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Abstract

In this article, we study flag-transitive automorphism groups of non-trivial symmetric
(v, k, λ) designs, where λ divides k and k > λ2. We show that such an automorphism
group is either point-primitive of affine or almost simple type, or point-imprimitive with
parameters v = λ2(λ+ 2) and k = λ(λ+ 1), for some positive integer λ. We also provide
some examples in both possibilities.
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1 Introduction
A t-design D = (P,B) with parameters (v, k, λ) is an incidence structure consisting of
a set P of v points, and a set B of k-element subsets of P , called blocks, such that every
t-element subset of points lies in exactly λ blocks. The design D is non-trivial if t <
k < v − t, and is symmetric if |B| = v. By [7, Theorem 1.1], if D is symmetric and
non-trivial, then t 6 2, see also [12, Theorem 1.27]. Thus we study non-trivial symmetric
2-designs with parameters (v, k, λ) which we simply call non-trivial symmetric (v, k, λ)
designs. A flag of D is an incident pair (α,B), where α and B are a point and a block of
D, respectively. An automorphism of a symmetric design D is a permutation of the points
permuting the blocks and preserving the incidence relation. An automorphism group G of
D is called flag-transitive if it is transitive on the set of flags of D. If G leaves invariant
a non-trivial partition of P , then G is said to be point-imprimitive; otherwise G is called
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point-primitive. We here adopt the standard notation as in [8, 23] for finite simple groups
of Lie type. For example, we use PSLn(q), PSpn(q), PSUn(q), PΩ2n+1(q) and PΩ±2n(q)
to denote the finite classical simple groups. Symmetric and alternating groups on n letters
are denoted by Sn and An, respectively. Further notation and definitions in both design
theory and group theory are standard and can be found, for example in [10, 12, 14]. We
also use the software GAP [21] for computational arguments.

Flag-transitive incidence structures have been of most interest. In 1961, Higman and
McLaughlin [11] proved that a flag-transitive automorphism group of a linear space must
act primitively on its points set, and then Buekenhout, Delandtsheer and Doyen [5] studied
this action in details and proved that a linear space admitting a flag-transitive automorphism
group (which is in fact point-primitive) is either of affine, or almost simple type. Thereafter,
a deep result [6], namely the classification of flag-transitive finite linear spaces relying
on the Classification of Finite Simple Groups (CFSG) was announced. Although, flag-
transitive symmetric designs are not necessarily point-primitive, Regueiro [18] proved that
a flag-transitive and point-primitive automorphism group of such designs for λ 6 4 is of
affine or almost simple type, and so using CFSG, she determined all flag-transitive and
point-primitive biplanes (λ = 2). In conclusion, she gave a classification of flag-transitive
biplanes except for the 1-dimensional affine case [17]. Tian and Zhou [22] proved that a
flag-transitive and point-primitive automorphism group of a symmetric design with λ 6
100 must be of affine or almost simple type. Generally, Zieschang [25] proved in 1988 that
a flag-transitive automorphism group of a 2-design with gcd(r, λ) = 1 is (point-primitive)
of affine or almost simple type, and this result has been generalised by Zhuo and Zhan [24]
for λ > gcd(r, λ)2.

1.1 Main result

In this paper, we study flag-transitive automorphism groups of symmetric (v, k, λ) designs,
where λ divides k and k > λ2, and we show that such an automorphism group is not
necessarily point-primitive:

Theorem 1.1. LetD = (P,B) be a non-trivial symmetric (v, k, λ) design with λ > 1, and
let G be a flag-transitive automorphism group of D. If λ divides k and k > λ2, then one of
the following holds:

(a) G is point-primitive of affine or almost simple type;

(b) G is point-imprimitive and v = λ2(λ + 2) and k = λ(λ + 1), for some positive
integer λ. In particular, if G has d classes of imprimitivity of size c, then there is a
constant l such that, for each block B and each class ∆, the size |B ∩∆| is either 0,
or l, and (c, d, l) = (λ2, λ+ 2, λ) or (λ+ 2, λ2, 2).

