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Abstract
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∗Dedicated to Branko Grünbaum on the occasion of his 80th birthday.
E-mail addresses: alen.orbanic@fmf.uni-lj.si (Alen Orbanić), dpellicer@math.unam.mx (Daniel Pellicer),
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1 Introduction
In this paper we are interested in maps (see [16] or [5, Section 17.10] for definitions) whose
automorphism group acts transitively on the edges. In addition to combinatorial finite
maps on compact surfaces we consider also the (geometric) tessellations of the spherical,
Euclidean or hyperbolic plane, where every automorphism can be extended to an isometry
of the tessellation. We shall consider only locally finite, one-ended tessellations (see [7,
18, 3]). For multi-ended planar maps, as well as for definitions of one- and multi-ended
maps, see [6]. Additionally, unless explicitly specified, we will consider non-degenerate
maps and tessellations, i.e. maps with all valences, co-valences and Petrie valences at least
3.

An edge in a map has edge-symbol (f1 ·f2; v1 ·v2) if it is incident to vertices of valence
v1 and v2 and faces of size f1 and f2 (see [9]). A map is called edge-homogeneous if all its
edges have the same edge symbol (f1 · f2; v1 · v2). Note that this requires vertex valences
to alternate between v1 and v2 around each face, and face sizes to alternate between f1 and
f2 around each vertex. In particular, v1, v2, f1, f2 must satisfy the condition: if v1 or v2 is
odd, then f1 = f2, and if f1 or f2 is odd, then v1 = v2. Call (f1 · f2; v1 · v2) admissible if
it satisfies this condition with all numbers at least 3.

An edge-transitive map is obviously edge-homogeneous. The converse is not true;
for example, the map on the torus obtained by identifying opposite sides of an m × n
chessboard has constant edge-symbol (4 ·4; 4 ·4), but it is not edge-transitive whenm 6= n,
since there is no map automorphism taking ‘horizontal’ edges to ‘vertical’ edges. On the
other hand we have the following geometric result of Grünbaum and Shepherd [10]:

Theorem 1.1. Given any admissible edge-symbol (f1 · f2; v1 · v2), there is a unique (up to
map isomorphism) universal tessellationM(f1 ·f2; v1 ·v2) of the sphere, Euclidean plane,
or hyperbolic plane by congruent f1-gons and f2-gons, such that all map automorphisms
are isometries and the map is edge-transitive with the given edge-symbol. The map has
reflections with respect to any line joining a vertex and the center of an incident face. If
f1 = f2 it also has a reflection with respect to the lines determined by the edges and if
v1 = v2 it has reflections with respect to any line connecting centers of incident faces.

The proof is mostly a matter of constructing an f1-gon and f2-gon with congruent sides
and the appropriate internal angles. The theorem has the following consequences:

Corollary 1.2. If the finite map M is homogeneous with edge symbol (f1 · f2; v1 · v2),
there is a finitely generated group A of fixed-point free automorphisms of the universal
tessellation M(f1 · f2; v1 · v2), such that M is isomorphic to the quotient M(f1 · f2; v1 ·
v2)/A. If A is a normal subgroup of the automorphism group of M(f1 · f2; v1 · v2) then
the map M is edge-transitive.

Proof. The covering transformations of the universal map M(f1 · f2; v1 · v2) of M are
fixed-point free automorphisms. When A is normal, each automorphism of the universal
map projects to an automorphism of M .

Corollary 1.3. Any finite, edge-homogeneous mapM is regularly covered by a finite edge-
transitive map.

Proof. Given a map M let A be any group such that M = M(f1 · f2; v1 · v2)/A. The
group A is determined up to conjugacy and has finite index in the automorphism group Γ
of M(f1 · f2; v1 · v2). Let B be the intersection of all conjugates of A in Γ. Then B is
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normal of finite index in Γ. It follows that M(f1 · f2; v1 · v2)/B is an edge-transitive finite
map regularly covering M .

The proposition below follows directly from Theorem 1.1 and [9].

Proposition 1.4. Every edge-symbol that can be realized by a finite map on a closed surface
with negative Euler characteristic is admissible for a tessellation of the hyperbolic plane.

