
Informatica 34 (2010) 387–403 387

Using Meta-Structures in Database Design

Hui Ma
Victoria University of Wellington, School of Engineering and Computer Science
Wellington, New Zealand
E-mail: hui.ma@ecs.vuw.ac.nz

René Noack
Christian-Albrechts-University Kiel, Department of Computer Science
Kiel, Germany
E-mail: noack@is.informatik.uni-kiel.de

Klaus-Dieter Schewe
Software Competence Center Hagenberg, Hagenberg, Austria
E-mail: kd.schewe@scch.at

Bernhard Thalheim
Christian-Albrechts-University Kiel, Department of Computer Science
Kiel, Germany
E-mail: thalheim@is.informatik.uni-kiel.de

Keywords: database design, schema algebra, meta-structures, components, graph rewriting

Received: November 4, 2010

Practical experience shows that the design of very large database schemata causes severe problems, and no
systematic support is provided. In this paper we address this problem. We define an Entity-Relationship
schema algebra, which permits the representation of very large database schemata by algebraic expres-
sions involving smaller schemata. Similar to abstraction mechanisms found in semantic data models the
schema constructors can be classified into three groups for building associations and collections of sub-
schemata, and for folding subschemata. Furthermore, based on the analysis of a large number of very
large database schemata we identify twelve frequently recurring meta-structures in three categories as-
sociated with schema construction, lifespan and context. In combination with the schema algebra the
meta-structures permit a component-based approach to database schema design, which can further be for-
malised by graph-rewriting.

Povzetek: Predstavljena je nova shema entitet in relacij za velike podatkovne baze.

1 Introduction

While data modellers learn about data modelling by means
of small “toy” examples, the database schemata that are
developed in practical projects tend to become very large.
For instance, the relational SAP/R3 schema contains more
than 21,000 tables. Moody discovered that as soon as ER
schemata exceed 20 entity- and relationship types, they al-
ready become hard to read and comprehend for many de-
velopers [10].

Therefore, the common observation that very large
database schemata are error-prone, hard to read and conse-
quently difficult to maintain is not surprising at all. Com-
mon problems comprise repeated components as e.g. in the
LH Cargo database schema with respect to transport data or
in the SAP/R3 schema with respect to addresses.

Some remedies to the problem have already been dis-
cussed in previous work of some of the authors, and applied
in some database development projects. For instance, mod-
ular techniques such as design by units [18] allow schemata
to be drastically simplified by exploiting principles of hid-
ing and encapsulation that are known from Software En-
gineering. Different subschemata are connected by bridge
types. Component engineering [12] extends this approach
by means of view-centered components with well-defined
composition operators, and hierarchy abstraction [20] per-
mits to model objects on various levels of detail.

In order to contribute to a systematic development
of very large schemata the co-design approach, which
integrates structure, functionality and interactivity mod-
elling, emphasises the initial modelling of skeletons of
components, which is then subject to further refinement

388 Informatica 34 (2010) 387–403 H. Ma et al.

[21]. Thus, components representing subschemata form
the building blocks, and they are integrated in skeleton
schemata by means of connector types, which commonly
are modelled by relationship types.

In this article we further develop the method for system-
atic schema development focussing on very large schemata.
In Section 2 we first present an algebra for higher-order
Entity-Relationship schemata [18], which permits the rep-
resentation of very large schemata as algebraic expressions
involving smaller and thus easier tractable schemata. Simi-
lar to abstraction mechanisms found in semantic data mod-
els [17] only three main groups of constructors are needed:
association constructors that are used to combine schemata
in a way that allows the original schemata to be regained,
folding constructors that integrate schemata into a compact
form, and collection constructors that deal with recurring
similar subschemata. This extends our previous conference
publication [7]. In particular, we permit handling schemata
with constraints, and extend the description of the seman-
tics of the operations.

In an extended theoretical study in [8] we develop a
formal notion of schema morphisms, show that the cor-
responding category of schemata with these morphisms is
finitely complete and co-complete, and also show that the
algebra in this paper is well-defined and complete in the
sense that all operators give rise to canonical morphisms,
and all finite limits and co-limits can be expressed by the
algebra. This complements our work reported in this ar-
ticle, which is devoted to the practical usage of the alge-
bra for dealing with meta structures in the design of huge
database schemata.

In Section 3, based on the analysis of more than 8500
database schemata, of which around 3500 should be con-
sidered very large we identify twelve frequently recurring
meta-structures. These meta-structures are classified into
three categories addressing schema construction, lifespan
and context. This presentation polishes and extends an-
other previous conference publication on the subject [9].

Finally, in Section 4 we address how meta-structures
in combination with the schema algebra can be exploited
for systematic, component-based database schema design.
We analyse skeletons and subschemata more deeply and
identify distinguishing dimensions [3]. Then we sketch
how graph-rewriting can be used to support the design pro-
cess extending and formalising existing approaches such as
design-by-units [18], string-bag modelling [22], and incre-
mental structuring [11].

2 An Entity-Relationship Schema
Algebra

In the following we first present the gist of the Entity-
Relationship model as our basis for schema design follow-
ing [18]. On this basis we then describe three groups of
schema constructors dealing with associations, folding, and
collections of schemata. This defines a (partial) schema al-

gebra, as constructors are only applicable, if certain pre-
conditions are satisfied. The composition operators pre-
sented in this section will permit the construction of any
schema of interest, as they mimique all set operations sim-
ilar to the structural approach in [1].

2.1 Entity-Relationship Schemata

Let us briefly review the key definitions of Entity-
Relationship schemata following [18]. We adopt the possi-
bility to have higher-order relationship types and clusters,
but for simplicity we disregard complex attributes, as at-
tributes will be preserved by the schema constructors.

Thus, let U be a set of attributes. Each attribute A ∈ U is
associated with a set dom(A) of values called the domain
of A.

An entity type (or type of level 0) E is defined by a finite
set attr(E) ⊆ U of attributes and a key k(E) ⊆ attr(E).
The definition of an entity of type E is straighforward. It
can be represented as a tuple (A1 : v1, . . . , An : vn) for
attr(E) = {A1, . . . , An} and vi ∈ dom(Ai) for all i =
1, . . . , n. An entity set of type E is a finite set {e1, . . . , em}
of entities of type E, such that whenever the projections
ei[k(E)] and ej [k(E)] on the key coincide, then ei = ej
holds.

An entity cluster (or cluster of level 0) C is defined by
a finite set {`1 : E1, . . . , `k : Ek} with pairwise differ-
ent labels `i and entity types E1, . . . , Ek (not necessarily
different). A cluster set of type C is defined is a labelled
disjoint union {`i : vi | vi ∈ S(Ei)} with entity sets S(Ei)
of type Ei (i = 1, . . . , k).

A relationship type R of order k + 1 (or simply a type
of level k + 1 with k ≥ 0) is defined by a finite set
comp(R) = {r1 : R1, . . . , rk : Rk} with pairwise dis-
tinct role labels ri and types or clusters Ri of level at most
k, such that at least one Ri has level exactly k, a finite set
attr(R) ⊆ U of attributes and a key k(R) ⊆ comp(R) ∪
attr(R). A relationship of type R can be represented as
a tuple (r1 : e1, . . . , rk : ek, A1 : v1, . . . , An : vn) for
attr(R) = {A1, . . . , An} with entities or relationships ei
of type Ri, respectively, and vi ∈ dom(Ai).

A cluster of level k is defined analogously to an entity
cluster with the only difference that the participating types
must be of level at most k, and one of them must have level
exactly k.