We highlight here that if λ divides k, then gcd(k, λ)2 = λ2 > λ which does not satisfy
the conditions which have been studied in [24, 25]. Moreover, in Section 1.2, we provide
some examples to show that both possibilities in Theorem 1.1 can actually occur.

In order to prove Theorem 1.1(a), we apply O’Nan-Scott Theorem [15] and discuss
possible types of primitive groups in Section 3. We further note that our proof for part (a)
relies on CFSG. To prove part (b), we use an important result by Praeger and Zhou [20,
Theorem 1.1] on characterisation of imprimitive flag-transitive symmetric designs.
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1.2 Examples and comments on Theorem 1.1

Here, we give some examples of symmetric (v, k, λ) designs admitting flag-transitive au-
tomorphism groups, where λ divides k and k > λ2. In Table 1, we list some small ex-
amples of such designs with λ 6 3. To our knowledge the design in Line 2 is the only
point-primitive example of symmetric designs with v 6 2500 satisfying the conditions
of Theorem 1.1 and this motivates the authors to investigate symmetric designs admitting
symplectic automorphism groups [3]. More examples of symmetric designs admitting flag-
transitive and point-imprimitive automorphism groups can be found in [20] and references
therein.

Line 1. Hussain [13] showed that there are exactly three symmetric (16, 6, 2) designs, and
Regueiro proved that exactly two of such designs are flag-transitive and point-imprimitive
[18, p. 139].

Line 2. The symmetric design in this line arises from the study of primitive permutation
groups with small degrees. This design belongs to a class of symmetric designs with pa-
rameters (3m(3m+1)/2, 3m−1(3m−1)/2, 3m−1(3m−1−1)/2), for some positive integer
m > 1, see [4, 9]. If m = 2, then we obtain the symmetric (45, 12, 3) design admitting
PSp4(3) or PSp4(3) : 2 as flag-transitive automorphism group of rank 3, see [4].

Lines 3 – 4. Mathon and Spence [16] constructed 2616 pairwise non-isomorphic symmet-
ric (45, 12, 3) designs with non-trivial automorphism groups. Praeger [19] proved that there
are exactly two flag-transitive symmetric (45, 12, 3) designs, exactly one of which admits
a point-imprimitive group, and this example satisfies Line 4, but not Line 3.

Table 1: Some symmetric designs satisfying the conditions in Theorem 1.1.

Line v k λ c d l Case Examples Reference Comments

1 16 6 2 4 4 2 (b) 2 [13], [18] imprimitive
2 45 12 3 – – – (a) 1 [4] primitive
3 45 12 3 5 9 2 (b) None [19] imprimitive
4 45 12 3 9 5 3 (b) 1 [19] imprimitive

2 Preliminaries
In this section, we state some useful facts in both design theory and group theory.

Lemma 2.1 ([1, Lemma 2.1]). Let D be a symmetric (v, k, λ) design, and let G be a
flag-transitive automorphism group of D. If α is a point in P and H := Gα, then

(a) k(k − 1) = λ(v − 1);

(b) k divides |H| and λv < k2.

Lemma 2.2 ([2, Corollary 4.3]). Let T be a finite simple classical group of dimension n
over a finite field Fq of size q. Then
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(a) If T = PSLn(q) with n > 2, then |T | > qn
2−2;

(b) If T = PSUn(q) with n > 3, then |T | > (1− q−1)qn
2−2;

(c) If T = PSpn(q) with n > 4, then |T | > q
1
2n(n+1)/(2α), where α = gcd(2, q − 1);

(d) If T = PΩεn(q) with n > 7, then |T | > q
1
2n(n−1)/(4β), where β = gcd(2, n).

Lemma 2.3. Let T be a non-abelian finite simple group satisfying

|T | < 8 · |Out(T )|3. (2.1)

Then T is isomorphic to A5 or A6.

Proof. If T is a sporadic simple group or an alternating group An with n > 7, then
|Out(T )| ∈ {1, 2}, and so by (2.1), we must have |T | < 64, which is a contradiction.
Note that the alternating groups A5 and A6 satisfy (2.1) as claimed. Therefore, we only
need to consider the case where T is a finite simple group of Lie type. In what follows, we
discuss each case separately.

