
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 13 (2017) 293–306

Uniformly dissociated graphs∗

Boštjan Brešar †

Faculty of Natural Sciences and Mathematics, University of Maribor,
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Abstract

A set D of vertices in a graph G is called a dissociation set if every vertex in D has
at most one neighbor in D. We call a graph G uniformly dissociated if all maximal disso-
ciation sets are of the same cardinality. Characterizations of uniformly dissociated graphs
with small cardinalities of dissociation sets are proven; in particular, the graphs in which
all maximal dissociation sets are of cardinality 2 are the complete graphs on at least two
vertices from which possibly a matching is removed, while the graphs in which all maximal
dissociation sets are of cardinality 3 are the complements of the K4-free geodetic graphs
with diameter 2. A general construction by which any graph can be embedded as an in-
duced subgraph of a uniformly dissociated graph is also presented. In the main result we
characterize uniformly dissociated graphs with girth at least 7 to be either isomorphic to
C7, or obtainable from an arbitrary graph H with girth at least 7 by identifying each vertex
of H with a leaf of a copy of P3.
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1 Introduction
A set D of vertices in a graph G is called a dissociation set if the subgraph induced by
vertices of D has maximum degree at most 1. The cardinality of a maximum dissociation
set D in a graph G is called the dissociation number of G, and is denoted by diss(G). The
dissociation number was introduced by Papadimitriou and Yannakakis [14] in relation with
the complexity of the so-called restricted spanning tree problem. Another closely related
concept is the k-path vertex cover, which was introduced in [5] and studied in several
papers [4, 10]; the corresponding invariant, the k-path vertex cover number of an arbitrary
graph G, is denoted by ψk(G). As it turns out, dissociation sets are complements of 3-path
vertex covers of G, and so the following relation holds:

diss(G) = |V (G)| − ψ3(G),

where ψ3(G) is the size of a minimum 3-path vertex cover. The decision version of the
k-path vertex cover number is NP-complete [5], moreover, in the case k = 3 it is NP-
complete even in bipartite graphs which are C4-free and have maximum degree 3 [2]; cf.
also [13] for further strengthening of this result and [12] for an approximation algorithm.

Are there any graphs in which the dissociation number is easily computable? The
approach taken in this paper will be similar to the one related to well-covered graphs,
as introduced by Plummer in 1970 [15]. These are the graphs in which every maximal
independent set of vertices is of the same size, and hence maximum. Whereas determining
the independence number of an arbitrary graph is also NP-complete, it is easy for a well-
covered graph since a greedy algorithm will produce the desired result. One approach to
deciding if a graph is well-covered has been to restrict the girth [7]. We shall employ
that technique in this paper and characterize the graphs of girth 7 or more in which every
maximal dissociation set is maximum. Such an approach has been used also on other
similar problems, notably the limited packing problem [8] and equipackable graphs [9].

We say that a graph G is a uniformly dissociated graph if all maximal dissociation sets
are of the same size; in other words, every maximal dissociation set in G is of cardinality
diss(G). In particular, this implies that a greedy algorithm, in which vertices are being
added to the set, taking care that a newly added vertex is adjacent to at most one vertex
of degree 0 and to no vertex of degree 1 in the subgraph induced by the previously added
vertices, at the end always gives a dissociation set of maximum cardinality.

The paper is organized as follows. In the next section we study the uniformly disso-
ciated graphs whose maximal dissociation sets are of cardinalities 1, 2 or 3. For the latter
class of graphs we present two characterizations, one of which states that they are pre-
cisely the complements of the K4-free geodetic graphs with diameter 2 (geodetic graphs
with diameter 2 have been studied in several papers, and in the triangle-free case coincide
with the well-known Moore graphs; graphs in this class that have triangles include another
known family—the polarity graphs). In Section 3 we introduce the concept of extendable
vertices with respect to uniformly dissociated graphs, by following a similar approach as
is known for building bigger well-covered graphs using extendable vertices with respect to
the well-covered notion. We prove that from an arbitrary graph G by attaching an extend-
able vertex of a uniformly dissociated graph to each vertex of G one obtains a uniformly
dissociated graph. Section 4 contains our main result, a characterization of uniformly dis-
sociated graphs with girth at least 7. Notably, they are precisely the graphs of which each
connected component is either isomorphic to C7, or can be obtained from an arbitrary con-
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nected graph H with girth at least 7, by identifying each vertex of H with a leaf of a copy
of P3.

We conclude this section by presenting the notation used throughout the paper.
Let G be a graph and S ⊂ V (G). We write G[S] for the subgraph of G induced by S

and write G− S for the subgraph of G induced by the set V (G) \ S. On the other hand, if
F ⊂ E(G), thenG−F is the subgraph ofG obtained fromG by removing the edges of F .
LetNG(v) denote the (open) neighborhood inG of a vertex v, whileNG[v] = NG(v)∪{v}
is its closed neighborhood in G. When the graph G is clear from the context we omit the
subscript. If S ⊂ V (G), thenNG[S] =

⋃
v∈S NG[v]. The degree of a vertex v is defined to

be |NG(v)|. We call a vertex of degree 1 a leaf, while the neighbor of a leaf will be called
a stem. A matching M in a graph G is a set of edges in G having the property that no two
edges in M have a common endvertex. Given a matching M in G, we denote by V (M)
the set of endvertices of edges from M . Recall that a matching M is an induced matching
if the only edges in G[V (M)] are the edges in M itself. We denote the cardinality of the
largest independent set of vertices by α(G). The girth, g(G), is the length of a shortest
cycle in G. Given a graph G, the complement of G is the graph Ḡ that has the same vertex
set as G, while the edge set of Ḡ is the complement of the edge set of G.