As an entity type E can be identified with a relationship
type with an empty set of components, i.e. comp(E) = ∅,
we will dispense with the separation and simply talk about
types. Types of level 0 are entity types, and types of level
k > 0 are relationship types.

An Entity-Relationship schema S (ER-schema for short)
is a finite set of types and clusters such that, whenever R ∈
S is a relationship type, i.e. a type of level k > 0, and
E ∈ comp(R) is one of its components, then we must have
also E ∈ S , and whenever C ∈ S is a cluster, then also all
types participating in C must be in S .

If S is an ER-schema, a database over S is defined by

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 389

entity, relationship, and cluster sets S(R), respectively, for
all R ∈ S such that, whenever R ∈ S is a relationship
type, ri : Ri ∈ comp(R) is one of its components, and
(r1 : e1, . . . , rk : ek, A1 : v1, . . . , An : vn) ∈ S(R), then
ei ∈ S(Ri) holds, and similarly for a cluster C = {`1 :
R1, . . . , `k : Rk} we must have S(C) = {`i : ei | ei ∈
S(Ri)}. Furthermore, whenever the projections t1[k(R)]
and t2[k(R)] of relationships t1, t2 ∈ S(R) to the key k(R)
for a relationship type R ∈ S coincide, then already t1 =
t2 holds.

In addition to the structural information that is provided
by an ER-schema, a schema is usually extended by a set
Σ of integrity constraints. These are first order formulae
defined over the types and clusters in S . In case of an ex-
tended schema (S,Σ) a database must further satisfy the
constraints in Σ. In our presentation of the schema alge-
bra constructors we will mainly deal with the schema, and
the handling of integrity constraints will only mentioned
briefly. If the applicability of a constructor depends on the
presence of some constraints, we will mention this sepa-
rately.

In the following we will commonly use the graphical
representation of an ER-schema S by a directed graph with
vertices defined by S and directed edges from a relation-
ship type to all its components (labelled by the roles if nec-
essary), as well as directed edges from a cluster type to
its participating types (also labelled by the labels, if nec-
essary). For convenience, entity types are represented by
rectangles, relationship types by diamonds, and clusters by
circles marked with a +. Attributes are usually attached to
types or omitted, and keys are emphasized in some way,
e.g. underlining attributes in the key and marking compo-
nents in the key. We usually refer to the graphical repre-
sentation of an ER-schema as an ER-diagram. Constraints
are not indicated in ER-diagrams.

Sometimes we like to emphasize a distinguished root in
an ER-schema. In case there is a type (or cluster) from
which all other types and cluster can be reached by follow-
ing the edges in the ER-diagram, this type is of course a
natural choice for the root. In general, however, such a type
does not exist, but there may be several types (or clusters)
that cannot be reached from any other type or cluster by
following component edges. Each of these types/clusters
can be used as root of the schema.

2.2 Renaming

As the names of types and clusters in ER-schemata must
be unique, we must avoid name clashes when applying
the schema constructors. Therefore, we have to pro-
vide a renaming constructor. For this, if R1, . . . , Rk and
R′

1, . . . , R
′
k are pairwise distinct sequences of names, a re-

naming is a mapping {R1 7→ R′
1, . . . , Rk 7→ R′

k}. If
(S,Σ) is an ER-schema, then replacing each occurrence
of Ri in S and Σ by R′

i results in the schema

%R1 7→R′
1,...,Rk 7→R′

k
(S,Σ).

2.3 Association Constructors
We disitinguish two kinds of association constructors: con-
structors that lead to schemata, into which the original
schemata can be embedded as subschemata, and construc-
tors that lead to schemata that can be projected onto the
original schemata.

2.3.1 Sum and Join

The simplest form of a composition through association is
by means of a direct sum, i.e. disjoint union constructor.
More generally, we consider joins of two schema along
input- and output-views [12]. For this let (Si,Σi) be a
schema with two subschemata Ii ⊆ Si called input view,
and Oi ⊆ Si called output-view (i = 1, 2). We request that
Ii and Oj for i = 1, j = 2 or i = 2, j = 1 are isomorphic
in a purely graph-theoretic sense (not as in [8]), i.e. there
exists a graph-isomorphism σ : Ii → Oj .

The join schema

S = S1 ./I1:=O2‖I2:=O1
S2

results from the two given schemata by identifying in
S1∪S2 the input-view of first schema with the output-view
of the second one and vice versa. That is, we rename Si in a
way that the subschemata I1 and O2 (and likewise I2 and
O1) become identical, while all other types are different,
and then build the union. Attribute sets for types that are
identified are merged by using set union.

Furthermore, if a type the subschemata I1 and O2 has
components outside the subschema, these components will
be preserved in the join. This applies analogously to I2
and O1. This may have the effect that an entity-type in
one of the views becomes a relationship type in the join
schema. The set Σ of constraints on S is defined by the
union Σ1 ∪ Σ2 after the renaming. In this way the original
schemata Si become subschemata of the join schema S,
and consequently, each database over S can be mapped to
a database over Si.

The join with empty input-and output views is the direct
sum S1⊕S2. The join of the schemata S1 and S2 along the
input- and output-views shown in Figure 1 is the schema
S shown in the same figure. We omitted all attributes, as
these are preserved by the join.

Figure 2: The reference-join on two schemata.

390 Informatica 34 (2010) 387–403 H. Ma et al.

Figure 1: The join operator on two schemata.

Figure 3: The product operator on two schemata.

A variant of the join operator is provided by means of
a reference-join. The prerequisites are the same as for the
join operator, only that we need that the set of type names
of both schemata are disjoint. In this case, however, the
output-views Oi (i = 1, 2) of the original schemata are
preserved within the resulting schema

S = S1 ./I1→O2‖I2→O1
S2

and references from the types in Ii to those in Oj for
(i, j) = (1, 2) or (2, 1) are added. This requires that entity-
types in the input-views be turned into relationship types.
The schema shown in Figure 2 shows the result of the
reference-join of the schemata S1 and S2 from Figure 1.
In this case, the set of constraints Σ associated with S is
simply defined by the union Σ = Σ1 ∪ Σ2.

Another variant can be obtained, when cooperating
views [18] are employed instead of merging input- and
output-views or letting the former ones reference the lat-
ter ones. In this case the data exchange has to be specified
explicitly by means of operations. As we neglected opera-
tions in our model, we have to discard this alternative for
the presentation here.

2.3.2 Product and Meet

Dual to the sum constructor we can define a product con-
structor. In this case let (Si,Σi) be schemata with dis-
joint name sets (i = 1, 2). For types Ri ∈ Si defined as
(comp(Ri), attr(Ri), k(Ri)) (i = 1, 2) define their prod-

uct R1 ×R2 by the type

R1,2 = (comp(R1)× {R2} ∪ {R1} × comp(R2),

attr(R1) ∪ attr(R2), k(R12)),

i.e. if comp(Ri) = {ri1 : Ri1, . . . , riki : Riki}, we
obtain comp(R12) = {r11 : R11,2, . . . , r1k1 : R1k1,2, r21 :
R1,21, . . . , r2k2 : R1,2k2}, and the key k(R12) is defined as
{r1j : R1j,2 | r1j : R1j ∈ k(R1)} ∪ {r2j : R1,2j | r2j :
R2j ∈ k(R2)}∪ {A | A ∈ attr(R1)∩ k(R1)}∪ {A | A ∈
attr(R2) ∩ k(R2)}.

