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Abstract

A graph is equitably k-colorable if its vertices can be partitioned into k independent
sets in such a way that the number of vertices in any two sets differ by at most one. The
smallest k for which such a coloring exists is known as the equitable chromatic number
of G and it is denoted by χ=(G). In this paper the problem of determinig χ= for coronas
of cubic graphs is studied. Although the problem of ordinary coloring of coronas of cubic
graphs is solvable in polynomial time, the problem of equitable coloring becomes NP-hard
for these graphs. We provide polynomially solvable cases of coronas of cubic graphs and
prove the NP-hardness in a general case. As a by-product we obtain a simple linear time
algorithm for equitable coloring of such graphs which uses χ=(G) or χ=(G) + 1 colors.
Our algorithm is best possible, unless P=NP. Consequently, cubical coronas seem to be the
only known class of graphs for which equitable coloring is harder than ordinary coloring.
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1 Introduction
All graphs considered in this paper are connected, finite and simple, i.e. undirected, loop-
less and without multiple edges, unless otherwise is stated.

If the set of vertices of a graph G can be partitioned into k (possibly empty) classes
V1, V2, . . . , Vk such that each Vi is an independent set and the condition

∣∣|Vi| − |Vj |∣∣ ≤ 1
holds for every pair (i, j), then G is said to be equitably k-colorable. If |Vi| = l for every
i = 1, 2, . . . , k, then G on n = kl vertices is said to be strong equitably k-colorable. The
smallest integer k for whichG is equitably k-colorable is known as the equitable chromatic
number ofG and it is denoted by χ=(G) [14]. Since equitable coloring is a proper coloring
with an additional constraint, we have χ(G) ≤ χ=(G) for any graph G.

The notion of equitable colorability was introduced by Meyer [14]. However, an earlier
work of Hajnal and Szemerédi [9] showed that a graph G with maximal degree ∆ is equi-
tably k-colorable if k ≥ ∆ + 1. Recently, Kierstead et al. [11] have given an O(∆n2)-time
algorithm for obtaining a (∆ + 1)-coloring of a graph G on n vertices.

This model of graph coloring has many practical applications. Every time when we
have to divide a system with binary conflict relations into equal or almost equal conflict-
free subsystems we can model this situation by means of equitable graph coloring. In par-
ticular, one motivation for equitable coloring suggested by Meyer [14] concerns scheduling
problems. In this application, the vertices of a graph represent a collection of tasks to be
performed and an edge connects two tasks that should not be performed at the same time.
A coloring of this graph represents a partition of tasks into subsets that may be performed
simultaneously. Due to load balancing considerations, it is desirable to perform equal or
nearly-equal numbers of tasks in each time slot, and this balancing is exactly what equi-
table colorings achieve. Furmańczyk [5] mentions a specific application of this type of
scheduling problem, namely, assigning university courses to time slots in a way that avoids
scheduling incompatible courses at the same time and spreads the courses evenly among
the available time slots.

The topic of equitable coloring was widely discussed in literature. It was considered
for some particular graph classes and also for several graph products: cartesian, weak or
strong tensor products [13, 5] as well as for coronas [6, 10]. Graph products are interesting
and useful in many situations. The complexity of many problems, also equitable coloring,
that deal with very large and complicated graphs is reduced greatly if one is able to fully
characterize the properties of less complicated prime factors. Moreover, corona graphs lie
often close to the boundary between easy and hard problems.

The corona of two graphsG andH is the graphG◦H obtained by taking one copy ofG,
called the center graph, |V (G)| copies of H , named the outer graph, and making the i-th
vertex ofG adjacent to every vertex in the i-th copy ofH . Such type of graph products was
introduced by Frucht and Harary in 1970 [4] (for an example see Fig. 1). After that many
works have been devoted to study its structure and to obtain some relationships between
the corona graph and its factors [1, 4, 12, 15].

