the other hand, assume that we are using only the labels 1,
2 and 3. The number of possible multisets of m elements is equal to

(
m+2

2

)
, and it is

the maximal number distinct products for the vertices in V . Thus it is impossible to find
product-irregular labeling of Km,n if |V | = n >

(
m+2

2

)
. Now we are going to prove that

labels 1, 2 and 3 are enough if m ≤ n ≤
(
m+2

2

)
.

Let us consider the set of all
(
m+2

2

)
multisets ofm elements equal to either 1, 2 or 3. Let

us denote the elements of jth multiset, where 1 ≤ j ≤
(
m+2

2

)
, with aij , where 1 ≤ i ≤ m.

Assume they are arranged in non decreasing order, i.e. in such a way that aij ≤ ai+1
j for

1 ≤ j ≤
(
m+2

2

)
and 1 ≤ i ≤ m−1. Now we arrange the obtained sequences in decreasing

lexicographic order, i.e. in such a way that for every 1 ≤ j1 < j2 ≤
(
m+2

2

)
there exists i0,

1 ≤ i0 ≤ m such that aij1 = aij2 if 1 ≤ i < i0 and ai0j1 > ai0j2 . Now if m < n, then we put

w({ui, vj}) = aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Observe that the weighted degrees in V are distinct, as the respective multisets are. It is
also straightforward to see that the degrees in U are distinct, as the numbers of factors equal
to 3 are. Moreover the number of factors different than 1 in the weighted degrees in V are
equal at most m, while in U they equal at least m+ 1. Thus finally the obtained labeling is
product-irregular.

If m = n, then we label any Kn−1,n subgraph of Kn,n as above and then put 1 on all
the edges incident to the remaining vertex. As in the case m = n − 1 none of the vertices
obtains the weighted degree 1, the resulting labeling is product-irregular.
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3 Graphs with δ(G) = 1

Proof of Theorem 1.3

Let us consider a forest F . We distinguish two kinds of non pendant vertices. The external
vertex is such a vertex that at least one of its neighbours is pendant vertex. The internal
vertex has no pendant vertices in the neighbourhood.

The product degree of every pendant vertex is equal to the label of the only edge inci-
dent to it. Thus ps(F ) ≥ n1. So in order to prove the theorem we have to show that there
exists a product-irregular labelling of F with n1 labels.

The proof consists of two parts. First using the Probabilistic Method (more precisely
the Linearity of Expectation, see e.g. [2], pp.13-21) we will prove the existence of partial
labeling that distinguishes the product degrees of internal vertices. Then, by labeling the
pendant edges we will extend the product-irregular labeling on whole forest F .

Let us choose the label for every non-pendant edge uniformly at random from the set
of all odd primes p, n1/2

1 < p ≤ n1. The number of such primes π1/2 equals

π1/2 = π(n1)− π(n
1/2
1 ) >

n1 − 2.51012n1
1/2

lnn1

provided n1 ≥ 17 (see e.g. [8]).
Let us enumerate in any way all the m1 pairs of non-adjacent internal vertices and m2

pairs of adjacent internal vertices. As for every forest we have

n1 ≥ 2 +

D∑
i=3

(i− 2)ni >

D∑
i=3

ni,

it follows that the total number of internal vertices nint satisfies the inequality

nint <
n1

2
.

Thus
m2 ≤ nint − 1 <

n1

2
and

m1 ≤
(
nint

2

)
<
n2

1

4
.

For every i, 1 ≤ i ≤ m1 + m2, let vi and ui be the vertices forming pair i and let Xi be
random variable such that

Xi =

{
1, pd(ui) = pd(vi),

0, otherwise.

We have

E(Xi) = Pr(pd(ui) = pd(vi)) ≤

{
D!π1/2

−2, ui ∼ vi,
D!π1/2

−3, otherwise.

Let X be random variable counting the“bad” pairs. Of course,

E(X) =

m1+m2∑
i=1

E(Xi) ≤ m1D!π1/2
−3 +m2D!π1/2

−2 < 1, (3.1)
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if only n1 is large enough.
This implies that for almost every forest satisfying given conditions, there exists a la-

beling w? using only the primes lower or equal to n1 that distinguishes all the internal
vertices. Moreover, for every internal vertex v we have

pd(v) > n1

and
pd(v) mod 2 = 1.

Let us choose any such labeling. Now we are going to extend w? on the pendant edges
in order to obtain complete labelingw. We will do it in two steps. Let next be the number of
external vertices. In the first step, for each such vertex we leave two pendant edges incident
to it not labeled. If there are other pendant edges (i.e. for at least one external vertex v,
d(v) > 3), then we put on them distinct labels from the set {1, , . . . , n1 − 2next} (in any
order). Let pd?(v) be the product of all edges incident with v that have been labeled. In the
second step we order the external vertices with non-decreasing value of pd?(v). Then we
label two edges incident with ith external vertex (1 ≤ i ≤ next) using labels n1−2next+ i
and n1 − i+ 1. Observe that the products of the pairs of labels increase with i.