Let T = PSLn(q) with q = pa and n > 2. If n = 2, then q > 4 and |Out(T )| =
a · gcd(2, q − 1), and so by Lemma 2.2(a) and (2.1), we have that q2 < |PSL2(q)| <
8a3 · gcd(2, q − 1)3 6 64a3. Thus, q2 < 64a3. This inequality holds only for (p, a) ∈
{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (3, 1), (3, 2), (3, 3), (5, 1), (7, 1)}. Note in
this case that q > 4, and hence by (2.1), we conclude that T is either

PSL2(4) ∼= PSL2(5) ∼= A5, or PSL2(9) ∼= A6,

as claimed. If n = 3, then by Lemma 2.2(a), we have that q7 < 64a3 · gcd(3, q − 1)3 <
64a3q3, and so q4 < 64a3. If q would be odd, then we would have 34a < 64a3, which
is impossible. If q = 2a, then 2a < 64a3 would hold only for a = 1, 2. Therefore, T is
isomorphic to PSL3(2) or PSL3(4). These simple groups do not satisfy (2.1). If n > 4,
then (2.1) implies that q11 < 64a3, but this inequality has no possible solution.

Let T = PSUn(q) with q = pa and n > 3. By Lemma 2.2(b), we have that |T | >
(1−q−1)qn

2−2, and so (2.1) implies that (1−q−1)qn
2−2 < 64a3 ·gcd(n, q+1)3. If n = 3,

then (1 − q−1)q7 < 64a3 · gcd(n, q + 1)3, and so q6 < 27 · 64a3. This inequality holds
only for (p, a) ∈ {(2, 1), (2, 2), (3, 1)}. Note that PSU3(2) is not simple. Therefore, T is
isomorphic to PSU3(3) or PSU3(4). These simple groups do not satisfy (2.1). If n > 4,
then since (q+1)3 < 4 ·q3(q−1), we would have qn

2−3 < 64a3 ·gcd(n, q+1)3/(q−1) <

4 ·64a3(q+1)3/4(q−1) < 4 ·64a3q3, and so qn
2−6 < 4 ·64a3, and hence q10 < 4 ·64a3,

which is impossible.
Let T = PSpn(q) with q = pa and n > 4. By Lemma 2.2(c), we observe that |T | >

q
1
2n(n+1)/2 gcd(2, q−1) > q

1
2n(n+1)/4. By (2.1), we have that q10 6 q

1
2n(n+1) < 4·64a3,

and so q10 < 4 · 64a3, which is impossible.
Let T = PΩn(q) with q = pa odd and n > 7. Then we conclude by Lemma 2.2(d) that

|T | > q
1
2n(n−1)/8. Since |Out(T )| = 2a and n > 7, it follows from (2.1) that q21 < 83a3,

which is impossible.
Let T = PΩεn(q) with q = pa and n > 8 and ε = ±. It follows from Lemma 2.2(d)

that |T | > q
1
2n(n−1)/8. Note that |Out(T )| 6 6a · gcd(4, q

n
2 − ε) 6 24a. Then (2.1)

implies that q28 < 82 · 243a3, which is impossible.
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Let T be one of the finite exceptional groups

F4(q), E6(q), E7(q), E8(q), 2F4(q) (q = 22m+1), 3D4(q) and 2E6(q).

Then |T | > q20, and so (2.1) implies that q20 < 8 · 23 · 33a3, which is impossible. If T =
G2(q) with q = pa 6= 2. Then by (2.1), we have that q12 < q6(q2 − 1)(q6 − 1) < 8 · 23a3,
and so q12 < 8 · 23a3, which is impossible. Similarly, if T is one of the groups 2B2(q)
with q = 22m+1 and 2G2(q) with q = 32m+1, then |T | > q4, and so (2.1) implies that
q4 < 8a3, which is impossible.