2 Classes of uniformly dissociated graphs
Let Dk be the set of uniformly dissociated graphs G such that diss(G) = k. Suppose that
G ∈ Dk and that H is an induced subgraph of G. Since any dissociation set of H is also
a dissociation set of G, it follows that diss(H) ≤ k. However, it need not be the case that
H ∈ Dk. For example, the path P4 is an induced subgraph of C5 and C5 ∈ D3, but P4 has
maximal dissociation sets of orders 2 and 3.

ClearlyD1 = {K1}. In fact,K1 is the only graph with dissociation number 1. Consider
now the classD2. Since the only maximal dissociation set of order 1 in a graph is an isolated
vertex, we see that a graph has dissociation number 2 if and only if it belongs to the class
D2. It is also clear that complete graphs Kn, for n ≥ 2, are in the class, because any
pair of (adjacent) vertices forms a maximal dissociation set. Furthermore, if a matching
M is removed from Kn, then every set consisting of a vertex is extended to a maximal
dissociation set, consisting either of two adjacent or two non-adjacent vertices. We claim
that these graphs are precisely all the graphs from D2. Suppose that G is not in the class
of graphs obtained from complete graphs Kn with n ≥ 2, by removing a (possibly empty)
matching M from G. In this case G contains a vertex, say x, which is not adjacent to
two vertices from G, say y and z. It is clear that {x, y, z} is a (not necessarily maximal)
dissociation set, and hence G is not in D2. We have proved the following statement.

Observation 2.1. D2 = {Kn −M | n ≥ 2,M a (possibly empty) matching in Kn}.

Note that the path P3 is one of the graphs from D2. In particular, as we will see in The-
orem 3.2, this graph can be used in constructing infinite families of uniformly dissociated
trees.

Next, we present two characterizations of the graphs in D3. The following lemma will
be used in several proofs in the paper.

Lemma 2.2. Let G be a nontrivial uniformly dissociated graph and M an induced match-
ing in G. If 2|M | < k and G ∈ Dk, then G−N [V (M)] ∈ Dk−2|M |.



296 Ars Math. Contemp. 13 (2017) 293–306

Proof. Assume thatG ∈ Dk. LetM be an induced matching inG and assume that 2|M | <
k. Let S1 and S2 be any maximal dissociation sets of G − N [V (M)]. It is clear that
V (M)∪S1 and V (M)∪S2 are maximal dissociation sets of G, and consequently 2|M |+
|S1| = k = 2|M | + S2. This implies that |S1| = |S2|, and therefore G − N [V (M)] ∈
Dk−2|M |.

Theorem 2.3. A graph G with at least one edge is in D3 if and only if

(1) for every xy ∈ E(G) we have |V (G) \N [{x, y}]| = 1; and

(2) for every uv /∈ E(G) we have |V (G) \ N [{u, v}]| ≤ 1, and if {u, v} is a maximal
independent set of G, then N(u) 6= N(v).

Proof. Suppose thatG is a uniformly dissociated graph with diss(G) = 3. That means that
regardless of how we build a maximal dissociation set we end up with 3 vertices in it. Let
xy ∈ E(G). By Lemma 2.2, G−N [{x, y}] ∈ D1, which implies property (1), becauseD1

contains only K1. Suppose u and v are two non-adjacent vertices. If |V (G)\N [{u, v}]| >
1, then there exists a dissociation set, consisting of u, v, and two vertices from V (G) \
N [{u, v}], a contradiction with diss(G) = 3. This proves that |V (G) \ N [{u, v}]| ≤ 1.
Now, assume that {u, v} is a maximal independent set of G. If N(u) = N(v), then {u, v}
is a maximal dissociation set, a contradiction, which completes the proof of one direction.

For the converse, assume that G satisfies properties (1) and (2). Consider any maximal
dissociation set S of G. If S contains two adjacent vertices, then property (1) shows that
S contains exactly three elements. Otherwise, S consists of an independent set of vertices,
which is by (1) of size at least 2 (we can use (1), sinceG has an edge). Let u and v belong to
S, C be the set of common neighbors of u and v,A = N(u)\N(v), andB = N(v)\N(u).

By (2), |V (G) \N [{u, v}]| ≤ 1; so first consider the case that G−N [{u, v}] = {w}.
Note that (1) ensures that each vertex, say x, in A must be adjacent to every vertex in B,
since if not, G−N [{u, x}] is not isomorphic to K1. Also observe that w must be adjacent
to all vertices of A (resp. B). Suppose that w is not adjacent to u′, where u′ ∈ A. Then
G−N [{u, u′}] contains v and w, which contradicts (1) (we derive a similar contradiction,
if v′ ∈ B is not adjacent tow). Now, note that since u and v belong to the independent set S
no vertex in A ∪B ∪C does. Because S is maximal, we infer that S = {u, v, w}. Finally,
consider the case when |V (G) \ N [{u, v}]| = 0. This means that {u, v} is a maximal
independent set, and using property (2) we see that {u, v} is not a maximal dissociation set
and |S| = 3.