After the second step, the product degrees of external vertices satisfy the conditions:

pd(vi) < pd(vj) if i < j,

pd(vi) > n1

and

pd(vi) mod 2 = 0.

For pendant vertices we have in turn:

pd(vi) ≤ n1

and

pd(vi) 6= pd(vj) if i 6= j.

As there can be at most one vertex v with pd(v) = 0, this finishes the proof.

Corollaries

From the above one can deduce the following two corollaries.

Corollary 3.1. Let d ≥ 2 be arbitrary integer. Then for almost all the complete d-ary trees

ps(T ) = n1.

Proof. We proceed as in the proof of Theorem 1.3. Even if d = 2, there is only one vertex
of degree 2 (the root) and its product degree is the product of two (not necessarily distinct)
primes p1, p2 > n

1/2
1 . It distinguishes this vertex from all other internal and pendant

vertices. And even if n1 ∈ {p1, p2}, it is impossible to obtain the external vertex with
same product degree, as the triple 1, p1, p2 cannot appear (pendant edges should be labeled
1 and n1 this time, what would imply n1 mod 2 = 0, contradiction). Thus all the product
degrees are distinct.
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One of the most important facts used in the proof of Theorem 1.3 is that n1 > n/2.
However, as it may be easily checked, the inequality analogous to (3.1) will be satisfied
even for smaller number of pendant vertices.

Corollary 3.2. Let D ≥ d ≥ 3 be arbitrary integers. For almost all graphs G such that

(i) δ(G) = 1, ∆(G) = D,

(ii) if we remove all the pendant edges, then for the resulting graph G′, δ(G′) = d ≥ 4,

(iii) n1 >> n2/(d−1) lnn (i.e. n = o(
n
(d−1)/2
1

lnn1
)),

(iv) none of the external vertices is adjacent to exactly one pendant vertex,

the product irregularity strength equals to

ps(G) = n1.

Proof. We proceed as in the proof of Theorem 1.3. The difference is that this time we do
not distinguish pairs of adjacent and non-adjacent vertices. The inequality (3.1) takes the
form:

E(X) <

(
n

2

)
D!π1/2

−d+1 < 1,

and the deterministic part of the proof remains unchanged.

Two simple observations

Finally let us add two simple observations on some special families of trees.

Proposition 3.3. Let K1,n be star with n pendant vertices, n ≥ 2. Then

ps(K1,n) = max{3, n}.

Proof. In the case n = 2, two labels 1 and 2 are not enough (either we use two equal
labels and obtain same product degrees of pendant vertices, or we label the edges with
1 and 2 and obtain two product degrees 2). On the other hand, using labels 2 and 3 we
produce product-irregular labeling. If n ≥ 3, we need at least n labels to distinguish the
product degrees of pendant vertices and this is enough, as the product degree of central
vertex equals n! > n.

Centipede Qn is the graph with V (Qn) = {u1, . . . , un, v1, . . . , vn} and E(Qn) =
{{ui, vi}, 1 ≤ i ≤ n} ∪ {{vi, vi+1}, 1 ≤ i ≤ n− 1}.

Proposition 3.4. Let Qn be a centipede, n ≥ 2. Then

ps(Qn) = max{3, n}.

Proof. If n = 2, two labels are not enough as it would be possible to obtain at most three
distinct products 1, 2 and 4 and we have four vertices. If n ≥ 3, we need at least n labels
to distinguish all the pendant vertices. So ps(Qn) ≥ max{3, n}. The product-irregular
labelings realizing this bound are given as follows:
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(i) If n = 2, put w({ui, vi}) = i, i = 1, 2 and w({v1, v2}) = 3. Then pd(u1) = 1,
pd(u2) = 2, pd(v1) = 3 and pd(v2) = 6.

(ii) If n = 3, put w({u2, v2}) = 1, w({u1, v1}) = w({v1, v2}) = 2, w({u3, v3}) =
w({v2, v3}) = 3. Then pd(u1) = 2, pd(u2) = 1, pd(u3) = 3, pd(v1) = 4, pd(v2) =
6 and pd(v3) = 9.

(iii) If n ≥ 4, put w({u1, v1}) = n − 1, w({un, vn}) = n − 2, w({un−1, vn−1}) = n,
w({ui, vi}) = i − 1, 2 ≤ i ≤ n − 2 and w({vi, vi+1}) = n, 1 ≤ i ≤ n − 1. Then
product degrees of pendant vertices are distinct numbers from the set {1, 2, . . . , n}
and the product degrees of external vertices - distinct numbers from the set {n(n −
2), n(n− 1)} ∪ {in2, 1 ≤ i ≤ n− 3} ∪ {n3}.
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