3 Point-primitive designs
In what follows, we assume that D = (P,B) is a non-trivial symmetric (v, k, λ) design
admitting a flag-transitive and point-primitive automorphism group G. Let also λ divide k
and k > λ2 and set t := k/λ. Notice that λ < k, and so t > 2. We moreover observe by
Lemma 2.1(a) that

k =
v + t− 1

t
; (3.1)

λ =
v + t− 1

t2
. (3.2)

Since also G is a primitive permutation group on P , by O’Nan-Scott Theorem [15], G is
of one of the following types:

(a) Affine;

(b) Almost simple;

(c) Simple diagonal;

(d) Product;

(e) Twisted wreath product.

3.1 Product and twisted wreath product type

In this section, we assume that G is a primitive group of product type on P , that is to say,
G 6 H oS`, whereH is of almost simple or diagonal type on the set Γ of sizem := |Γ| > 5
and ` > 2. In this case, P = Γ`.

Lemma 3.1. Let G be a flag-transitive point-primitive automorphism group of product
type. Then k divides λ`(m− 1).

Proof. See the proof of Lemma 4 in [18].

Proposition 3.2. If D = (P,B) is a non-trivial symmetric (v, k, λ) design admitting a
flag-transitive and point-primitive automorphism group G, where λ divides k and k > λ2,
then G is not of product type.

Proof. Assume the contrary. Suppose that G is of product type. Then v = m`. Note by
Lemma 3.1 that k divides λ`(m − 1), and so t = k/λ divides `(m − 1). We also note by
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Lemma 2.1(b) that λv < k2. Then v < λt2, and since λ 6 t, we have that v < t3. Recall
that t divides `(m− 1). Hence

m` < `3(m− 1)3. (3.3)

Then m` < `3m3, or equivalently, m`−3 < `3. Since m > 5, it follows that 5`−3 < `3,
and this is true for 2 6 ` 6 6. If ` = 6, then since m6−3 < 63, we conclude that m = 5,
but (m, `) = (5, 6) does not satisfy (3.3). Therefore, 2 6 ` 6 5.

Suppose first that ` = 5. Then by (3.3), we have that m5 < 53(m − 1)3, and so
5 6 m 6 9. It follows from (3.1) that t divides m5 − 1. For each 5 6 m 6 9, we can
obtain divisors t of m5 − 1. Note by (3.2) that t2 must divide m5 − t+ 1. This is true only
for m = 7 when t = 2 or 6 for which

(v, k, λ) = (16807, 8404, 4202) or (16807, 2802, 467),

respectively. Since λ2 6 k, these parameters can be ruled out.
Suppose that ` = 4. Then by (3.3), we have that m5 < 43(m−1)3, and so 5 6 m 6 9.

By the same argument as in the case where ` = 5, by (3.1) and (3.2), we obtain possible
parameters (m, t, v, k, λ) as in Table 2. Note by Lemma 3.1 that k must divide 4λ(m− 1),
and this is not true, for all parameters in Table 2.

Table 2: Possible values for (m, t, v, k, λ) when ` = 4.

m t v k λ

13 51 28561 561 11

31 555 923521 1665 3

47 345 4879681 14145 41

57 416 10556001 25376 61

Suppose now that ` = 3. We again apply Lemma 3.1 and conclude that t divides
3(m − 1). Then there exists a positive integer x such that 3(m − 1) = tx, and so m =
(tx+ 3)/3. By (3.2), we have that

λ =
m2 + t− 1

t2
=
t2x3 + 9tx2 + 27x+ 27

27t
.

Then 27λt = t2x3 + 9tx2 + 27x + 27. Therefore, t must divide 27x + 27, and so ty =
27x+ 27, for some positive integer y. Thus,

λ =
t(ty − 27)3 + 9 · 27(ty − 27)2 + 273y

274
, (3.4)

for some positive integers t and y. Since λ2 6 k, we have that λ 6 t, and so

t(ty − 27)3 + 9 · 27(ty − 27)2 + 273y 6 274t. (3.5)

If y > 32, then

t(ty − 27)3 + 9 · 27(ty − 27)2 + 273y

> t(32t− 27)3 + 9 · 27(32t− 27)2 + 32 · 273 > 274t,
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for t > 2. Thus 1 6 y 6 31, and so by (3.5), we conclude that 2 6 t 6 107. For each
such y and t, by straightforward calculation, we observe that λ as in (3.4) is not a positive
integer.