Now, we present another characterization of the graphs from D3. If a graph G belongs
to D3, then in its complement, which we denote by H , every pair of vertices that are non-
adjacent have exactly one common neighbor (using condition (1) of Theorem 2.3 expressed
in the complement ofG). Condition (2) of the theorem expressed inH is that for every pair
u and v of vertices that are adjacent in H there is at most one common neighbor of u and
v. In other words, any edge of H belongs to at most one triangle. Hence H is diamond-
free, and the second part of condition (2) implies that either u or v must have some other
neighbor, which readily implies that H must be connected.

The described conditions for the graphH are equivalent to the definition of the so-called
geodetic graphs with diameter 2 that are diamond-free. (Recall that a graph is geodetic, if
between any pair of vertices there is a unique shortest path.) Since in geodetic graphs
any cycle on 4 vertices lies in the complete graph on the same 4 vertices, we derive the
following characterization of graphs from D3.
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Theorem 2.4. A graph G is in D3 if and only if its complement Ḡ is a connected K4-free
geodetic graph with diameter 2.

Geodetic graphs with diameter 2 were studied by Stemple [16], (see also the mono-
graph [6], where these graphs were further classified) who proved in [16, Result II] that
triangle-free geodetic graphs with diameter 2 are precisely the Moore graphs with diameter
2 (and girth 5). There are three known graphs of this type – C5, the Petersen graph and the
Hoffman-Singleton graph, which is a 7-regular graph on 50 vertices. It is one of the big
open problems, whether there exist other Moore graphs. As the analysis shows, the only
possible candidates for other Moore graphs are regular with degree 57 on 3250 vertices. If
there exists such a Moore graph, it might not be unique. Note that the complement of any
such graph (if it exists) is in D3.

The complement of a graph fromD3 cannot have any 4-cycle as a subgraph, because the
existence of an induced C4 or a diamond contradicts the characteristic property of geodetic
graphs, and K4 is also forbidden. Now, if one forbids 4-cycles as subgraphs in a graph of
diameter 2, then any two vertices that are not adjacent have exactly one common neighbor.
Therefore, these are exactly the geodetic graphs with diameter 2, that is, the complements
of graphs from D3. Bondy, Erdős, and Fajtlowicz characterized in [3] the graphs with
diameter 2 that have no 4-cycles as the graphs H that fall into three different families:

(i) ∆(H) = |V (H)| − 1 and H has no 4-cycles,

(ii) H is a Moore graph,

(iii) H is a polarity graph.

The first family are the graphs having a universal vertex, and all other vertices have
degree at most 2. Clearly, the complement of any such graph is the disjoint union of a
graph from D2 and K1. While Moore graphs are well-known, let us focus on the third
family – polarity graphs. The study of these graphs started in the context of projective
geometries by Kantor [11], and they were later considered in several papers. See the recent
study [1]. For a formal definition of polarity graphs we present some notions from finite
geometries.

Let P and L be disjoint, finite sets, and let I ⊂ P × L. The triple (P,L, I) is called a
finite geometry, elements of P are called points, while elements of L are lines. A polarity
of the geometry is a bijection from P ∪ L to P ∪ L that sends points to lines, sends lines
to points, is an involution, and respects the incidence structure. Given a finite geometry
(P,L, I) and a polarity π, the polarity graph Gπ is the graph with vertex set V (Gπ) = P ,
and pq ∈ E(Gπ) whenever p and q are points such that (p, π(q)) ∈ I.

Alternatively, for any prime power q, let PG(2, q) denote the standard projective geom-
etry over the Galois field GF (q), where points are represented by projective triples, see [1]
for details. The vertex set of the corresponding polarity graph consists of (q2 + q + 1)
points of PG(2, q), which are adjacent whenever the corresponding triples are orthogonal.
In particular, for any prime power q there exists a (unique) polarity graph, which readily
implies that there are also infinitely many graphs in D3. From the result of Bondy, Erdős,
and Fajtlowicz [3] and our discussion we derive another characterization of these graphs.

Corollary 2.5. A graph G is in D3 if and only if either G is the disjoint union of a graph
from D2 and the D1-graph, or G is the complement of a Moore graph, or G is the comple-
ment of a polarity graph.
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In order to present some small examples of connected graphs in D3 we performed a
structural analysis of these graphs, which results in the following proposition, the proof of
which is omitted.

Proposition 2.6. Let G be a connected graph in D3 having minimum degree k.

(1) If k ≤ 2, then G = C5.

(2) If k ≥ 3 and v is a vertex inG such that deg(v) = k, then the open neighborhood of v
partitions into ` subsets S1, . . . , S` such that |Si| = m for all i, k = `m, andm+1 ≤
` ≤ m+ 2. In addition, B = V (G) \N [v] = {b1, . . . , b`}, N(bi)∩Si = ∅ and bi is
adjacent to every vertex in Sj for j 6= i. The subgraphs G[B], G[S1], . . . , G[S`] all
belong to D2.