If R1 is a cluster, say R1 = {`1 : R11, . . . , `k1 : R1k1},
and R2 is a type as before, then their product is the cluster

R1 ×R2 = {`1 : R11,2, . . . , `k1 : R1k1,2}.
The product of a type R1 and a cluster R2 is defined

analogously. Finally, if both R1 and R2 are clusters, say
Ri = {`i1 : Ri1, . . . , `iki : Riki} for i = 1, 2, then their
product is the cluster

R1 ×R2 =

{`1j1,2j2 : R1j1,2j2 | 1 ≤ j1 ≤ k1, 1 ≤ j2 ≤ k2}.
The product schema is defined as

S = S1 × S2 = {R1 ×R2 | R1 ∈ S1, R2 ∈ S2}.
Of course, in all cases we have to create new names for

the new types (or clusters) Ri,j = Ri × Rj , and also new
names for labels in the clusters and roles in the compo-
nents. Figure 3 shows the product S = S1 × S2 of the
schemata in the same figure. We omitted all attributes.

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 391

Figure 4: The bulk operator on a database schema.

Each product type (or cluster) R1 ×R2 ∈ S1 × S2 con-
tains the roles and attributes from R1 and R2, and thus de-
fines projections R1 × R2[Ri] for i = 1, 2. Thus, when-
ever a constraint in Σi refers to a type R, this type may be
replaced by any projection R × R′[R] (or R′ × R[R], re-
spectively). Taking all the constraints defined in this way
defines the set of constraints Σ̂i, and the set of constraints
on S is defined by the union Σ = Σ̂1 ∪ Σ̂2.

In this way, similar to the case of the join-operator, a
database over a product schema S1 × S2 can be projected
to a database over the original schemata Si (i = 1, 2).

We can also define a dual meet constructor •ϕ for the
join constructor. In this case we need an additional match-
ing condition ϕ, and we define the meet schema as

S = S1 •ϕ S2 =

{R1 ×R2 | R1 ∈ S1, R2 ∈ S2 with ϕ(R1, R2)}.

Matching conditions can express requirements such as
common attributes or inclusion constraints.

2.4 Folding and Unfolding of Schemata

As observed in [9] similar subchemata can be integrated by
replacing a number of relationship types by a new relation-
ship type plus an additional entity type. For this assume
we have a schema S ′ with a central entity (or relationship)
type C, and n relationship types R1, . . . , Rn that all relate
C to a number C1, . . . , Ck of entity or relationship types as
shown in the left hand part of Figure 4.

Then we can replace R1, . . . , Rn by a new relation-
ship type R with a new additional component CA. This
type must have an attribute “ContractionType” with domain
{1, . . . , n} that will be used to identify the original relation.
It may further be advisable to add an identifying attribute
“Ident”.

The schema S = BulkR1,...,Rn(S ′) resulting from ap-
plying this bulk operator is illustrated in the right hand
part of Figure 4. With respect to integrity constraints
in Σ each occurrence of a type Ri has to be replaced
by the projection R[C,C1, . . . , Ck] and the condition
R.CA.ContractionType = Ri has to be added.

The bulk constructor BulkR1,...,Rn can be refined to
better handle attributes that are not common to all types
R1, . . . , Rn. Such an attribute A becomes an “optional”
attribute of the type CA, i.e. its domain will be defined as
domS(A) = domS′(A) ∪ {undef }. If A is not an attribute
of the type Ri, the constraint

CA.ContractionType = Ri ⇒ CA.A = undef

has to be added to Σ.
Semantically, it is easy to see how databases over S ′ are

mapped onto databases over S = BulkR1,...,Rn(S ′). We
get S(C) = S ′(C) and S(Ci) = S ′(Ci) for i = 1, . . . , k,
S(CA) = {(Ident : i,ContractionType : Ri | i =
1, . . . , n}, and S(R) =

⋃n
i=1{t̂i | ti ∈ S ′(Ri)}, where

the tuple t̂i results from ti by adding the role (CA : i).
The expansion constructor ExpandE:A is inverse to the

bulk constructor. In this case we need an entity type E with
k(E) = {ident}, and an attribute A ∈ attr(E) − k(E)
with a finite enumeration domain dom(A) = {v1, . . . , vn}.
Furthermore, there must be a unique relationship type R ∈
S with a component E occurring once, i.e. r : E ∈
comp(R), and for all r′ and all R′ with r′ : E ∈ comp(R′)
we must have R′ = R and r′ = r.

In the resulting schema ExpandE:A(S) the type R will
be replaced by n types R1, . . . , Rn corresponding to the
values v1, . . . , vn of the attribute A. For each of these types
we have comp(Ri) = comp(R)− {r : E}. Each attribute
of R becomes an attribute of Ri, and each attribute B ∈
attr(E)−{ident, A} is added as an attribute of Ri, unless
Σ contains a constraint of the form above.

The mapping of databases over S to databases over
ExpandE:A(S) is just the inverse of the mapping for the
bulk operator: “forget” S(CA) and split S(R) into n sets
according to the value of the CA role.

Component nesting can be applied to a schema S1 to re-
place a component C of a type R by a complete subschema
S2 that is rooted at a type T . Attributes, identifying com-
ponents I1, . . . , Ik and other components C1, . . . , C` of C
will become components of the root type T of S2 within
the new schema. We denote the schema S resulting from
the application of the nesting operator by nestC:S2(T)(S1).
Figure 5 illustrates the application of the nesting operator.

392 Informatica 34 (2010) 387–403 H. Ma et al.

Figure 5: The nesting operator on a database schema.

If we define an input-view I1 = {C} for S1, an output-
view O2 = {T} for S2, and let O1 = ∅ = I2, then compo-
nent nesting is actually a special case of a join. Component
nesting is usually applied with a type C that has not yet
been developed, i.e. it is an entity type in S1. It gener-
alises entity model clustering, entity clustering, entity and
relationship clustering, entity tree clustering in the design-
by-units method [18].

2.5 Collection Constructors for Schemata

While all operators discussed so far have arity 1 or 2,
the collection constructions apply to any number k of
schemata. If S1, . . . ,Sk are schemata, we can build the set
schema {S1, . . . ,Sk}, provided the element schemata are
pairwise distinct, the multiset schema 〈S1, . . . ,Sk〉, the list
schema [S1, . . . ,Sk], and the tree schema 〈〈S1, . . . ,Sk〉〉.

As schemata, the result of the first three constructions
can be identified with the sum, i.e. the join with empty
views, of the element schemata, while a tree schema con-
tains an additional relationship type with k components that
are root types of the element schemata. Renaming has to
be applied in all cases to avoid name clashes, and for con-
straint sets the union operator is used. As such, the collec-
tion constructions are only a mild extension.

However, they unfold their power by means of collection
operators that can be applied to a set, multiset, list or tree
schema S ′:

– all_of(S ′) denotes the schemata that contains all
schemata in the collection as subschemata. The con-
struction can be used to specify that all S1, . . . ,Sk (or
their root types, respectively) must appear as compo-
nents in some other construction, e.g. in the bulk or
nesting construction we discussed above.

– Similarly, any_of(S ′) denotes one arbitrary element
schema, and n_of(S ′) denotes an arbitrary selection
of n of the element schemata. Semantically, this leads
to the disjoint union of databases, i.e. the original
databases are embedded in the resultung databases af-
ter applying the operator.

– The selection of subschemata in the collection us-
ing any of the constructors all_of , any_of or n_of
can be refined by adding selection criteria in form of
a where-clause. For instance, n_of({S1, . . . ,Sk})
where ϕ would select n of the element schemata
among those satisfying the condition ϕ.

– n_th(S ′) for a list or tree schema denotes the n’th
element schema, provided 1 ≤ n ≤ k is satisfied.

As an example consider again the schema S ′ in Figure 4.
If we define schemata Si for i = 0, . . . , k to contain only
one type – Ci for i 6= 0 and C for i = 0 – then we could
define the types Ri as

Ri = (all_of({S0, . . . ,Sk}),S,K),

i.e. the components are the (root) types in Si, while the
set of attributes A and the keys K are specified elsewhere.
Alternatively, if A = ∅, we could define Ri as the root type
in the schema Tree(S0, . . . ,Sk).

Similarly, the type R in the schema S =
BulkR1,...,Rn(S ′) can be defined as

R = {CA} ∪ all_of({S0, . . . ,Sk}),S,K)

with the entity type CA =
({Ident, ContractionType}, {Ident}).

Figure 6: The General Structure of Addresses.

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 393

Figure 7: Snowflake Schema on Contributions.

3 Meta-Structures in Very Large
Database Schemata

Based on an extensive study of a large number of con-
ceptual database schemata – we analysed more than 8500
database schemata, of which around 3500 should be con-
sidered being very large – we identify frequently occurring
meta-structures and classify them in three categories ac-
cording to construction, lifespan and context. In the fol-
lowing we describe these meta-structures.

3.1 Construction Meta-Structures

Structures are based on building blocks such as attributes,
entity types and relationship types. In order to capture
also versions, variations, specialisations, application re-
strictions, etc. structures can become rather complex. As
observed in [12, 14] complex structures can be primar-
ily described on the basis of star and snowflake meta-
structures. In addition, bulk meta-structures describing the
similarity between things and thus enable generalisation
and combination, and architecture meta-structures describe
the internal construction by building blocks and the inter-
faces between them.

3.1.1 Star and Snowflake Meta-Structures

Star typing has been used already for a long time outside
the database community. The star constructor permits to
construct associations within systems that are characterized
by complex branching, diversification and distribution al-
ternatives. Such structures appear in a number of situations
such as composition and consolidation, complex branching
analysis and decision support systems.

A star meta-structure is characterized either by a (core)
entity type E and a number of (peripheral) subtypes, i.e.
unary relationship types Ri with comp(Ri) = {E} (i =
1, . . . , n), or by a core (level 1) relationship type R to-
gether with its components, which are of course entity
types. In the former case the core type is usually used
for storing basic data, and the subtypes are used to cap-
ture additional properties [20]. Such a star structure is
shown in Figure 6 with the entity type Address as its

core. Taking the relationship type Contribution in Fig-
ure 7 as core type of a star schema, the subschema contain-
ing Contribution, Member, Document, Project,
and Time defines another star structure.

We consider star structures as the simplest schemata,
which naturally appear as subschemata of any concep-
tual schema. However, if the core type is an entity type,
even a simple star schema can be written as the join of
several schemata (in any order). For instance, the star
schema in Figure 6 can be composed out of six small
schemata, each consisting of the entity type Address and
a single subtype such as GeographicalAddress or
ContactAddress. For building the joins we always
have to take the subschema {Address} as input- and
output-schemata, respectively.

A slighly more complicated meta-structure arises, if
we take a star schema S1 and apply the nesting operator
nestC:S2(T) with a type T in another star schema S2 to
one of its peripheral types C. More generally, as nesting
is a special case of the join-operator, we could apply the
join ./I1:=O2‖I2:=O1

with I1 containing several peripheral
types of the star schema S1, O2 containing several types of
another star schema S2, and I2 = O1 = ∅. This procedure
may be applied repeatedly. In all these cases the result is
called a snowflake schema.

For example, the snowflake schema in Figure 7 – for
simplicity, attributes have been omitted – represents the in-
formation structure of documented contributions of mem-
bers of working groups during certain time periods. In
this case the schema result from extending the original
star schema with core relationship type Contribution
by means of nesting and join with six star schemata
centred around the relationship types In, During, Of,
ruled_by, referred_to, and accessible, respec-
tively.

Star and snowflake schemata are common in data ware-
houses and OLAP systems [6].

3.1.2 Bulk Meta-Structures

A bulk meta-structure is represented by a schema that re-
sults from the application of the bulk-operator, i.e. S =
BulkR1,...,Rn(S ′). Thus, in a bulk structure types that are
used in a very similar way are clustered together. Apply-

394 Informatica 34 (2010) 387–403 H. Ma et al.

ing the expand-operator ExpandE:A to the bulk structure
S returns the original schema S ′. Thus, a bulk structure is
merely a compacted representation for sructurally similar
information.

Figure 8: E-Community Application.

Let us exemplify this approach for the commenting pro-
cess in an e-community application. The relationship types
Made, Commented, and Reused in Figure 8 are all sim-
ilar. They associate contributions with both Group and
Person. They are used together and at the same objects,
i.e. each contribution object is at the same time associated
with one group and one person.

We can combine the three relationship types into the type
ContributionAssociation as shown in Figure 8.
The type ContributionAssociationClassifier
and the domain {Made, Commented, Reused} for the at-
tribute ContractionDomain can be used to reconstruct
the three original relationship types. The handling of
classes that are bound by the same behaviour and occur-
rence can be simplified by this construction.

Figure 9: Bulk Meta-Structure for E-Community.

If S ′ denotes the schema in Figure 8, and S the one in
Figure 9, we have

S = BulkMade, Commented, Reused(S ′) and
S ′ = ExpandContributionAssociationClassifier:

ContractionDomain(S) .

3.1.3 Architecture and Constructor-based
Meta-Structures

Categorisation and compartment building have been widely
used for modelling complex structures. For instance, the ar-
chitecture of SAP R/3 has often been displayed in form of
a waffle. That is, the schema is constructed out of several
subschemata that are integrated by means of bridge or bind-
ing schemata. Technically, this integration is performed by
means of joins involving two subschemata and their bridge
schema.

We illustrate the building of a waffle structure in Figure
10. All subschemata are sketched by hexagons, and the-
binding schemata are sketched as ovals.

Figure 10: Waffle Meta-Structure.

Therefore, we adopt the term waffle meta-structure or ar-
chitecture meta-structure for structures that arise this way.
These meta-structures are especially useful for the mod-
elling of distributed systems with local components and
behaviour. They provide solutions for interface manage-
ment, replication, encapsulation and inheritance, and are
predominant in component-based development and data
warehouse modelling.

3.2 Lifespan Meta-Structures

The evolution of an application over its lifetime is orthog-
onal to the construction. This leads to a number of lifes-
pan meta-structures, which we describe next. Evolution
meta-structures record life stages similar to workflows, cir-
culation or loop meta-structures display the phases in the
lifespan of objects, e.g. chaining and scaling to different
perspectives of objects, incremental meta-structures permit
the recording of the development, enhancement and ageing
of objects, and network meta-structures permit the flexible
treatment of objects during their evolution by supporting
to pass objects in a variety of evolution paths and enable
multi-object collaboration.

All these lifespan structures are determined by three di-
mensions: expansion, seed, and feedback. The expan-
sion dimension captures the development of objects using
a starting (entity) type that is stepwise expanded by rela-
tionship types as shown in Figure 11. Besides the added
new relationship type in the i’th expansion step having the
added type of the (i − 1)’th expansion step as one of its
components other types may be added to the schema and

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 395

identified with existing types. If the expansion dimension is
the only one used, we obtain an incremental lifespan meta-
structure as discussed below.

Figure 11: Expansion Dimension in Lifespan Meta-
Structures.

The seed dimension captures the spreading of an ob-
jects into several related objects, thus producing a tree of
types as illustrated in Figure 12. For instance, the entity
type E may be book, and the relationship type R1 may be
book_copy. The technical difference to the expansion di-
mension is by means of participation cardinality constraints
– these have been omitted in Figure 12. For expansion we
have to request card(Ri, Ri−1) = (0, 1) (with R0 = E),
i.e. for each entity of type E appears as a component of at
most one relationship of type Ri (i > 0), which means that
we deal with different lifespan versions of the same ob-
ject. For seed the corresponding participation cardinality
constraints are card(Ri, Ri−1) = (1,∞), i.e. each entity
of type E spreads out into many relationships of type Ri

(i > 0), which means that we do not deal with the same ob-
ject, but with different levels of abstraction as book, book
edition and book copy. If the seed dimension is the only
one used, we obtain an evolution lifespan meta-structure as
discussed below.

Figure 12: Seed Dimension in Lifespan Meta-Structures.

The feedback dimension captures the case of cyclic de-
velopment as illustrated in Figure 13. In this case we will
need relationship types linking the different stages. Alter-
natively, star or snowflake schemata could be used with a
core entity type representing the developing object and the
peripheral types modelling the various stages. If the feed-
back dimension is the only one used, we obtain a loop or
circular lifespan meta-structure as discussed below.

For all three dimensions the basic meta-structure can be
formalised by using the join-operator. This also applies,
if the lifespan meta-structures is to be combined with a
structural meta-structure, in which the type to be developed
appears. Similarly, if several lifespan meta-structures ap-
pear together, this is reflected by the use of the product-
and meet-operators. As circular (feedback) and incre-
mental (expansion) cannot be combined, the only reason-
able combined lifespan meta-structure is the network meta-
structure, in which seed comes together with either incre-

Figure 13: Feedback Dimension in Lifespan Meta-
Structures.

mental or loop development.

3.2.1 Incremental Meta-Structures

Incremental meta-structures enable the production of new
associations based on a core object. They employ contain-
ment, sharing of common properties or resources, and al-
ternatives. Typical examples are found in applications, in
which processes collect a range of inputs, generate multiple
outcomes, or create multiple designs.

Figure 14: Incremental Meta-Structure.

Incremental development builds layers of an applica-
tion with a focus on the transport of data and cooperation,
thereby enabling the management of systems complexity.
It is quite common that this leads to a multi-tier architecture
and object versioning. Typical incremental constructions
appear in areas such as facility management [4]. A special
layer constructor is widely used in frameworks, e.g. the
OSI framework for communicating processes.

As an example take the schema in Figure 14, which
expands the single entity type E = DocumentForm
in five steps. In the first step the relationship type
R1 = DocumentRequest is added, but for this
also the types LegalBody and Organization are
required. In the second step the relationship type

396 Informatica 34 (2010) 387–403 H. Ma et al.

R2 = ProposedDocument is added, which re-
quires in addition the type Party, which is a clus-
ter of Organization and the new type Person.
In step three the added relationship type is R3 =
DocumentInReviewing, which links again to Party;
in step four we have to add R4 = AcceptedDocument,
again linking to Party. In the final step the added rela-
tionship type is R5 = ApprovedDocument with two
additional roles to Party, and LegislationBody as
additional fourth component.

The sequence E,R1, . . . , R5 reflects the incremental de-
velopment of a legal document in the e-governance appli-
cation SeSAM. It uses a specific composition frame, i.e.
the type DocumentInReviewing is based on the type
ProposedDocument. Legal documents typically em-
ploy particular document patterns, which are represented
by the type DocumentForm. Actors in this applica-
tions are of type Party, which generalises Person and
Organisation.

Formally, an incremental lifespan meta-structures results
from a sequence of join operations.

3.2.2 Evolution Meta-Structures

Objects in a database may have a number of stages. Evo-
lution meta-structures are characterised by repetition and
evolution cycles for self-correction and self-reinforcement.
The core of such meta-structures is the repetition of stages
of objects. We may differentiate between linear evolution
models and cyclic evolution models. The former one uses
non-repeatable, non-iterative specialisation schemata.

By using a flow constructor evolution meta-structures
permit the construction of a well-communicating set of
types with a P2P data exchange among the associated
types. Such associations often appear in workflow appli-
cations, business processes, customer scenarios, and when
when identifying variances. Evolution is based on the treat-
ment of stages of objects. Objects are passed to handling
agents (teams), which maintain and update their specific
properties.

Figure 15: Evolution Meta-Structure for Software Project
Management.

As an example consider the schema in Figure 15, which
illustrates cyclic evolution for the support of software
project management. Software development processes in-
volve a number of actors or stakeholders, which are typ-
ically repeatable, defined, managed and optimised. Pro-
cesses follow an internal work organisation, and products
are analysed before requirements for development are ap-
plied. The company has developed frames or templates for
changes within a product, and the requested changes are
contracted to sub-divisions and sub-contractors. Finally,
the next product is stored after testing and integration has
been conducted. The relationship type EvolvedTo has
been introduced for an explicit separation of generations or
versions of development products.

3.2.3 Loop or Circulation Meta-Structures

These meta-structures appear whenever the lifespan of ob-
jects contains cycles. They are used for the representation
of objects that store chains of events, people, devices, prod-
ucts, etc. Similar to the circulation meta-structure it em-
ploys non-directional, non-hierarchical associations with
different modes of connectivity being applicable. In this
way temporal assignment and sharing of resources, asso-
ciation and integration, rights and responsibilities can be
neatly represented and scaled.

In circulation meta-structures objects may be related to
each other by life-cycle stages such as repetition, self-
reinforcement and self-correction. Typical examples are
objects representing iterative processes, recurring phenom-
ena or time-dependent activities. A circulation meta-
structure supports primarily iterative processes.

Circulation meta-structures permit to display objects in
different phases. For instance, legal document handling in
the SeSAM e-government system is based on such phases,
and a loop meta-structure provides an alternative to the in-
cremental meta-structure in Figure 14.

As an example consider the schema sketch in Figure
16 dealing with document handling in a very general way.
Though document handling may vary in various ways, we
may assume an inductive construction, i.e. each document
is constructed on the basis of simpler documents and base
documents. The lower part of the snowflake schema ad-
dresses aspects of raw documents such as legal aspects,
format, encoding, associations and contract involvement.
These capture static aspects of a document. The upper
part of the schema captures dynamic aspects that evolve
over time. In particular, the operational document captures
data entry into the document in relation to a rather complex
workflow with several stages, different associated actors,
various responsibilities and different stages of preparations.
This leads to the almost completed blueprint and the com-
pleted submission document. Documents that are no longer
subject to change are stored in an archive together with a
summary or docket [13].

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 397

Figure 16: Loop or Circulation Meta-Structure.

3.2.4 Network Meta-Structures

Network or web meta-structures enable the collection of
a network of associated types, and the creation of a multi-
point web of associated types with specific control and data
association strategies. The web has a specific data update
mechanism, a specific data routing mechanism, and a num-
ber of communities of users building their views on the
web.

Network meta-structures offer a unique opportunity to
overcome the exploding type number problems in many ap-
plications, where relationships among objects are flexible,
constantly changing, and reflect partial views or variants
of other relationships. System configuration and configu-
ration database management applications may however use
the separation of types into categorised associations.

Network meta-structures are used for modern web ser-
vices. Online resources for learning communities, special
interest groups, and other shared information sources use a
large number of associations among objects.

For instance, financial services are based on portfolios,
combined on the fly, and provided, supported and used by
institutions. Instead of representing the complex web of
portfolio management we may split portfolios into basic
portfolios, which relate portfolio providers and users. Such
basic portfolios are combined and provided to customers or
partner institutions. Whether a combination is considered
to be a service depends on the customer’s point of view.

As another example, railway management systems may
be tightly bind to the application. The terminology varies
from country to country. For instance, the notions of tun-
nel, path, segment, track, train or movement is different
for most railway companies in Europe. Since trains also
run between different regions, their scheduling, logging
and reporting must combine all different systems. More-

over, identities for tracks and trains are derived from lo-
cal databases and are not integrated resulting in a variety
of schemata based on geographical separation. Thus, the
development of a network meta-structure schema must be
based on a common understanding of basic units and their
disparate utilisation in the applications.

Another typical network meta-structure application is
the support of legal documents as illustrated in Figure 17.
They constitute a network of constantly renewed and de-
constructed links among objects. In addition, local varia-
tions and specific portfolio for treatment and support are
derived. Classical modelling approaches typically lead to
schemata with document classes that either use chaotic sets
of integrity constraints or use a confusing set of relation-
ship types among the types in a schema. Figure 17 also
illustrates the transformation of network meta-structures to
abstract multi-layer structures, in which documents are in-
terwoven with a large variety of links. This variety reflects
the hierarchical structuring, usage and the evolution during
the document lifespan.

As networks evolve quickly and irregularly, i.e. they
grow fast and then are rebuilt and renewed, a network meta-
structure must take care of a large number of variations
to enable growth control and change management. Usu-
ally, they are supported by a multi-point center of connec-
tions, controlled routing and replication, change protocols,
controlled assignment and transfer, scoping and localisa-
tion abstraction, and trader architectures. Furthermore, ex-
port/import converters and wrappers are supported. The
database farm architecture [20] with check-in and check-
out facilities supports flexible network extension.

398 Informatica 34 (2010) 387–403 H. Ma et al.

Figure 17: Network Meta-Structure.

3.3 Context Meta-Structures

According to [23] we distinguish between the intext and
the context of things that are represented as objects. Intext
reflects the internal structuring, associations among types
and subschemata, the storage structuring, and the repre-
sentation options. Context reflects general characterisa-
tions, categorisation, utilisation, and general descriptions
such as quality. Therefore, we distinguish between meta-
characterisation meta-structures that are usually orthogo-
nal to the intext structuring and can be added to each of
the intext types, utilisation-recording meta-structures that
are used to trace the running, resetting and reasoning of
the database engine, and quality meta-structures that per-
mit to reason on the quality of the data provided and to ap-
ply summarisation and aggregation functions in a form that
is consistent with the quality of the data. The dimension-
ality of a schema permits the extraction of other context
meta-structures [3].

Figure 18: Context Meta-Structures.

Context meta-structures arise from joining in additional
schemata – or using nesting – that capture meta informa-
tion, e.g. for a document how it is used, by whom for which
purpose, etc. (utilization meta-data), how accurate, com-
plete or consistent it is (quality meta-data), or any other

meta-data including technical and formating restrictions.
This is illustrated in Figure 18. The three different classes
of context meta-structures refer to a classification of con-
text information.

3.3.1 Meta-Characterisation Meta-Structures

Meta-characterisation is orthogonal to the structuring di-
mension that may have led to a schema as displayed in Fig-
ure 6. They may refer to insertion/update/deletion time,
keyword characterisation, utilisation pattern, format de-
scriptions, utilisation restrictions and rights such as copy-
right and costs, and technical restrictions.

Meta-characterisations apply to a large number of types
and should therefore be factored out. For instance, in an e-
learning application learning objects, elements and scenes
are commonly characterised by educational information
such as interactivity type, learning resource type, interac-
tivity level, age restrictions, semantic density, intended end
user role, context, difficulty, utilisation interval restrictions,
and pedagogical and didactical parameters.

3.3.2 Utilisation-Recording Meta-Structures

Logging, usage and history information is commonly used
for recording the lifespan of the database. Therefore, we
can distinguish between history meta-structures that are
used for storing and recording the computation history
within a small time slice, usage-scene meta-structures that
are used to associate data to their use in a business process
at a certain stage, a workflow step, or a scene in an appli-
cation story, and record the actual usage.

Such meta-structures are related to one or more aspects
of time, e.g. transaction time, user-defined time, valid-
ity time, or availability time, and associated with concepts
such as temporal data types (instants, intervals, periods),
and temporal statements such as current (now), sequenced
(at each instant of time) and nonsequenced (ignoring time).

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 399

3.3.3 Quality Meta-Structures

Data quality is modelled by a variety of meta-structures
capturing the sources (data source, responsible user, busi-
ness process, source restrictions, etc.), intrinsic quality
parameters (accuracy, objectivity, trustability, reputation,
etc.), accessibility and security, contextual quality (rele-
vance, value, timelineness, completeness, amount of infor-
mation, etc.), and representation quality (ambiguity, ease
of understanding, concise representation, consistent repre-
sentation, ease of manipulation). Data quality is essential
whenever versions of data have to be distinguished accord-
ing to their quality and reliability.

4 Component-Based Schema Design
In this section we want to show how meta-structures and
the associated schema algebra can be exploited to sup-
port component-based engineering as proposed in [12, 20].
We briefly review the rationale behind component-based
development leading to the guiding principle of skeleton
schemata that combine several components. We then ex-
tend the amalgamation approach from [12] in the light of
the meta-structures discussed in the previous section and
the new constructs introduced in this paper. In particular,
we will emphasise that amalgamation and thus schema de-
sign can be based on graph rewriting.

4.1 Rationale for Component-Driven
Development

Large database schemata can be drastically simplified, if
techniques of modular design such as design by units [18]
are used. Modular design is an abstraction technique based
on principles of hiding and encapsulation that are known
from Software Engineering. Different subschemata are
connected by bridge types. Component engineering [12]
extends this approach by means of view-centered compo-
nents with well-defined composition operators, exploiting
the observation that large subschemata often have the struc-
ture of star- or snowflake-schemata known from data ware-
housing. Hierarchy abstraction [20] permits to model ob-
jects on various levels of detail.

The co-design approach to database applications [18]
aims at a consistent development of all facets of database
applications: structuring of the database by schema types
that are controlled by static integrity constraints, behaviour
modelling by specification of functionality and dynamic in-
tegrity constraints, and interactivity modelling by assign-
ing views to activities of actors in corresponding dialogue
steps. Thus, co-design integrates the specification of the
static database schema, functions, views and dialogues,
which is facilitated by the use of view-extended schemata.
At the same time, various abstraction layers are separated
such as the conceptual layer, requirements acquisition layer
and implementation layer, which has now become popular
under the “model-driven architecture” theme.

Understandably, co-design is a rather complex proce-
dure. However, if combined with the component-based
approach it becomes simpler. In doing so first a skeleton
of components is developed. This skeleton is then subject
to stepwise refinement during further development of the
view-extended schema. In particular, each component is
refined thereby taking care of component interaction. In
summary, co-design can be based on two principles:

Use of components: Components are the main building
blocks for structuring the core data. In order to cap-
ture functionality components are modelled by view-
extended schemata, in which each view contains also
dialogue operations [12].

Skeleton-based construction: Components are assem-
bled and amalgamated by applying connector types,
which are usually relationship types.

4.2 Dimensions of Skeletons and
Subschemata

A component – formally defined in [12, 20] – is a database
schema together with import and export interfaces for con-
necting it to other components by standardised interface
techniques. Schema skeletons [19] provide a framework
for the general architecture of an application, to which de-
tails such as types are to be added. They are composed of
units, which are defined by sets of components provided
this set can be semantically separated from all other com-
ponents without losing application information. Units may
contain entity, relationship and cluster types, and the types
in it should have a certain affinity or adhesion to each other.

In addition, units may be associated with each other in
a variety of ways reflecting the general associations within
an application. Associations group the relation of units by
their meaning. Therefore, different associations may ex-
ist between the same units. Associations can also relate
associations with each other. Therefore, structuring mech-
anisms as provided by the higher-order entity-relationship
model [18] may be used to describe skeletons.

The usage of types in a database schema differs in many
aspects. In order to support the maintenance of very large
schemata this diversity of usage should be made explicit.
Following an analysis of usage patterns [12] leads to a num-
ber of dimensions including the following important ones:

– Types may be specialized on the basis of roles ob-
jects play or categories into which objects are sepa-
rated. This specialization dimension usually leads to
subtype, role, and categorisation hierarchies, and to
versions for development, representation or measures.

– As objects in the application domain hardly ever occur
in isolation, we are interested in representing their as-
sociations by bridging related types, and adding meta-
characterisation on data quality. This association di-
mension often addresses specific facets of an appli-

400 Informatica 34 (2010) 387–403 H. Ma et al.

cation such as points of view, application areas, and
workflows that can be separated from each other.

– Data may be integrated into complex objects at run-
time, and links to business steps and rules as well as
log, history and usage information may be stored. Fur-
thermore, meta-properties may be associated with ob-
jects such as category, source and quality information.
This defines the usage, meta-characterisation or log
dimension. Dockets [13] may be used for tracking
processing information, superimposed schemata for
explicit log of the treatment of the objects, and prove-
nance schemata for the injection of meta-schemata.

– As data usage is often restricted to some user roles,
there is a rights and obligations dimension, which en-
tails that the characterisation of user activities is often
enfolded into the schema.

– As data varies over time and different facets are
needed at different moments, there is a data quality,
lifespan and history dimension for modelling data his-
tory and quality , e.g. source data, and data refer-
ring to the business process, source restrictions, qual-
ity parameters etc. With respect to time the dimension
distinguishes between transaction time, user-defined
time, validity time, and availability time.

– The meta-data dimension refers to temporal, spatial,
ownership, representation or context data that is often
associated with core data. These meta-data are typi-
cally added after the core data has been obtained.

We often observe that very large database schemata in-
corporate some or all of these dimensions, which explains
the difficulty for reading and comprehension. For instance,
various architectures such as technical and application ar-
chitecture may co-appear within a schema [15].

Furthermore, during its lifetime a database schema,
which may originally have captured just the normalised
structure of the application domain, is subjected to per-
formance considerations and extended in various ways by
views. A typical example for a complete schema full of
derived data is given by OLAP applications [5]. Thus, at
each stage the full schema is in fact the result of folding
extensions by means of a so-called grounding schema into
the core database schema.

4.3 Graph-Grammar Composition for
Schemata

As emphasised in [9], a structural approach to schema con-
struction as in [1] is possible. All constructors known for
database schemata may also be applied to meta-structures.
Therefore, we can base a theory of schema composition on
constructors for generalised Entity-Relationship schemata
as in [18].

A general composition theory for such schemata can be
based on the theory of graph grammars [2, 16], which has

been already exploited for the CASE tool RADD [18]. The
composition of graphs can be formalised by two pushouts
in the category of directed graphs. However, we will avoid
using category-theoretical terminology. Furthermore, in-
stead of general graph homomorphisms we only consider
subgraphs.

A graph production rule takes the form

% : L ⊇ K ⊆ R

with graphs L, R called the left-hand side and the right-
hand side of the production rule %, respectively, and a com-
mon subgraph K with L ∩ R = K, which is called the
gluing graph of %.

The intuitively clear meaning of a graph production rule
is to replace the left-hand side L by the right-hand side R,
whenever L appears as a subgraph of any graph G. Natu-
rally, as the gluing graph K of the rule is the intersection
of the left- and right-hand sides, it will be invariant under
the replacement.

However, the context of L within the graph G has to be
taken into account as well, i.e. it has to be specified how
edges connecting vertices in G − L to vertices in L are
handled. This leads to the exact definition of a rule appli-
cation. Such an application of a graph production rule must
be conflict-free in the sense that no name clashes occur be-
tween the graphs R and G − L. In order to avoid name
clashes, vertices and edges in R− L are to be renamed.

Let % : L ⊃ K ⊂ R be a graph production rule, and let
G be a graph. Furthermore, in order to apply % to G, we
assume to be given

– a renaming function m defined on L ∪ R such that
m(L) becomes a subgraph of G and m(L∪R)∩G =
m(L) holds, and

– a subgraph C of G called context graph with C ∩
m(L) = m(K) and G = C ∪m(L).

The graph H resulting from applying the graph produc-
tion rule % to G is defined by

H = (G−m(L)) ∪m(R).

We denote the graph transformation defined by % and m

– C is defined implicitly – by G
%,m⇒ H .

In graph rewriting the used set of graph production rules
must satisfy the substitution rule, i.e. none of the transfor-
mations may have side effects. If vertices and edges out-
side L−K are not affected, graph production rules can be
composed to form derived graph production rules.

If S1, . . . ,Sn are schemata and O is an n-ary opera-
tor applicable to them, the resulting schema S defines the
equation S = O(S1, . . . ,Sn). Using these equations in
a directed way defines a graph-rewriting system GRS. In
view of the previous section, the graph production rules in
GRS are rather simple, but more complex and presumably
more convenient rules can be derived by rule composition.

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 401

Table 1: Rewrite rules for component amalgamation

join: %./:=
: S1 ∪ S2 ⊇ S1 ∩ S2 ⊆ S1 ./I1:=O2‖I2:=O1

S2

sum: %⊕ : S1 ∪ S2 ⊇ ∅ ⊆ S1 ⊕ S2

reference-join: %./→ : S1 ∪ S2 ⊇ S1 ∪ S2 ⊆ S1 ./I1→O2‖I2→O1
S2

product: %× : S1 ∪ S2 ⊇ ∅ ⊆ S1 × S2

meet: %•ϕ
: S1 ∪ S2 ⊇ ∅ ⊆ S1 •ϕ S2

nesting: %Nest : S1 ∪ S2 ⊇ S1 − {C} ∪ S2 ⊆ NestC:S2(T)(S1)

4.4 Rewriting-Based Component
Amalgamation

According to the decomposition theorem in [12] each
behaviour-extended schema is the amalgamation of
snowflake components. This naturally extends to all twelve
types of meta-structures identified in [9]. Formally, this
means that component sub-schemata can be written as al-
gebraic expressions involving

– the renaming operator %R−1 7→R′
1,...,Rk 7→R′

k
,

– the join operator ./I1:=O2‖I2:=O1
, and as a special

case the direct sum operator ⊕,

– the reference-join operator ./I1→O2‖I2→O1
,

– the product operator × and more generally, the meet
operator •ϕ,

– the bulk operator BulkR1,...,Rn and its inverse expand
operator ExpandE:A,

– the nesting operator NestC:S′(T), and

– the collection operators {·}, [·], 〈·〉, and 〈〈·〉〉, and the
related operators all_of , any_of n_of , and n_th.

This defines the formal underpinnings for the following
pragmatic steps in view-extended schema design:

1. We start from behaviour-extended schemata for cer-
tain tasks of the application, as they may arise from
cutting up a development project and then working in-
dependently. These schemata may not be snowflake
components. However, they can be represented as
amalgams. Then the definition of views that connect
these components defines an amalgam for the whole
application.

2. Each component resulting from step one can be de-
composed into snowflake components by the decom-
position theorem. So we need algorithms for detect-
ing components and checking, whether they are al-
most hierarchical or not. Together with phase one this
amounts to an amalgam with a larger number of com-
ponents, but these components are now snowflakes.

3. In the third phase we consider the overlap between
components aiming at minimising them as much as
possible. The result will still be an amalgam with
snowflake components, but these components do not
overlap excessively any more.

4. Finally, we reconsider the components resulting from
phase three and recombine some of them, if this the
result is still a snowflake component and the appli-
cation considers the initial components as belonging
together to one task of the application.

Naturally, amalgamation itself will exploit the algebra
operators above. Thus the pragmatic approach can be
supported by formal graph rewriting. If two component
schemata S1 and S2 are given, we may define the amalgam
by exploiting one of the rewrite rules in Table 1.

When applying these rules, suitable views Ij and Oj ,
and types C and T have to be selected.

5 Conclusions
In this article we addressed the unsatisfactory situation that
the design of very large database schemata is not well sup-
ported. Such schemata with hundreds or thousands of types
are usually developed over years, and then require sophis-
ticated skills to read and comprehend them. However, lots
of similarities, repetitions, and similar structuring elements
appear in such schemata. In this paper we highlighted the
frequently occurring meta-structures in such schemata, and
classified them according to structure, lifespan and context.
Furthermore, we presented an algebra for handling these
meta-structures, which permits large schemata to be com-
posed out of smaller ones. In this way a component-based
approach to schema design is enabled, in which the appli-
cation of the schema algebra constructors can be formalised
by graph rewriting.

Practically speaking, meta-structures can be exploited to
modularise schemata, which would ease querying, search-
ing, reconfiguration, maintenance, integration and exten-
sion. From a development perspective different aspects
dealing with structures, lifespan and context could be sep-
arated. Thus, an easier integration of development subpro-

402 Informatica 34 (2010) 387–403 H. Ma et al.

jects would be possible. Also reengineering and reuse are
enabled.

In this way data modelling using meta-structures en-
ables systematic schema development, extension and im-
plementation, and thus contributes to overcome the main-
tenance problems arising in practice from very large
schemata. Furthermore, the use of meta-structures also
enables component-based schema development, in which
schemata are developed step-by-step on the basis of the
skeleton of the meta-structure, and thus contributes to the
development of industrial-scale database applications.

However, in our presentation in this article we con-
centrated on schemata with constraints, thus ignoring ad-
ditional aspects such as views and operations. In the
component-model in [12] these were also considered as
part of component-based information systems engineering.
Consequently, our approach requires additional investiga-
tion of the interaction aspect. The question is, whether fre-
quently occurring patterns can also be discovered for views
and operations. For the classical application area of deci-
sion support this question has already been addressed and
answered positively by means of standard OLAP opera-
tions [6].

References
[1] Brown, L. Integration Models – Templates for Busi-

ness Transformation. SAMS Publishing, 2000.

[2] Ehrig, H., Engels, G., Kreowski, H.-J., and Rozen-
berg, G., Eds. Handbook of Graph Grammars and
Computing by Graph Transformations – Vol. 2: Ap-
plications, Languages and Tools. World Scientific,
1999.

[3] Feyer, T., and Thalheim, B. Many-dimensional
schema modeling. In Advances in Databases
and Information Systems – Proc. ADBIS 2002,
Y. Manolopoulos and P. Návrat, Eds., vol. 2435 of
LNCS. Springer-Verlag, 2002, pp. 305–318.

[4] Kahlen, H. Integrales Facility Management – Man-
agement des ganzheitlichen Bauens. Werner Verlag,
1999.

[5] Lenz, H.-J., and Thalheim, B. OLAP schemata for
correct applications. In Trends in Enterprise Appli-
cation Architecture, vol. 3888 of LNCS. Springer-
Verlag, 2005, pp. 99–113.

[6] Lenz, H.-J., and Thalheim, B. A formal framework of
aggregation for the OLAP-OLTP model. Journal of
Universal Computer Science 15, 1 (2009), 273–303.

[7] Ma, H., Noack, R., and Schewe, K.-D. Algebraic
meta-structure handling of huge database schemata.
In Advances in Conceptual Modeling – Challenging
Perspectives, C. Heuser and G. Pernul, Eds., vol. 5833
of LNCS. Springer-Verlag, 2009, pp. 23–32.

[8] Ma, H., Noack, R., Schewe, K.-D., Thalheim, B., and
Wang, Q. Complete conceptual schema algebras. sub-
mitted for publication, 2009.

[9] Ma, H., Schewe, K.-D., and Thalheim, B. Modelling
and maintenance of very large database schemata us-
ing meta-structures. In Information Systems and e-
Business Technologies – 3rd International Confer-
ence UNISCON 2009, Proceedings, J. Yang et al.,
Eds., vol. 20 of LNBIP. Springer-Verlag, 2009,
pp. 17–28.

[10] Moody, D. Dealing with Complexity: A Practical
Method for Representing Large Entity-Relationship
Models. PhD thesis, University of Melbourne, 2001.

[11] Raak, T. Database systems architecture for facil-
ity management systems. Master’s thesis, Fach-
hochschule Lausitz, 2002.

[12] Schewe, K.-D., and Thalheim, B. Component-driven
engineering of database applications. In Conceptual
Modelling – Proc. APCCM 2006, vol. 53 of CRPIT.
Australian Computer Society, 2006, pp. 105–114.

[13] Schmidt, J. W., and Sehring, H.-W. Dockets: A model
for adding value to content. In Conceptual Modeling
– ER ’99, vol. 1728 of LNCS. Springer-Verlag, 1999,
pp. 248–262.

[14] Shoval, P., Danoch, R., and Balaban, M. Hierarchi-
cal ER diagrams (HERD) – the method and experi-
mental evaluation. In Advanced Conceptual Model-
ing Techniques, vol. 2784 of LNCS. Springer-Verlag,
2002, pp. 264–274.

[15] Siedersleben, J. Moderne Softwarearchitektur.
dpunkt-Verlag, 2004.

[16] Sleep, M. R., Plasmeijer, M. J., and van Eekelen, M.
C. J. D., Eds. Term Graph Rewriting – Theory and
Practice. John Wiley and Sons, 1993.

[17] Smith, J. M., and Smith, D. C. P. Database abstrac-
tions: Aggregation and generalization. ACM ToDS 2,
2 (1977), 105–133.

[18] Thalheim, B. Entity Relationship Modeling – Foun-
dations of Database Technology. Springer-Verlag,
2000.

[19] Thalheim, B. Component construction of database
schemes. In Conceptual Modeling – ER 2002,
vol. 2503 of LNCS. Springer-Verlag, 2002, pp. 20–34.

[20] Thalheim, B. Component development and construc-
tion for database design. Data and Knowledge Engi-
neering 54 (2005), 77–95.

[21] Thalheim, B. Engineering database component ware.
In Trends in Enterprise Application Architecture,
vol. 4473 of LNCS. Springer-Verlag, 2007, pp. 1–15.

USING META-STRUCTURES IN DATABASE DESIGN Informatica 34 (2010) 387–403 403

[22] Thalheim, B., and Kobienia, T. Generating database
queries for web natural language requests using
schema information and database content. In Appli-
cations of Natural Language to Information Systems
– NLDB 2001, vol. 3 of LNI. GI, 2001, pp. 205–209.

[23] Wisse, P. Metapattern – Context and Time in Infor-
mation Models. Addison-Wesley, 2001.