2 Combinatorial vs. geometric edge-transitivity
The notion of edge-transitivity of maps or tessellations may be understood with two dif-
ferent meanings: combinatorial and geometric, depending on the choice of combinatorial
automorphism or the geometric symmetry group.

Our point of departure is the combinatorial meaning where the map M is considered
as an abstract collection of flags together with three fixed-point free involutions that we
denote by 0,1,2 (see [5]) with the product 02 being a fixed-point free involution, too. This
is equivalent to identifying the map M with its 3-edge-colored flag graph G(M) in which
the flags of M are the vertices of G(M) and the edges of color i are determined by the
involution i. Clearly the only axiom of maps is observed as the fact that a 3-edge-colored
3-regular graph results from a map if and only if it is connected and the 02-two-factor of
G(M) is ‘quadrilateral’, i.e. consists entirely of 4-cycles. Here automorphisms are defined
as bijections of flags that preserve the colored adjacencies. However, they can also be
viewed as color-preserving automorphisms of G(M). This is a general description of a
finite map on a closed surface. We recall the following important facts:

Theorem 2.1. Let M be a map with e edges and let AutM be its automorphism group or
order m = |AutM |. Let k be the number of its flag-orbits.

• There are 4e flags.

• For any pair of flags there is at most one automorphism mapping one flag into the
other.

• Let a be a flag-orbit of M , let i be one of the three involutions and let b = i(a). Then
b is a flag-orbit and i restricted to a is a bijection between a and b.

• The group of automorphisms AutM partitions the set of flags into k equal sized
orbits. The size of each orbit is equal to m, where km = 4e.

However, if we work with tessellations T of the sphere, Euclidean plane or hyperbolic
plane we may consider the additional structure of metric space and require the edges to be
given as segments of geodesics. The transitivity in this case is considered with respect to
the group of isometries fixing T . Note that any tessellation T of the hyperbolic plane H
can be embedded as a combinatorial map on the Euclidean plane E , however the group of
automorphisms of T that extend to isometries of H in general does not coincide with the
group of automorphisms of T that extend to isometries of E .

For example, it is possible to tessellate the hyperbolic plane with equilateral triangles,
seven of them around each vertex. This tessellation, denoted by T3,7, has the Coxeter group

[3, 7] = 〈ρ0, ρ1, ρ2 | (ρ0ρ2)2 = (ρ0ρ1)3 = (ρ1ρ2)7 = id〉

as its symmetry group; see [11]. In particular, the group [3, 7] acts transitively on the faces
of T3,7. It is also possible to partition the Euclidean plane into triangles, seven of them
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around each vertex; however, in this case the tiling cannot be normal in the sense of [10,
Section 3.2] (see also [18, p. 174]), and therefore, the symmetry group cannot be transitive
on the faces.

Following the discussion in the previous section, every edge-transitive map on the pro-
jective plane is the quotient of a universal edge-transitive map on the sphere by the antipo-
dal involution; each edge-transitive map on the torus is the quotient of a universal edge-
transitive map on the Euclidean plane by the group generated by two linearly independent
translations; and every edge-transitive map on the Klein bottle is the quotient of a universal
edge-transitive map on the Euclidean plane by the group generated by two glide reflections
with congruent translation component and parallel axes. For more details see for example
[10], [17] and [22].

As we shall see, there are admissible edge-symbols on the sphere and the Euclidean
plane which are not admissible on the projective plane and Klein bottle, respectively. Sim-
ilarly, in general admissible edge-symbols on the hyperbolic plane are not admissible on
each surface with negative Euler characteristic. In the following sections we describe the
cases when S is the sphere or the Euclidean plane. When S is the hyperbolic plane the
problem is considerably more difficult. Part of the difficulty is explained by the next propo-
sition.
Proposition 2.2. Each edge-symbol that is admissible for a tessellation of the hyperbolic
plane can be realized by infinitely many finite maps (on some closed surfaces with negative
Euler characteristic).