In general, the problem of optimal equitable coloring, in the sense of the number of
colors used, is NP-hard and remains so for corona products of graphs. In fact, Furmańczyk
et al. [6] proved that the problem of deciding whether χ=(G ◦ K2) ≤ 3 is NP-complete
even if G is restricted to the line graph of a cubic graph.

Let us recall some basic facts concerning cubic graphs. It is well known from Brook’s
theorem [2] that for any cubic graph G 6= K4, we have χ(G) ≤ 3. On the other hand,
Chen et al. [3] proved that for any cubic graph with χ(G) = 3, its equitable chromatic
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number equals 3 as well. Moreover, since a connected cubic graph G with χ(G) = 2 is
a bipartite graph with partition sets of equal size, we have the equivalence of the classical
and equitable chromatic numbers for 2-chromatic cubic graphs. Since the only cubic graph
for which the chromatic number is equal to 4 is the complete graph K4, we have

2 ≤ χ=(G) = χ(G) ≤ 4, (1.1)

for any cubic graph G.
In the paper we will consider the equitable coloring of coronas. We assume that in

corona G ◦H , |V (G)| = n and |V (H)| = m. A vertex with color i is called an i-vertex.
We use color 4 instead of 0, in all colorings in the paper, including cases when color label
is implied by an expresion (mod4).

Let

• Q2 denote the class of equitably 2-chromatic cubic graphs,

• Q3 denote the class of equitably 3-chromatic cubic graphs,

• Q4 denote the class of equitably 4-chromatic cubic graphs.

Clearly, Q4 = {K4}.

Next, let Q2(t) ⊂ Q2 (Q3(t) ⊂ Q3) denote the class of bipartite (tripartite) cubic
graphs with partition sets of cardinality t, and let Q3(u, v, w) ⊂ Q3 denote the class of
3-partite graphs with color classes of cardinalities u, v and w, respectively, where u ≥ v ≥
w ≥ u− 1. Observe that

χ(K4 ◦H) =

{
4 if H ∈ Q2,
χ(H) + 1 otherwise. (1.2)

In the next section we show a way to color G ◦ H with 3 colors provided that the
corona admits such a coloring. Next, in Section 3 we give a linear-time procedure for
coloring corona products of cubic graphs with 5 colors. It turns out that this number of
colors is sufficent for equitable coloring of any corona of cubic graphs, but in some cases
less than 5 colors suffice. In Section 4 we give our main result that deciding whether G◦H
is equitably 4-colorable is NP-complete whenH ∈ Q3(t) and 10 divides t, in symbols 10|t.
Hence, our 5-coloring algorithm of Section 3 is 1-absolute approximate and the problem
of equitable coloring of cubical coronas belongs to very few NP-hard problems that have
approximation algorithms of this kind. Most of our results are summarized in Table 1.

PPPPPPPPG
H

Q2 Q3 Q4

Q2 3 or 4 [Thm. 2.3] 4 or 5∗ [Thms. 3.3, 4.3] 5 [Thm. 3.2]

Q3 3 or 4 [Thm. 2.3] 4 or 5∗ [Thm. 3.4, Col. 4.4] 5 [Thm. 3.2]

Q4 4 [Thm. 2.3] 4 5 [Thm. 3.2]

Table 1: Possible values of χ=(G ◦ H), where G and H are cubic graphs. Asterix (∗)
means that deciding this case is NP-complete.

To the best of our knowledge, cubical coronas are so far the only class of graphs for
which equitable coloring is harder than ordinary coloring. And, since χ=(G ◦H) ≤ 5 and
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∆(G ◦ H) ≥ 7, our results confirm Meyer’s Equitable Coloring Conjecture [14], which
claims that for any connected graph G, other than a complete graph or an odd cycle, we
have χ=(G) ≤ ∆.

2 Equitable 3-coloring of corona of cubic graphs
First, let us recall a result concerning coronas G ◦H , where H is a 2- or 3-partite graph.

Theorem 2.1 ([6]). Let G be an equitably k-colorable graph on n ≥ k vertices and let H
be a (k − 1)-partite graph. If k|n, then

χ=(G ◦H) ