Magnetne lastnosti izotropnih Nd-Fe-B trajnih magnetov pripravljenih z rotacijskim stiskanjem

Magnetic Properties of Rotary Forged Isotropic Nd-Fe-B Permanent Magnets

B. Saje, Iskra Magneti, Stegne 37, Ljubljana

I.R. Harris, A.J. Villiams, School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK

S. Beseničar, Inštitut Jožef Stefan, Jamova 39, Ljubljana

Za pripravo izotropnih rotacijsko stisnjenih Nd-Fe-B trajnih magnetov je bila uporabljena obločno pretaljena Nd16-Fe76-B8 osnovna zlitina, procesirana s HD postopkom in različnimi načini agitacije. Dobljen prah je bil hladno rotacijsko stisnjen pri tlaku od 40 do 70 barov, sintran v območju od 1000 do 1060°C in namagneten v pulznem magnetnem polju jakosti okoli 4 T.

Magnetne lastnosti sintranih vzorcev so v območju izotropnih kvalitet, vendar so meritve z vibracijskim magnetometrom in X-žarkovno difraktometrijo pokazale, da vzorci kažejo preferenčno smer magnetizacije vzporedno smeri stiskanja, kar kaže na možnost priprave anizotropnih trajnih magnetov.

Ključne besede: trajni magneti, Nd-Fe-B, rotacijsko stiskanje

Arc melted Nd16-Fe76-B8 basic alloy decrepitated with the HD process and treated with different agitation techniques was used for the making rotary forged isotropic Nd-Fe-B permanent magnets. Decrepitated powder was cold rotary forged with the forging pressure from 40 to 70 bars, subsequent sintered in the range from 1000 to 1060° C and magnetically aligned with the pulse magnetic field of about 4 T.

Magnetic properties of the sintered samples were in the range of isotropic properties, however VSM and XRD measurements revealed some preferential magnetic alignment parallel to the forging direction which shows the possibility for preparation of anisotropic permanent magnets.

Key words: permanent magnets, Nd-Fe-B, rotary forging

1 Uvod

Od odkritja trajnih magnetnih materialov na osnovi zlitine Nd-Fe-B1 sta se osnovna tehnološka postopka za njihovo izdelavo t.j. prašnometalurški postopek1 in postopek z ultrahitrim ohlajevanjem zlitine2, zaradi ekonomskih razlogov, zahtev uporabnikov in patentnih zaščit, modificirala v več variant. V procesu pridobivanja prahov se je med ostalimi uveljavil tako imenovani HD (angl. hydrogenationdecrepitation) postopek3 procesiranja zlitine v vodiku, s katerim se izognemo procesom drobljenja in mletja zlitine na grobih stopnjah. Osnova postopka je v tem, da faze v Nd-Fe-B zlitini tvorijo z vodikom krhke hidride s pozitivno spremembo volumna. Zlitina zaradi tega med hidriranjem razpoka, dobljeni hidrirani prah pa je krhek in ga je v nadaljnem postopku potrebno samo domleti, kar v primerjavi s konvencionalnimi tehnikami drobljenja in mletja, skrajša celoten čas pridobivanja prahu za faktor 3 in zmanjša oksidacijo prahu za faktor 2.

Med variantami hladnega kompaktiranja prahov je bil razvit postopek rotacijskega stiskanja (angl. rotary forging) v zaščitni atmosferi⁴, ki je bil do sedaj uporabljan predvsem na področju izdelave kovinsko vezanih Nd-Fe-B magnetov iz prahov dobljenih iz ultra hitro ohlajenih amorfnih ali nano/mikro kristaliničnih trakov⁵. Raziskave na tem področju so pokazale, da postopek rotacijskega stiskanja omogoča pripravo zelenih vzorcev z določeno orientacijo glede na smer stiskanja⁵.

Namen tega dela je bil pripraviti rotacijsko stisnjene in naknadno sintrane izotropne Nd-Fe-B magnete iz prahu procesiranega s HD postopkom in z različnimi načini agitacije, ter proučiti možnosti priprave anizotropnih magnetov z ekvivalentnim ali modificiranim postopkom.

2 Eksperimentalno delo

Za pripravo prahov smo uporabili zlitino s sestavo Nd16-Fe76-B8 (Rare Earth Products, Widness, UK). Med procesom hidriranja smo uporabili različne metode agitacije zlitine:

- hidriranje pri konstantnem tlaku vodika (5 barov), brez agitacije
- hidriranje pri konstantnem tlaku vodika (5 barov), zlitina agitirana s frekvenco 1 kHz z uporabo Terfenol-D aparature.
- hidriranje pri konstantnem tlaku vodika (5 barov), zlitina agitirana v laboratorijskem homogenizerju prahov

z dodatkom korundnih krogel v masnem razmerju zlitina/krogle 1:1.

 hidriranje pri konstantnem tlaku vodika (5 barov), zlitina agitirana v laboratorijskem homogenizerju prahov z dodatkom korundnih krogel v masnem razmerju zlitina/krogle 1:5.

Pri vseh prahovih smo odsejali grobo frakcijo na laboratorijskem situ (Mesh 10). Ker je bil ostanek na situ pri različnih postopkih agitacije različen: a) 19.5 m%, b) 17.1 m%, c) 9.8 m% in d) 5.1 m%, smo za nadaljne preiskave uporabili prah pripravljen po postopku d.

Prah smo hladno rotacijsko stiskali na aparaturi, ki je shematično prikazana na sliki 1, v zaščitni atmosferi dušika. Vsebnost kisika med stiskanjem se je gibala med 0.5 in 3 vol.%. Parametri stiskanja so bili: tlak (40 do 70 barov), kotna hitrost pestiča in matrice 1500 /min, hitrost podajanja 5 mm/s, kot rotiranja 3°.

Slika 1. Shema naprave za rotacijsko stiskanje. Figure 1. Scheme of rotary forging machine.

Rotacijsko stisnjene vzorce smo sintrali v vakuumu (10⁻³ Pa) v temperaturnem območju od 1000 do 1060°C. Vzorcev po sintranju nismo dodatno toplotno obdelovali.

Prah smo analizirali z laserskim analizatorjem velikosti in porazdelitve velikosti delcev, rotacijsko stisnjene in sintrane vzorce pa smo karakterizirali z meritvami gostote s piknometrično metodo, meritvami magnetnih lastnosti na permeametru in vibracijskem magnetometru, preferenčno magnetno usmerjenost pa smo določili s pomočjo X-žarkovne difrakcije.

3 Rezultati in diskusija

Meritev velikosti in porazdelitve velikosti delcev je pokazala bimodalno porazdelitve kot je prikazano na sliki 2, s pikoma pri približno 10 in 100 μ m. Glede na to, da je bil prah pripravljen s postopkom hidriranja, katerega mehanizem je bil predhodno opisan⁶, predpostavljamo da prvi pik ustreza povprečni velikosti intergranularne z Nd bogate faze in drugi pik povprečni velikosti matrične Nd₂Fe₁₄B trdomagnetne faze. Glede na to, da je pri standardnem prašnometalurškem postopku optimalna povprečna velikost zrn za pripravo sintranih magnetov okoli 5 μ m, je prah uporabljen v tej raziskavi še pregrob za doseganje optimalnih magnetnih lastnosti.

Slika 2. Diagram porazdelitve velikosti delcev (d = velikost delcev). Figure 2. Particle size distribution diagram (d = particle size).

Meritve magnetizacije rotacijsko stisnjenih (RF), rotacijsko stisnjenih ter sintranih (RF/S) in rotacijsko stisnjenih, sintranih ter termično razmagnetenih vzorcev (RF/S/D) (slika 3), vzporedno in pravokotno na smer stiskanja, so pokazale, da so tudi rotacijsko stisnjeni (RF) vzorci preferenčno magnetno usmerjeni vzdolž osi stiskanja.

To je potrdila tudi analiza z rentgensko difrakcijo. Odkloni so bili posneti na prerezih vzorcev pravokotno in vzporedno na os stiskanja (slika 4). Difraktogrami posneti na prerezu pravokotno na smer stiskanja kažejo več odklonov z bazalnih ravnin ali ravnin nagnjenih za majhen kot proti bazalnim ravninam. Odkloni z ravnin (214), (105), (224) in (006) na difraktogramu posnetem na preseku vzorca pravokotno na smer stiskanja (slika 4a) imajo močnejšo intenziteto kot na difraktogramu posnetem na preseku vzorca vzporedno na smer stiskanja (slika 4b), na katerem lahko opazimo tudi močnejšo intenziteto odklonov z ravnin (311), (410) in (411), ki so nagnjene za majhen kot proti normali na bazalno ravnino. Difraktogrami pulzno usmerjenih (slika 4a/b) in termično razmagnetenih vzorcev (slika 4c/d) so skoraj identični, kar kaže na to, da preferenčna orientacija zrn ni samo posledica pulznega magnetnega usmerjanja, ampak izvira že iz samega stiskanja in se je med postopkom sintranja ohranila.

Slika 3. Magnetilne krivulje merjene pravokotno (p) in vzporedno (v) na smer stiskanja za rotacijsko stisnjene (RF = - - -), rotacijsko stisnjene in sintrane (RF/S = ----) ter rotacijsko stisnjene, sintrane in termično razmagnetene (RF/S/D = -----) vzorce.

Figure 3. Magnetization curves measured perpendicular (p) and parallel (v) to the forging direction for rotary forged (RF = - - -), rotary forged and sintered (RF/S = ----) and rotary forged, sintered and thermally demagnetized (RF/S/D = -----) samples.

Posnetki mikrostruktur so bili izvedeni na prerezih vzporedno in pravokotno na smer stiskanja. Na posnetku poliranega vzorca (slika 5), opazimo več NdFe₄B₄ in z Nd bogate faze, kot bi jo glede na sestavo in fazna ravnotežja pričakovali. Po vsej verjetnosti je bil del trdomagnetne Nd₂Fe₁₄B faze, glede na ostanek na situ, odsejan pri grobem sejanju, tako da sestava ni optimalna, kar seveda vpliva negativno na magnetne lastnosti.

Pri primerjavi mikrostrukturnih posnetkov izvedenih s polarizirano svetlobo (Kerr-ova tehnika), lahko na posnetku posnetem na prerezu vzorca, ki je vzporeden na smer stiskanja (slika 6) opazimo več zrn Nd₂Fe₁₄B faze s paličasto domensko strukturo kot na posnetku, posnetem na prerezu vzorca pravokotno na smer stiskanja (slika 7), kjer je več zrn z rozetno domensko strukturo, kar je v skladu z meritvami magnetizacije in in rezultati X-žarkovne analize.

Tabela 1. Magnetne lastnosti (Br, IHc, (BH)max) in gostota (g) sintranih vzorcev v odvisnosti od temperature sintranja (Ts) in tlaka stiskanja (p)

Ts (°C)	p (bar)	g (% TG)	Br (mT)	IHc (kA/m)	(BH) _{max} (kJ/m ³)
1020	40	88	400	270	18
1040	40	94	538	301	29
1050	40	98	557	330	35
1060	40	98	536	270	30
1050	50	98	531	306	30
1050	60	97	522	276	28
1050	70	94	508	300	27

Vendar pa povprečna magnetna usmeritev ostaja v izotropnih mejah kot je razvidno iz **tabele 1**, in ne dosega anizotropnih kvalitet, kjer je preferenčna magnetna usmerjenost reda 95–98%.

Figure 4. XRD patterns for rotary forged and sintered (RF/S) samples: a) perpendicular, and b) parallel to the forging direction); and for rotary forged, sintered and thermally demagnetized (RF/S/D) samples: c) perpendicular, and d) parallel to the forging direction).