Suppose finally that ` = 2. Recall by Lemma 3.1 that t divides 2(m − 1). Then
2(m− 1) = tx for some positive integer x, and so m = (tx+ 2)/2. It follows from (3.2)
that λ = (tx2 + 4x+ 4)/4t, or equivalently, 4tλ = tx2 + 4x+ 4. This shows that t divides
4x+4, and so ty = 4x+4, for some positive integer y. Therefore, 43λ = (ty−4)2 +16y.
Since λ2 6 k, we have that λ 6 t, and so (ty − 4)2 + 16y 6 43t. If y > 6, then
(6t− 4)2 + 6 · 16 6 43t, which has no possible solution for t. Thus 1 6 y 6 5. Since also
(t− 4)2 + 16 6 43t, we conclude that 2 6 t 6 71, and so (3.1) and (3.2) imply that

k =
t(t2y2 − 8ty + 16y + 16)

64
and λ =

(ty − 4)2 + 16y

64
,

where 2 6 t 6 71 and 1 6 y 6 5. For these values of t and y, considering the fact
that m > 5, k > λ2 and λ divides k, we obtain (v, k, λ) = (121, 25, 5) or (441, 56, 7)
respectively when (t, y) = (5, 4) or (8, 3). These possibilities can be ruled out by [4] or
[22, Theorem 1.1].

Proposition 3.3. If D = (P,B) is a non-trivial symmetric (v, k, λ) design admitting a
flag-transitive and point-primitive automorphism group G, where λ divides k and k > λ2,
then G is not of twisted wreath product type.

Proof. If G would be of twisted wreath product type, then by [15, Remark 2(ii)], it would
be contained in the wreath product H o Sm with H = T × T of simple diagonal type, and
so G would act on P by product action, and this contradicts Proposition 3.2.

3.2 Simple diagonal type

In this section, we suppose that G is a primitive group of diagonal type. Let M =
Soc(G) = T1 × · · · × Tm, where Ti ∼= T is a non-abelian finite simple group, for
i = 1, . . . ,m. Then G may be viewed as a subgroup of M · (Out(T ) × Sm). Here,
Gα is isomorphic to a subgroup of Aut(T ) × Sm and Mα

∼= T is a diagonal subgroup of
M , and so |P| = |T |m−1.

Lemma 3.4. Let G be a flag-transitive point-primitive automorphism group of simple di-
agonal type with socle Tm. Then k divides λm1h, where m1 6 m and h divides |T |.

Proof. See the proof of Proposition 3.1 in [22].

Proposition 3.5. If D = (P,B) is a non-trivial symmetric (v, k, λ) design admitting a
flag-transitive and point-primitive automorphism group G, where λ divides k and k > λ2,
then G is not of simple diagonal type.

Proof. Suppose by contradiction that G is a primitive group of simple diagonal type. Then
v = |T |m−1, and so by Lemma 2.1(b), λv < k2. This implies that λ|T |m−1 < k2 = λ2t2.
Since λ2 6 k, we must have λ 6 t, and hence

|T |m−1 < t3. (3.6)