Proof. We recall that the isometries of the hyperbolic plane can be interpreted as matrices.
As a consequence of [19, Table II], the symmetry groups of the edge-transitive tessellations
of the hyperbolic plane are isomorphic to finitely generated matrix groups. In particular,
the symmetry group of any edge-transitive tessellation of the hyperbolic plane is residually
finite (see [13], [21, Chapter 4]).

The proposition follows from the same argument as [20, Theorem 6.3], for T given by
the set of elements stabilizing a given (base) face of each size and a given (base) vertex of
each size. If necessary, and depending on the edge-symbol, we may require T to contain
some specific finite set of extra elements to guarantee that it is non-degenerate.

The discussion above shows in general that for an edge-symbol (f1 · f2; v1 · v2) to be
admissible it suffices to verify whether there is a tessellation with edge-symbol (f1 ·f2; v1 ·
v2).

Grünbaum and Shephard [9] classified admissible edge-symbol (f1 · f2; v1 · v2) with
f1 ≥ f2 ≥ 3, v1 ≥ v2 ≥ 3 as follows:

1. v1, v2, f1, f2, all even.

2. v1 = v2, even, f1 ≥ f2, at least one odd.

3. f1 = f2, even, v1 ≥ v2, at least one odd.

4. v1 = v2, f1 = f2, all odd.

3 The 14 types of edge-transitive maps and symmetry type graphs
We now turn our attention to the classification of edge-transitive maps according to the
type of automorphisms fixing a given vertex, edge, face or Petrie circuit, or equivalently,
according to the symmetry type.
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Figure 1: The edge-square and its quotients.

According to [6, 19] there are 14 types of edge-transitive maps respectively denoted
by 1, 2, 2∗, 2P , 2ex, 2∗ex, 2P ex, 3, 4, 4∗, 4P , 5, 5∗, 5P . The type containing the dual
(resp. opposite) of a map with a given type C is denoted by C∗ (resp. CP ). These types
correspond, respectively, to 1, 212, 201, 21, 22, 20, 2, 4F , 4Hd, 4H , 4Hp, 4Gd, 4G, 4Gp in
[16].

In our approach, in order to determine the same classification of edge-transitive maps,
we use a powerful combinatorial tool described next.

Let M be a map with automorphism group AutM . In general the quotient M/AutM
is no longer a map in sense of our definition. Namely, it may correspond to a topological
map on a surface with boundary. The quotient G(M)/AutM is a 3-edge-colored pre-
graph T (M) that we call the symmetry type graph of M and the canonical projection π :
G(M) → G(M)/AutM is not only a graph morphism but is also a covering projection.
(Some edges of G(M) may fold to semi-edges of T (M)). The basics of pre-graphs and
covering graphs one may find in [18]. Pre-graphs are graphs with dangling edges.

The symmetry type graphs have been introduced before with a slightly different mean-
ing (semi-edges are replaced by loops) and in more general setting under the name of
Delaney-Dress graph [4].

The following theorem shows how one can obtain the number and structure of vertex-,
edge- or face-orbits.
Theorem 3.1. Let Ti(M) denote the pre-graph obtained from the symmetry type graph
T (M) of a map M by removing all i-edges. The number of connected components of
T0(M) represents the number of vertex orbits of M , the number of connected components
of T1(M) represents the number of edge orbits of M while the number of connected com-
ponents of T2(M) represents the number of face-orbits of M .

Proof. LetGi(M) denote the graph obtained fromG(M) by removing i-edges. Connected
components ofGi(M) project onto connected components of Ti(M) implying that for each
two components projecting onto the same component of Ti(M) there is an automorphism
in AutM taking one component into another, while for any two components projecting onto
different components of Ti(M) there is no automorphism in AutM .

The following observation follows immediately form the above theorem.
Corollary 3.2. The symmetry type graph of an edge-transitive map has 1,2, or 4 vertices.

In particular there are five admissible quotient pre-graphs T1(M) that are depicted in
Figure 1. In case of edge-transitive maps these five quotient pre-graphs can be augumented
to obtain symmetry type pre-graphs in exactly 14 possible ways. It may be easily shown
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Figure 2: Symmetry type graphs for edge-transitive maps.

that these 14 symmetry pre-graphs correspond exactly to the 14 types of edge-transitive
maps (see [6, 19, 16]). The pre-graphs are depicted in Figure 2.