Magnetne lastnosti vzorcev stisnjenih z različnimi pritiski in sintranih pri različnih temperaturah so zbrane v tabeli 1.

Slika 5. Mikrostruktura sintranega vzorca (A = $Nd_2Fe_{14}B$, B = $NdFe_4B_4$, C = Nd faza). Figure 5. Microstructure of the sintered sample (A = $Nd_2Fe_{14}B$, B = $NdFe_4B_4$, C = Nd rich phase).

 Slika 6. Domenska struktura sintranega vzorca vzporedno smeri stiskanja (A = Nd₂Fe₁₄B, B = NdFe₄B₄, C = Nd faza).
Figure 6. Domain structure of the sintered sample parallel to the forging direction (A = Nd₂Fe₁₄B, B = NdFe₄B₄, C = Nd rich phase).

Glede na podatke v tabeli 1 lahko sklepamo, da je optimalno območje temperature sintranja med 1040 in 1060°C in tlaka stiskanja med 40 in 60 bari. Pri nižjih temperaturah ne dosežemo dovolj visoke gostote, pri višjih tlakih, pa zaradi tako imenovanega "Pennyevega striga"⁷ pride do razpok v vzorcu.

4 Sklepi

S HD postopkom, hladnim rotacijskim stiskanjem in sintranjem so bili pripravljeni Nd-Fe-B magneti z magnetnimi lastnostmi, ki so v območju izotropnih kvalitet. Vendar

 Slika 7. Domenska struktura sintranega vzorca pravokotno na smer stiskanja (A = Nd₂Fe₁₄B, B = NdFe₄B₄, C = Nd faza).
Figure 7. Domain structure of the sintered sample perpendicular to the forging direction (A = Nd₂Fe₁₄B, B = NdFe₄B₄, C = Nd rich phase).

pa so meritve magnetizacije hladno rotacijsko stisnjenih, sintranih in termično razmagnetenih vzorcev in analiza z X-žarkovno difrakcijo pokazale, da se pri postopku hladnega rotacijskega stiskanja, prašni delci deloma orientirajo s c-osjo vzporedno smeri stiskanja, kar rezultira v preferenčni magnetni usmerjenosti zelenih vzorcev. To kaže na možnost priprave vzorcev anizotropnih kvalitet. Pogoj za to je seveda optimiranje postopka agitacije, ki bi zagotovil uniformno porazdelitev velikosti zrn s povprečno velikostjo okoli 5 μ m in modificiranje aparature za hladno rotacijsko stiskanje, tako da bi bilo stiskanje možno v magnetnem polju vzporednem smeri stiskanja.

5 Literatura

- ¹ M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura: "Permanent magnet materials based on the Rare Earth Iron -Boron tetragonal compound", IEEE Trans. Mag. MAG 20, 1584–1589, 1984.
- ² J.J. Croat, J.F. Herbst, R.W. Lee, F.E. Pinkerton: "Pr-Fe and Nd-Fe based materials: A new class of high performance permanent magnets", J. Appl. Phys., 55(6), 2078– 2082, 1984.
- ³ I.R. Harris: "The hydrogen-decrepitation of an Nd₁₅Fe₇₇B₈ magnetic alloy", J. Less Comm. Met., 106, L1–L4, 1985.
- ⁴ N. Rowlinson, M.M. Ashraf, I.R. Harris: "New developments in bonded Nd-Fe-B magnets", J. Mag. Mag. Mat., 80, 93–96, 1989.
- ⁵ N. Rowlinson, M.M. Ashraf, I.R. Harris: "Anisotropy induced by the rotary forging of rapidly quenched Nd-Fe-B ribbons", 87, 93–96, 1990.
- ⁶ B. Saje, J. Holc, S. Beseničar: "Hydrogenation process of Nd-Dy-Fe-B alloy", J. Mat. Sci., 27, 2682–2686, 1992.
- ⁷ N. Rowlinson, Ph. D. Thesis, School of Metallurgy and Materials, University of Birmingham, Birmingham, 1989.