In the case that G[B] is a complete graph we are able to deduce that each G[Si] is also
a complete graph. Indeed, let δ(G[B]) = `− 1, let 1 ≤ i ≤ ` and let s be any vertex in Si.
For i 6= j, |V (G) \N [{s, bj}]| = 1 and hence s is adjacent to exactly m− 1 vertices in Sj .
If e denotes the number of neighbors of s in G[Si], then

m` = k ≤ deg(s) = 1 + e+ (`− 1) + (`− 1)(m− 1) .

From this it follows that e = m− 1, and we see that G[Si] is a complete subgraph.
When k ≥ 3, ` > m, and k = `m, it follows that ` ≥ 3. Next we find all graphs in D3

with ` = 3. Note that in this case m is either 1 or 2. Let A = N(v) where v is a vertex of
minimum degree as in the statement of Proposition 2.6(2).

v

Figure 1: The only graph in D3 with ` = 3 and m = 1.

Suppose first that m = 1. In this case k = ` and the subgraph G[A] is isomorphic to
the complement of G[B]. Since G[B] ∈ D2, it follows that the maximum degree of G[A]
is at most 1. If A is an independent set, then we get that G is isomorphic to the graph
in Figure 1. On the other hand, if ∆(G[A]) = 1, then G is isomorphic to the graph in
Figure 2, which is, in turn, isomorphic to the graph in Figure 1.

Next suppose that m = 2, and hence ` = m + 1 = 3. As above, G[B] = K3 and
G[Si] = K2 for 1 ≤ i ≤ 3. As it turns out, the only possibility that yields a graph from
D3 is that the subgraph G[A] is isomorphic to K2�K3; we derive that G is the graph in
Figure 3. (Note that it is the complement of the Petersen graph.)

Stemple proved [16, Result X] that the order of a geodetic graph H with diameter 2,
which has triangles but no complete subgraphs of order 4, is ∆2 − ∆ + 1, where ∆ is
maximum degree of H . Note that ∆ is equal to the maximum number of non-neighbors
of vertices in G from D3, which is, by the construction from Proposition 2.6, equal to `.
Hence `(m + 1) = ∆(∆ − 1). We deduce that unless the complement of G is triangle-
free (and thus a Moore graph), we have ` = m + 2. For ` = m + 2 = 3 this is exactly



B. Brešar et al.: Uniformly dissociated graphs 299

v

Figure 2: A graph isomorphic to the one in Figure 1.

Figure 3: The only graph in D3 with ` = 3 and m = 2.

the graph in Figure 1. When ` = m + 2 = 4 we have the graph in Figure 4. As in the
description of the connected graphs inD3 from above, the vertex v is adjacent to all vertices
in S = S1 ∪ S2 ∪ S3 ∪ S4. For 1 ≤ i ≤ 4, bi is adjacent to every vertex in S − Si. The
subgraph induced by B is a complete graph of order 4 with the matching edges b1b2 and
b3b4 removed. This graph, G[B], is in D2.

S1 S4S2 S3

v

B
b1 b2 b3 b4

Figure 4: Graph in D3 of order 13.

Let us only mention that the path P6 and the cycle C7 belong to D4, while a special
family of graphs in D2k, where k ≥ 3, will be presented in the next section.

3 Extendable vertices
The term extendable vertices of graphs was coined in the context of well-covered graphs,
where such vertices were used as attachment vertices to build bigger graphs from smaller
well-covered building blocks [7]. We will use a similar approach, and introduce extendable
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vertices in the context of uniformly dissociated graphs.
Let G be a uniformly dissociated graph with diss(G) = k. We say that x ∈ V (G) is

Dk-extendable, if the following two properties hold:

(i) (G− x) ∈ Dk and

(ii) (G−N [x]) ∈ Dk−1.

Since in this paper we use only this version of extendability, we will often simplify the
wording by calling Dk-extendable vertices just extendable vertices. It is clear that the only
vertex of K1 (which is the only graph of D1) is not extendable in the above sense. On the
other hand, it is easy to verify that all graphs from D2, except the complete graphs, contain
an extendable vertex.

Proposition 3.1. Let G be any graph in D2, and G not a complete graph. Any vertex that
is not universal in G, is D2-extendable.

The application of this concept in constructing large families of uniformly dissociated
graphs is presented in the next result.

Theorem 3.2. Let G be an arbitrary graph, having vertices denoted by x1, . . . , xn; let
G1, . . . , Gn be (not necessarily different) uniformly dissociated graphs, each having an
extendable vertex. If G∗ is obtained from G by identifying xi with an extendable vertex of
Gi for all i ∈ {1, . . . , n}, then G∗ is a uniformly dissociated graph.

The proof of the theorem follows directly from the construction ofG∗ and the definition
of extendable vertices. In particular, Theorem 3.2 shows that every graph is an induced
subgraph of a uniformly dissociated graph. (Since non-complete graphs in D2 form an
infinite family, every graph is an induced subgraph of infinitely many uniformly dissociated
graphs.)

In the rest of this section, we shed some more light on the uniformly dissociated graphs,
(not) having extendable vertices.

Proposition 3.3. No vertex of a connected graph from D3 is extendable.

Proof. Let G be a connected graph in D3, and assume that w ∈ V (G) is an extendable
vertex of G. If there exists an edge xy ∈ E(G) such that w is adjacent to neither x nor to
y, then by property (1) from Theorem 2.3, we infer that {x, y} is a maximal dissociation
set of G − w, a contradiction with G − w ∈ D3. Hence G − N [w] does not contain any
edge, which implies that degG(w) ≥ |V (G)|−3 (for otherwise V (G)\N(w) would be an
independent set of cardinality at least 4). Now, if V (G)\N [w] consisted of only one vertex,
say y, then w and a neighbor of y would form a maximal dissociation set of G of size 2,
again a contradiction. This implies that there exist exactly two vertices in the complement
of N [w], and let us denote them by y and z.

If y and z had a common neighbor x, then again we derive a contradiction withG ∈ D3

(because {w, x} would be a maximal dissociation set of G). This implies that N(y) ∩
N(z) = ∅, and each of N(y) and N(z) is non-empty, since G is connected. If there exists
a vertex a ∈ N(w) such that {y, z} ∩N(a) = ∅, then {y, z} ⊆ V (G) \N [{w, a}], which
contradicts property (1) of Theorem 2.3. Thus N(y), N(z) is a partition of N(w). Now,
if there exists y′ ∈ N(y) and z′ ∈ N(z) such that y′z′ /∈ E(G), then {y, y′, z, z′} is a
dissociation set of G of cardinality 4, a contradiction. Otherwise, the set {y′, z′}, where
y′ ∈ N(y) and z′ ∈ N(z), is a maximal dissociation set of G of cardinality 2, which is the
final contradiction, showing that w is not an extendable vertex of G.
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There are many Dk-extendable vertices, where k is an even number; in fact, any vertex
in the construction of a graphG∗ from Theorem 3.2, which corresponds to a vertex from the
initial graph G, is extendable. On the other hand, we know of no example of a connected
Dk-extendable vertex for k being odd. More precisely, we know that there are no D3-
extendable vertices in connected graphs, and, in addition, we do not know if any connected
D2`+1-extendable graphs exist, when ` > 1. Therefore we pose the following question.

Question 3.4. Are there any connected graphs in Dk, where k is an odd number greater
than 3? If there are, does there exist a Dk-extendable vertex for some such k.

It would be interesting to know, if any connected graphs in D2t+1, for t > 1 exist, also
because they would present a natural common extension of the classes of Moore graphs
with diameter 2 and polarity graphs.

4 Uniformly dissociated graphs with girth at least 7
Suppose that each of the graphs G1, . . . , Gn is isomorphic to P3. The construction given
in Theorem 3.2 presents a large family of uniformly dissociated graphs, each of which has
many leaves (in fact, a third of the vertices have degree 1). Note that in these graphs each
neighbor of a leaf has degree 2, and is in particular adjacent to only one leaf. This latter
property holds in all uniformly dissociated graphs that have minimum degree 1 and order
at least 4, as the following lemma shows.

Lemma 4.1. Let G be a connected uniformly dissociated graph on more than three ver-
tices. If x is a stem, then it has exactly one leaf as a neighbor.

Proof. Let G be a connected uniformly dissociated graph with |V (G)| > 3. For the pur-
poses of reaching a contradiction, let us assume that there exists a vertex x, which is adja-
cent to more than one leaf. Let x1, . . . , xk, where k ≥ 2, be the leaves adjacent to x. If G
is the star K1,k, then {x, x1} is a maximal dissociation set of size 2, and {x1, . . . , xk} a
maximal dissociation set of size k, where k ≥ 3, because G has at least 4 vertices. Hence
G is not uniformly dissociated.

If G is not a star, then there exists a neighbor y of x, which is not a leaf. Let S be a
maximal dissociation set that contains vertices x and y (such a set always exists, because
we can start a greedy procedure of obtaining a dissociation set by picking the endvertices
of the edge xy). Note that the leaves x1, . . . , xk are not in S, and, moreover, x and y are the
only vertices from N [{x, y}] that are in S. Let S′ = S \ {x, y}. Clearly, S′ is a (maximal)
dissociation set of G − N [{x, y}]. Now, let S be the set S′ ∪ {y, x1, . . . , xk}. Note that
S is a dissociation set of G (not necessarily maximal), and |S| ≥ |S′| + 3 > |S|. Since S
lies in a maximal dissociation set, we derive that G is not a uniformly dissociated graph, a
contradiction, which shows that G contains no vertex adjacent to more than one leaf.

Lemma 4.2. If G is a uniformly dissociated graph of order at least 3, then no two stems of
G are adjacent.