Only type 1 consists of flag-transitive maps. However, the following types contain
vertex-transitive maps: 1, 2∗, 2P , 2ex, 2∗ex, 2P ex, 4∗, 4P , 5∗, 5P . Furthermore, types
with arc-transitive maps are: 1, 2∗, 2P , 2∗ex, 2P ex (an arc is a pair of incident vertex and
edge).

From the symmetry type graphs we can easily determine, whether a type allows self-
duality of a particular map of that type. If by changing colors 0 and 2 in a type graph T we
obtain a different type graph T ′, then the dual of a map of the initial type always changes
the type and the map cannot be self-dual. On the other hand, if T = T ′ the type allows
self-dual maps. From the Figure 2 we can see that only the types 1, 2P , 2P ex, 3, 4P and
5P allow self-dual maps.

In the following sections we analyze the types and edge-symbols that appear in the
tessellations and in surfaces with Euler characteristic χ ≥ −2. The types that appear in
each surface are listed in Table 5.

4 Edge-transitive tessellations
Recall that an edge-transitive tessellation is a finite or locally finite (normal) map on the
sphere, Euclidean plane or hyperbolic plane, such that the isometry group preserving the
map acts transitively on the edges. The finite edge-transitive tessellations reside on a
sphere, while the infinite ones lie either on the Euclidean or on the hyperbolic plane.
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Table 1 shows the nine edge-transitive tessellations of the sphere, sorted by the number
of edges. Note that they are precisely the platonic solids, their medials (Me) and the duals
of the medials (Du(Me)) (see [16, Sections 2, 4.1] for the definitions of dual and medial).

f1 f2 v1 v2 Name Symbol Vertices Edges Type
3 3 3 3 tetrahedron T 4 6 1

4 4 3 3 hexahedron H 8 12 1

3 3 4 4 octahedron Du(H) 6 12 1

4 3 4 4 cuboctahedron Me(H) 12 24 2∗

4 4 4 3 rhombic dodecahedron Du(Me(H)) 14 24 2

5 5 3 3 dodecahedron D 20 30 1

3 3 5 5 icosahedron Du(D) 12 30 1

5 3 4 4 icosidodecahedron Me(D) 30 60 2∗

4 4 5 3 rhombic triacontahedron Du(Me(D)) 32 60 2

Table 1: Edge-transitive maps in the sphere.

In Table 2 we present the five Euclidean cases. They coincide with the regular tessella-
tions, the medial of one of them and the dual of this medial.

Finally we show the types of tessellations in the hyperbolic plane. They almost co-
incide with the four types of Grünbaum Shephard [9, Theorem 1]. There are some subtle
differences. Our classification works with symmetries (Delaney-Dress symbol) while theirs
work with parity (of the parameters). The classification of Grünbaum and Shephard does
not take on account the transitivity of the action of the symmetry group on the vertices,
edges or faces of the map. Therefore we refine this classification as follows.

1.1 f1 > f2, v1 > v2, all even: type 3.

1.2 f1 > f2, v1 = v2, all even: type 2*, vertex-transitive (and arc-transitive).

1.3 f1 = f2, v1 > v2, all even: type 2, face-transitive

1.4 f1 = f2, v1 = v2, all even: type 1, regular (reflexible).

2.1 f1 > f2, one odd, v1 = v2, even: type 2*, vertex-transitive (and arc-transitive).

2.2 f1 ≥ f2, both odd, v1 = v2, even: type 2*, vertex-transitive (and arc-transitive).

f1 f2 v1 v2 Faces Notation Type Transitivity
4 4 4 4 squares Sq∞ or 〈4; 4〉 1 flag

6 6 3 3 hexagons H∞ or 〈3; 6〉 1 flag

3 3 6 6 triangles Du(H∞) or 〈6; 3〉 1 flag

6 3 4 4 triangles/hexagons Me(H∞) or 〈4; 3, 6〉 2∗ vertex, arc

4 4 6 3 4-gons Du(Me(H∞)) or 〈3, 6; 4〉 2 face

Table 2: Edge-transitive tessellations of the Euclidean plane.
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f1 f2 v1 v2 Name Notation Type Vertices Edges Graph

4 4 3 3 hemi-hexahedron h(H) 1 4 6 K4

3 3 4 4 hemi-octahedron h(Me(T )) 1 3 6 K
(2)
3

4 3 4 4 hemi-cuboctahedron h(Me(H)) 2∗ 6 12 K2,2,2

4 4 4 3 hemi rhombic dodecahedron Du(h(Me(H))) 2 7 12 K3,4

5 5 3 3 hemi-dodecahedron h(D) 1 10 15 G(5, 2)

3 3 5 5 hemi-icosahedron h(Du(D)) 1 6 15 K6

5 3 4 4 hemi-icosidodecahedron h(Me(D)) 2∗ 15 30 L(G(5, 2))

4 4 5 3 hemi rhombic triacontahedron Du(h(Me(D))) 2 16 30

Table 3: Edge-transitive maps on the projective plane.

3.1 f1 = f2, even, v1 > v2, one odd: type 2, face-transitive.

3.2 f1 = f2, even, v1 ≥ v2, both odd: type 2, face-transitive.

4.1 f1 = f2, v1 = v2, all odd: type 1, regular (reflexible).

In the enumeration n.x above the number n is taken from the list in Section 2.
We note that type 3 does not appear in the sphere or Euclidean plane, although it does

in the hyperbolic plane.

5 Edge-transitive maps on the projective plane, torus, and Klein bot-
tle

We now investigate the compact closed surfaces with Euler characteristic χ ≥ 0. When
possible we also provide the graph-theoretical name of the graph given by the vertices and
edges of the map.

5.1 The projective plane (types: 1, 2, 2∗)

Each edge-transitive map in the projective plane is obtained from the corresponding edge-
transitive map on the sphere via the antipodal covering projection. If M is a map in the
sphere, we denote by h(M) the antipodal quotient in the projective plane and call it ”hemi-
M”. Out of 9 edge-transitive maps on the sphere 8 of them admit a central involution that
can be used for the covering. Note that the tetrahedron is the only one not containing such
an involution. Table 3 shows the eight edge-transitive maps on the projective plane.

5.2 The torus (types: 1, 2, 2∗, 2P , 2P ex, 5, 5∗)

In [19] all possible types of edge-transitive maps on the torus are given. The maps are
divided in 14 families. Each toroidal map arises as a quotient of one of the five edge-
transitive maps of the Euclidean plane: (see Section 4). By splitting 3 of 14 families in
two we obtain 17 families denoted by T1 to T17. The pairs of families obtained by splitting
include (T4, T5), (T12, T13) and (T15, T16).

Following the notation by Širáň, Tucker, Watkins [19], the families are organized as
follows.
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Figure 3: Generating translations.

• 〈4; 4〉 – edge-symbol (4 · 4, 4 · 4), 5 families, 2 type 1, 2 type 2P , 1 type 2P ex,

• 〈6; 3〉 – edge-symbol (3 · 3, 6 · 6), 3 families, 2 type 1, 1 type 2P ex,

• 〈3; 6〉 – edge-symbol (6 · 6, 3 · 3), 3 families, 2 type 1, 1 type 2P ex,

• 〈4; 3, 6〉 – edge-symbol (3 · 6, 4 · 4), 3 families, 2 type 2, 1 type 5,

• 〈3, 6; 4〉 – edge-symbol (4 · 4, 3 · 6), 3 families, 2 type 2∗, 1 type 5∗.

For each family we provide in Table 4 a description in terms of parameters. Addition-
ally we provide the numbers of vertices and edges of its maps and drawings of a few small
representatives.