Note by Lemma 3.4 that k divides λm1h and m1h 6 m|T |. Then t divides m1h, and
so t 6 m|T |. We now apply (3.6) and conclude that |T |m−1 < m3|T |3. Therefore,
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|T |m−4 < m3. Since |T | > 60, we must have m < 6. If m = 5, then |T | < 53, and
it follows that T ∼= A5. Note that k divides λ(v − 1) = λ(|T |m−1 − 1). Then t divides
|T |m−1−1 = 604−1 = 13 ·59 ·61 ·277. Since t 6 m|T | = 300 and t > 2, it follows that
t ∈ {13, 59, 61, 277}. For each such t, we have that λ 6 t and k = tλ, and so we easily
observe that these parameters does not satisfy Lemma 2.1(a). Therefore m ∈ {2, 3, 4}.
Note that Gα is isomorphic to a subgroup of Aut(T ) × Sm. Then by Lemma 2.1(b), the
parameter k divides |Gα|, and so k divides (m!) · |T | · |Out(T )|. On the other hand,
Lemma 2.1(a) implies that k divides λ(|T |m−1− 1), and so t divides |T |m−1− 1 implying
that gcd(t, |T |) = 1. Since k divides (m!) · |T | · |Out(T )| and t is a divisor of k, we
conclude that t divides (m!) · |Out(T )|. Recall by (3.6) that |T |m−1 < t3. Therefore,

|T |m−1 < (m!)3 · |Out(T )|3, (3.7)

where m ∈ {2, 3, 4}.
If m = 2, then |T | < 8 · |Out(T )|3. If m = 3, then |T |2 < 63|Out(T )|3, and so

|T | < 6
3
2 |Out(T )|. If m = 4, then |T |3 < 243|Out(T )|3, and |T | < 24|Out(T )|. Thus

for m 6 4, we always have
|T | < 8 · |Out(T )|3,

where T is a non-abelian finite simple group. We now apply Lemma 2.3 and conclude that
T is isomorphic to A5 or A6. If m = 2, then since t divides |T |m−1 − 1 = |T | − 1,
we have that t divides 59 or 359 when T is isomorphic to A5 or A6, respectively. Thus
(v, k, λ) = (60, 59λ, λ) or (v, k, λ) = (360, 359λ, λ). Since λ > 1, in each case, we
conclude that k > v, which is a contradiction. For m = 3, 4, since |Out(A5)| = 2 and
|Out(A6)| = 4, it follows from (3.7) that |T | < 48 or |T | < 96 when T is isomorphic to
A5 or A6, respectively, which is a contradiction.

4 Proof of the main result
In this section, we prove Theorem 1.1. Suppose thatD = (P,B) is a non-trivial symmetric
(v, k, λ) design with λ divides k and k > λ2. Suppose also that G is a flag-transitive
automorphism group of D.

Proof of Theorem 1.1. If G is point-primitive, then by O’Nan-Scott Theorem [15] and
Propositions 3.2, 3.3 and 3.5, we conclude that G is of affine or almost simple type. Sup-
pose now that G is point-imprimitive. Then G leaves invariant a non-trivial partition C of
P with d classes of size c. By [20, Theorem 1.1], there is a constant l such that, for each
B ∈ B and ∆ ∈ C, |B ∩∆| ∈ {0, l} and one of the following holds:

(a) k 6 λ(λ− 3)/2;

(b) (v, k, λ) = (λ2(λ+ 2), λ(λ+ 1), λ) with (c, d, l) = (λ2, λ+ 2, λ) or (λ+ 2, λ2, 2);

(c)

(v, k, λ, c, d, l) =

(
(λ+ 2)(λ2 − 2λ+ 2)

4
,
λ2

2
, λ,

λ+ 2

2
,
λ2 − 2λ+ 2

2
, 2

)
,

and either λ ≡ 0 (mod 4), or λ = 2u2, where u is odd, u > 3, and 2(u2 − 1) is a
square;
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(d)

(v, k, λ, c, d, l) =

(
(λ+ 6)(λ2 + 4λ− 1)

4
,
λ(λ+ 5)

2
, λ, λ+ 6,

λ2 + 4λ− 1

4
, 3

)
,

where λ ≡ 1 or 3 (mod 6).

We easily observe that the cases (a) and (c) can be ruled out as k > λ2. If case (d) occurs,
then λ(λ + 5)/2 = k > λ2 implying that λ 6 5. Since λ ≡ 1 or 3 (mod 6), it follows
that λ = 3 for which (v, k, λ, c, d, l) = (45, 12, 3, 9, 5, 3) which satisfies the condition in
Theorem 1.1(b). Therefore, the case (b) can occur as claimed.
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