Proof. Let G ∈ Dm for some m ≥ 2. If |V (G)| = 3, then G does not have two stems, so
we may assume that G is of order greater than 3. Now, if m = 2, then G is isomorphic to a
complete graph from which a (possibly empty) matching is removed (by Observation 2.1).
Hence G has no leaves, and consequently also no stems. We may thus assume that G is a
graph of order greater than 3, and G ∈ Dm, for m ≥ 3.
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Assume that G has two stems u and v that are adjacent. Let us denote by x and y
the leaves that are adjacent to u and v, respectively. By Lemma 4.1 each stem is adjacent
to exactly one leaf. Let D1 be a maximal dissociation set that contains vertices u and v.
By Lemma 2.2, as u and v form a vertex set of a trivial induced matching in G, we have
G − N [{u, v}] ∈ Dm−2. Now, note that D2 = D1 ∪ {x, y} \ {v} is a dissociation set of
G, which is not necessarily maximal. Hence, there exists a maximal dissociation set in G
that contains D2 and is of cardinality at least m+ 1, a contradiction with G ∈ Dm.

In the rest of this section we restrict ourselves to graphs with girth at least 7.

Lemma 4.3. If G is a uniformly dissociated graph with g(G) ≥ 7, then no two stems of G
are at distance 2.

Proof. Let G be a uniformly dissociated graph, that is G ∈ Dm for some m ≥ 2, and
let g(G) ≥ 7. Assume that G has two stems v and w that are at distance 2, and let u be
their common neighbor. Let us denote by x and y the leaves that are adjacent to v and w,
respectively (by Lemma 4.1 each stem has only one leaf).

Denote by z1, . . . , zp the neighbors of w, different from u, and note that they are not
stems and not leaves, by Lemma 4.2. Hence each of them has a neighbor, and let us denote
them by x1,1, . . . , x1,j1 , . . . , xp,1 . . . , xp,jp , where xi,j are the neighbors of zi for all i ∈
{1, . . . , p}. Since xi,j are not leaves, each of them has another neighbor, and let us denote
the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Now,
we build an induced matching M , consisted of edges xi,jyi,j,k in the following way. As
long as this is possible, for each zi choose a j from {1, . . . , ji}, and add an edge xi,jyi,j,k
to M , so that it does not destroy the property of M being an induced matching. Note that
since the girth is at least 7, the only possibility for destroying the property of M being
an induced matching is that some vertex yi,j,k is adjacent to a vertex yi′,j′,k′ , which is
already in V (M). More precisely, the procedure can end before an edge xi,jyi,j,k has
been added to M for all zi, only if for some zi and for all of its neighbors xi,j all of their
neighbors yi,j,k cannot be chosen, because each of them is adjacent to some yi′,j′,k′ that is
an endvertex of an edge from M . In this case, by using Lemma 2.2, we infer that since M
is an induced matching in G, and 2|M | < m, we have G −N [V (M)] ∈ Dm−2|M |. Now,
this implies that all neighbors of xi,1, . . . , xi,ji (except for zi) are in N [V (M)] and thus
in G − N [V (M)] all xi,1, . . . , xi,ji are leaves. Hence zi is a stem in G − N [V (M)] and
is adjacent to w, which is also a stem in G −N [V (M)]. Now, this is a contradiction with
Lemma 4.2, because G − N [V (M)] is a uniformly dissociated graph with two adjacent
stems.

Hence, the only possibility is that the procedure of building an induced matching M
consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one edge xi,jyi,j,k
to belong toM . SinceM is an induced matching and 2|M | < m, we haveG−N [V (M)] ∈
Dm−2|M | by Lemma 2.2. Note that inG−N [V (M)],w is a stem of degree 2 (adjacent only
to u and the leaf y), and v also belongs toG−N [V (M)] because an edge between v and any
yi,j,k in G would imply the existence of a 6-cycle. Now, let D1 be a maximal dissociation
set of G − N [V (M)], which contains v, u and y, and let D2 = D1 ∪ {x,w} \ {u}.
Clearly,D2 is a dissociation set (not necessarily maximal) of cardinality |D1|+1, which is a
contradiction with G−N [V (M)] being uniformly dissociated. The proof is complete.

Lemma 4.4. If G is a uniformly dissociated graph with g(G) ≥ 7, then for each stem v,
deg(v) = 2.
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Proof. Let G ∈ Dm for some m ≥ 2, and assume that v is a stem adjacent to the leaf
x, and v has at least two other neighbors, which we denote by w and w′. Now, we use a
similar idea as in the proof of Lemma 4.3.

Denote by z1, . . . , zp the neighbors of w, different from v, which are not stems and
not leaves, by Lemma 4.2. Hence each of them has a neighbor, and let us denote them by
x1,1, . . . , x1,j1 , . . . , xp,1, . . . , xp,jp , where xi,j are the neighbors of zi for all i∈{1, . . . , p},
j ∈ {1, . . . , ji}. Since xi,j are not leaves, each of them has another neighbor, and let us de-
note the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}.
Now, we build an induced matching M , consisted of edges xi,jyi,j,k in the following
way. As long as this is possible, for each zi choose a j from {1, . . . , ji}, and add an edge
xi,jyi,j,k to M , so that it does not destroy the property of M being an induced matching.
Note that since girth is 7, the only possibility for destroying the property of M being an
induced matching is that some vertex yi,j,k is adjacent to a vertex yi′,j′,k′ , which is already
in M . More precisely, the procedure can end before an edge xi,jyi,j,k has been added to
M for all zi, only if for some zi and for all of its neighbors xi,j all of their neighbors yi,j,k
cannot be chosen, because each of them is adjacent to some yi′,j′,k′ that is an endvertex of
an edge from M . In this case, by using Lemma 2.2, we infer that since M is an induced
matching inG, and 2|M | < m, we haveG−N [V (M)] ∈ Dm−2|M |. Now, this implies that
all neighbors of xi,1, . . . , xi,ji (except for zi) are in N [V (M)] and thus in G−N [V (M)]
all xi,1, . . . , xi,ji are leaves. Hence zi is a stem in G − N [V (M)], which is at distance 2
from another stem v, a contradiction with Lemma 4.3.

Hence, the only possibility is that the procedure of building an induced matching M
consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one edge xi,jyi,j,k
to belong toM . SinceM is an induced matching and 2|M | < m, we haveG−N [V (M)] ∈
Dm−2|M | by Lemma 2.2. Note that in G−N [V (M)], w is a leaf, adjacent only to v. Thus
v is a stem, which is adjacent to two leaves, a contradiction with Lemma 4.1.

Lemma 4.5. If G is a uniformly dissociated graph with g(G) ≥ 7 and has a leaf, then
each vertex of G is either a leaf, or a stem or is adjacent to a stem.

Proof. Let G ∈ Dm for some m ≥ 2 with g(G) ≥ 7 and with a leaf. We may assume that
G is a connected graph. Suppose that there exists a vertex inG that is not a leaf, not a stem,
and not adjacent to a stem. Since G is connected, there exists such a vertex w, which is, in
addition, adjacent to u, which is in turn adjacent to a stem v.

Denote by z1, . . . , zp the neighbors of w, different from u, which are not leaves and
not stems by our assumption. Hence each of them has a neighbor, and let us denote
them by x1,1, . . . , x1,j1 , . . . , xp,1 . . . , xp,jp , where xi,j are the neighbors of zi for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Since xi,j are not leaves (because zi are not stems), each
of them has another neighbor, and let us denote the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j
for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Now, we build an induced matching M , consisted
of edges xi,jyi,j,k in the following way. As long as this is possible, for each zi choose a
j from {1, . . . , ji}, and add an edge xi,jyi,j,k to M , so that it does not destroy the prop-
erty of M being an induced matching. Suppose that the procedure of building an induced
matching M consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one
edge xi,jyi,j,k to belong to M . Since M is an induced matching and 2|M | < m, we have
G − N [V (M)] ∈ Dm−2|M | by Lemma 2.2. Note that in G − N [V (M)], w is a leaf, ad-
jacent to u; thus u and v are two adjacent stems, a contradiction with Lemma 4.2. Thus
the procedure of building an induced matching M such that all zi would be in N [V (M)]
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ends before each zi has a neighbor xi,j added to V (M). Let zi′ be such a vertex that for
all neighbors xi′,j′ all of their neighbors yi′,j′,k′ cannot be chosen, because each of them is
adjacent to some yi,j,k that is an endvertex of an edge from M .

Suppose deg(zi′) > 2. Note that for all neighbors xi′,j′ all of their neighbors yi′,j′,k′
are adjacent to a vertex yi,j,k ∈ V (M). Since M an induced matching in G, and 2|M | <
m, we haveG−N [V (M)] ∈ Dm−2|M |. This implies that all neighbors of xi′,1, . . . , xi′,ji′
(except for zi′ ) are in N [V (M)] and thus in G−N [V (M)] all xi′,1, . . . , xi′,ji′ are leaves.
Hence zi′ is a stem in G − N [V (M)], which has at least two leaves, a contradiction with
Lemma 4.1.

We may thus assume that deg(zi′) = 2, and let xi′ be the neighbor of zi′ , different
from w. Suppose that deg(xi′) > 2. By selecting the matching M ′, consisting only of
the edge uv, we infer by Lemma 2.2 that G − N [V (M ′)] ∈ Dm−2. Yet zi′ is a leaf in
G − N [V (M ′)], and so xi′ is a stem, whose degree is more than 2, a contradiction with
Lemma 4.4. Hence, we infer that also deg(xi′) = 2, and let yi′ be another neighbor of
xi′ . By the property of M , established above, we know that yi′ is adjacent to some yi,j,k,
which is at distance 3 from w. Now, let M ′′ be the matching consisting only of the edge
yi′yi,j,k. Hence, G−N [V (M ′′)] ∈ Dm−2, but in G−N [V (M ′′)] the vertex zi′ is a leaf,
and so w is a stem. We derive that w and v are two stems in the uniformly dissociated
graph G−N [V (M ′′)], which are at distance 2, contradicting Lemma 4.3.

We join the previous lemmas into the following fact.

Observation 4.6. IfG is a uniformly dissociated graph with g(G) ≥ 7 and has a leaf, then
every vertex that is not a stem nor a leaf, is adjacent to exactly one stem. Note that in that
case G has the structure as presented in the construction from Theorem 3.2, where each
of the extendable graphs, identified with a vertex from an arbitrary graph, is isomorphic
to P3.

The above observation is correct, because if a vertex were adjacent to two stems, these
two stems would be at distance 2, which is a contradiction with Lemma 4.3.

Lemma 4.7. IfG is a connected uniformly dissociated graph with g(G) ≥ 7 and δ(G) ≥ 2,
then G is isomorphic to C7.

Proof. Let G ∈ Dm for some m ≥ 2, g(G) ≥ 7, and δ(G) ≥ 2. Assume that there exists
a vertex v, with deg(v) ≥ 3.

Suppose that there exists a neighbor w of v, with deg(w) = 2. Let z be the neighbor of
w, different from v; further let x be a neighbor of z, and y a neighbor of x, different from z.
Note that y is not adjacent to v nor to any of its neighbors, due to the girth restriction. Let
M be the matching consisting only of the edge xy. Hence, G−N [V (M)] ∈ Dm−2, but in
G−N [V (M)] the vertex w is a leaf, and so v is a stem. Since degG−N [V (M)](v) ≥ 3 we
are in contradiction with Lemma 4.4.

The remaining possibility is that all neighbors of v have degree at least 3. Since G is
connected, we derive that every vertex in G has degree at least 3. We conclude the proof
by using the base technique from the proofs of previous lemmas.

Let v ∈ V (G), w one of its neighbors, and denote by z1, . . . , zp the neighbors of w,
different from v. Each of them has a neighbor, which we denote by

x1,1, . . . , x1,j1 , . . . , xp,1 . . . , xp,jp ,
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where xi,j are the neighbors of zi for all i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Each of xi,j
has another neighbor, and let us denote the neighbors of xi,j by yi,j,1, . . . , yi,j,ki,j for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , ji}. Now, we build an induced matching M , consisted of
edges xi,jyi,j,k in the following way. As long as this is possible, for each zi choose a j
from {1, . . . , ji}, and add an edge xi,jyi,j,k toM , so that it does not destroy the property of
M being an induced matching. Note that since girth is 7, the only possibility for destroying
the property of M being an induced matching is that some vertex yi,j,k is adjacent to
a vertex yi′,j′,k′ , which is already in M . More precisely, the procedure can end before an
edge xi,jyi,j,k has been added toM for all zi, only if for some zi and for all of its neighbors
xi,j all of their neighbors yi,j,k cannot be chosen, because each of them is adjacent to some
yi′,j′,k′ that is an endvertex of an edge from M . In this case, by using Lemma 2.2, we
infer that since M an induced matching in G, and 2|M | < m, we have G − N [V (M)] ∈
Dm−2|M |. Now, this implies that all neighbors of xi,1, . . . , xi,ji (except for zi) are in
N [V (M)] and thus in G − N [V (M)] all xi,1, . . . , xi,ji are leaves. Hence zi is a stem in
G−N [V (M)], which has degree at least 3, a contradiction with Lemma 4.4.

Hence, the only possibility is that the procedure of building an induced matching M
consisted from edges xi,jyi,j,k ends, so that for each zi we have chosen one edge xi,jyi,j,k
to belong toM . SinceM is an induced matching and 2|M | < m, we haveG−N [V (M)] ∈
Dm−2|M | by Lemma 2.2. Note that in G−N [V (M)], w is a leaf, adjacent only to v. Thus
v is a stem with degree at least 3, again the contradiction with Lemma 4.4.

As a result of this we now conclude thatG is a connected, uniformly dissociated, regular
graph of degree 2 and girth at least 7. It is straightforward to check that C7 is the only cycle
of order seven or more that is uniformly dissociated.

We are ready to state the main theorem.

Theorem 4.8. If G is a uniformly dissociated graph with g(G) ≥ 7, then each connected
component ofG is either isomorphic toC7, or can be obtained from an arbitrary connected
graph H with girth at least 7, by identifying each vertex of H with a leaf of a copy of P3.
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Appl. Math. 159 (2011), 1189–1195, doi:10.1016/j.dam.2011.04.008.

[6] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, volume 18 of
Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1989, doi:
10.1007/978-3-642-74341-2.

[7] A. Finbow, B. Hartnell and R. J. Nowakowski, A characterization of well covered graphs of
girth 5 or greater, J. Combin. Theory Ser. B 57 (1993), 44–68, doi:10.1006/jctb.1993.1005.



306 Ars Math. Contemp. 13 (2017) 293–306

[8] R. Gallant, G. Gunther, B. L. Hartnell and D. F. Rall, Limited packings in graphs, Discrete
Appl. Math. 158 (2010), 1357–1364, doi:10.1016/j.dam.2009.04.014.

[9] B. L. Hartnell and P. D. Vestergaard, Equipackable graphs, Bull. Inst. Combin. Appl. 46 (2006),
35–48, http://www.combinatorialmath.ca/ICA/ICA46.html.

[10] M. Jakovac and A. Taranenko, On the k-path vertex cover of some graph products, Discrete
Math. 313 (2013), 94–100, doi:10.1016/j.disc.2012.09.010.

[11] W. M. Kantor, Moore geometries and rank 3 groups having µ = 1, Q. J. Math. 28 (1977),
309–328, doi:10.1093/qmath/28.3.309.
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