For each of the five tessellations of the Euclidean plane we consider the vectors ū, v̄ as
in Figure 3. For each of the families τ ∈ {〈4; 4〉, 〈3; 6〉, 〈6; 3〉, 〈4; 3, 6〉, 〈3, 6; 4〉} we shall
make use of the following notation (see [17]). The toroidal map obtained as a quotient of
τ by the translation group T generated by the translations by vectors aū+ bv̄ and cū+ dv̄
will be denoted by τ{(a,b),(c,d)}. If τ = 〈4; 4〉 and (c, d) = (−b, a), and when τ 6= 〈4; 4〉
and (c, d) = (−b, a+ b), the toroidal map τ{(a,b),(c,d)} is simply denoted by τ(a,b).

With the families described in this way (including the restrictions of the parameters)
any given map has a unique expression as a member of its family.

5.3 The Klein bottle (types: 3)

From the discussion at Section 2, every edge-transitive map M on the Klein bottle must
share its edge-symbol with that of an edge-transitive tessellation T on the Euclidean plane.
We recall that M is the quotient of T by a group A generated by two glide reflections
with parallel axes and equal translation component. It follows that any automorphism of
M can be obtained from an automorphism of T that normalizes A, however, any such
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T (3)1

T (2)2 T (2,1)3

T (3,2)5
T (4,1)4

Figure 4: Examples of toroidal edge transitive maps from family 〈4; 4〉.

T (2,1)8

T (2,1)11

T (3)6 T (2)7

T (3)9 T (1)10

Figure 5: Examples of toroidal edge transitive maps from families 〈6; 3〉 and 〈3; 6〉.
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T (3)12

T (1)13

T (2,1)14

T (3)15

T (1)16

T (2,1)17

Figure 6: Examples of toroidal edge transitive maps from families 〈4; 3, 6〉 and 〈3, 6; 4〉.
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K(10)

Figure 7: Edge transitive maps on the Klein bottle.

isometry of the Euclidean plane preserves the direction of the axes of the glide reflections
and hence they must be either translations, half-turns or glide reflection whose (possibly
trivial) translation vector is either parallel or orthogonal to the axes of the generators of
A. A direct inspection shows that, no map arising from the families 〈3; 6〉, 〈6; 3〉, 〈4; 3, 6〉
and 〈3, 6; 4〉 can be edge-transitive when considering only such possible automorphisms.
Therefore, the only possible family is 〈4; 4〉.

The only family of edge-transitive maps on the Klein bottle in the notation of [22]
is K(r) := {4, 4}\r,2\ with r ≥ 2 even, in class 3 (see {4, 4}\10,2\ as an example in
Figure 7). The number of vertices and edges of K(r) are 2r and 4r respectively, and its
underlying graph is the lexicographic product Cr ◦ K̄2 of an r-cycle with an empty graph
in two vertices.

We observe that in [22] it is mistakenly mentioned that the map {4, 4}\r,2\ is edge
transitive if and only if r is odd. Note however that in that case there are two orbits of
edges, the one containing edges intersecting the axes of the defining glide reflections, and
the remaining ones. Clearly these orbits are distinct. This conclusion can also be attained
by noting that the half-turn with respect to the center of an edge that intersects the axis of
one of the defnining glide reflections is an automorphism of the map. Since there are 4r
edges and 4r automorphisms, there cannot be only one flag orbit. On the other hand, if r is
even then all edge-stabilizers are trivial implying that the map is edge transitive.

6 Conclusion
The summary of our results is presented in Table 5 which is also based on calculations
using the computer package MAGMA [1] (see Tables 6,7,8). The calculations and results
are in further detail explained in [15]. The main idea is that for each edge-transitive map on
a surface with negative Euler characteristic the size of the automorphism group is bounded
by the Hurwitz bound 168(g−1), where g is the orientable (or non-orientable) genus of the
surface. Note that depending on the type and orientability of edge-transitive maps the upper
bound can be further refined (see [15], page 59). On the other hand the number of flags can-
not exceed four times the size of the group. In addition, the candidate groups must have one
of the presentations stated in [19], page 14. Our approach is to use LOWINDEXNORMAL-
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SUBGROUPS algorithm from MAGMA [1] starting with the presentations mentioned above,
calculating quotients corresponding to normal subgroups of index up the relevant upper
bound and filtering out degenerate maps and maps with higher symmetry then expected
for the considered type. An alternative approach would be simply to check for generators
of relevant groups in the SmallGroupLibrary (included in GAP and MAGMA) up to order
less or equal the relevant upper bound. For χ ≥ −2 all possible groups can be found in
the SmallGroupLibrary. The third approach would be to calculate edge-transitive covers
of the fourteen 3-valent type graphs using the standard voltage graph technique built in the
monograph by Gross and Tucker [8] and extended to graphs with semi-edges in a paper by
Malnič et. al. [14].

Surface χ Orientability Types
1 2 2∗ 2P 2P ex 3 4 4∗ 5 5∗

sphere 2 yes 5 2 2

Euclidean plane 1 yes 3 1 1

hyperbolic plane 1 yes ∞ ∞ ∞ ∞
projective plane 1 no 4 2 2

torus 0 yes ∞ ∞ ∞ ∞ ∞ ∞ ∞
Klein bottle 0 no ∞

-1 no 4

-2 no 4 3 3 2 11 2 2

double torus -2 yes 6 8 8 - 5 1 1

Table 5: Number of non-degenerate edge-transitive maps on surfaces with Euler charac-
teristic χ ≥ −2.

Notation:

• G(k) - simple graph G with each edge replaced by k parallel edges.

• G[k] - lexicographic product of G with the empty graph on k vertices.

• Bn - bouquet of n circles.

• G1 - vertex-face incidence graph of a cube.

• G2 - vertex-face incidence graph with each vertex-vertex doubled.

• G3 - skeleton of cuboctahedron

• G4 - line graph of the Möbuis-Kantor graph

• GP (m,n) - generalized Petersen graph.

• {(f1, f2), (v1, v2)}(p1,p2) extended Schlafli type. p1, p2 Petrie polygons.

• In the comments column, some maps are labeled by capital letters possibly with
indices. Using these labels certain relations between maps are denoted. For instance,
the first map in Table 6 is labeled by M1 and the third map is its dual. In Table 7, the
notation E = Med(Y ), Pe(Y ) 6= Y means that the corresponding map is labeled by
E and is the medial of some map Y , which is not self-petrie.
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Euler char. orientable type graph No. edges extended Schläfli symb. Comment

-1 no 3 C4(2) 8 {(4, 8), (4, 4)}(4,8) M1

-1 no 3 K2,3(2) 12 {(4, 4), (4, 6)}(4,12) M2

-1 no 3 C6(2) 12 {(4, 6), (4, 4)}(4,12) Du(M2)

-1 no 3 K1,2(4) 8 {(4, 4), (4, 8)}(4,8) Du(M1)

Table 6: Non-degenerate edge-transitive maps on a surface with Euler characteristic -1.

Euler orientable type graph No. of extended Schläfli Comment
char. edges symbol

-2 no 1 K4(2) 12 {4, 6}6 R1

-2 no 1 K4(2) 12 {4, 6}3 R2

-2 no 1 C6(2) 12 {6, 4}6 Du(R1)

-2 no 1 K2,2,2 12 {6, 4}3 Du(R2)

-2 no 2 K3,4 12 {8, (3, 4)}4
-2 no 2 K4,6 24 {4, (4, 6)}8
-2 no 2 K4,6 24 {4, (4, 6)}8
-2 no 2∗ K3(4) 12 {(3, 4), 8}4
-2 no 2∗ G3 24 {(4, 6), 4}8
-2 no 2∗ K6,6 − 3C4 24 {(4, 6), 4}8
-2 no 2P K3(2) 6 {4, 12}(3,6)
-2 no 2P B6 6 {4, 12}(3,6)
-2 no 3 K2,4(2) 16 {(4, 4), (4, 8)}(4,8) A

-2 no 3 K1,2(4) 8 {(4, 8), (4, 8)}(4,4) selfdual

-2 no 3 K1,3(4) 12 {(4, 4), (4, 12)}(4,6) B

-2 no 3 C8(2) 16 {(4, 8), (4, 4)}(4,8) C

-2 no 3 C6(2) 12 {(4, 12), (4, 4)}(4,6) Du(B)

-2 no 3 K2,4(2) 16 {(4, 4), (4, 8)}(4,4) D = Med(X), Pe(X) = X

-2 no 3 K4,4 16 {(4, 8), (4, 4)}(4,4) Du(D)

-2 no 3 K4,4 16 {(4, 8), (4, 4)}(4,8) Du(A)

-2 no 3 K2,4(2) 16 {(4, 4), (4, 8)}(4,8) Du(E)

-2 no 3 K4,4 16 {(4, 8), (4, 4)}(4,8) E = Med(Y), Pe(Y)6= Y

-2 no 3 K2,4(2) 16 {(4, 4), (4, 8)}(4,8) Du(C)

-2 no 4 C4(2) 8 {8, (4, 4)}8 Order of monod. group 128

-2 no 4 C4(2) 8 {8, (4, 4)}8 Order of monod. group 512

-2 no 4∗ K2(8) 8 {(4, 4), 8}8
-2 no 4∗ K2(8) 8 {(4, 4), 8}8

Table 7: Non-degenerate edge-transitive maps on a non-orientable surface with Euler char-
acteristic -2. Note that the maps of the type 2∗ (4∗) are exactly the duals of the maps of the
type 2 (4) in respective order.
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Euler orientable type graph No. of extended Schläfli Comment
char. edges symbol

-2 yes 1 K2,2,2(2) 24 {3, 8}12 K1

-2 yes 1 C4(3) 12 {4, 6}12 K2

-2 yes 1 K2(8) 8 {4, 8}8 K3

-2 yes 1 GP (8, 3) 24 {8, 3}12 Du(K1)

-2 yes 1 C6(2) 12 {6, 4}12 Du(K2)

-2 yes 1 C4(2) 8 {8, 4}8 Du(K3)

-2 yes 2 K2(5) 5 {10, (5, 5)}10
-2 yes 2 K1,2(3) 6 {12, (3, 6)}4
-2 yes 2 K1,2(5) 10 {4, (5, 10)}20
-2 yes 2 K3,4 12 {8, (3, 4)}8
-2 yes 2 K2,4(2) 16 {4, (4, 8)}4
-2 yes 2 G1 24 {6, (3, 4)}12
-2 yes 2 K4,6 24 {4, (4, 6)}4
-2 yes 2 G2 48 {4, (3, 8)}16
-2 yes 2∗ B5 5 {(5, 5), 10}10
-2 yes 2∗ B6 6 {(3, 6), 12}4
-2 yes 2∗ C5(2) 10 {(5, 10), 4}20
-2 yes 2∗ K3(4) 12 {(3, 4), 8}8
-2 yes 2∗ K4,4 16 {(4, 8), 4}4
-2 yes 2∗ K8 − 4K2 24 {(3, 4), 6}12
-2 yes 2∗ C6[2] 24 {(4, 6), 4}4
-2 yes 2∗ G4 48 {(3, 8), 4}16
-2 yes 3 K2,3(2) 12 {(4, 6), (4, 6)}(4,6) selfdual, selfpetrie

-2 yes 3 K2,4(2) 16 {(4, 4), (4, 8)}(4,8) U

-2 yes 3 K4,4 16 {(4, 8), (4, 4)}(4,8) Du(U)

-2 yes 3 K4,6 24 {(4, 4), (4, 6)}(4,12) V

-2 yes 3 C6[2] 24 {(4, 6), (4, 4)}(4,12) Du(V)

-2 yes 4 K3,4 12 {8, (3, 4)}8
-2 yes 4∗ K3(4) 12 {(3, 4), 8}8

Table 8: Non-degenerate edge-transitive maps on an orientable surface with Euler charac-
teristic -2.
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There are several interesting related problems to the topic of this paper.

Problem 1. Determine the surfaces with negative Euler characteristic that contain edge-
transitive maps of all possible 14 types.

Problem 2. In [2] infinitely many positive integers g are found with the property that chiral
maps cannot be drawn on orientable surfaces with genus g. What can be said of numbers g
for which there are no edge-transitive maps of a given class on orientable or non-orientable
surfaces of genus g?
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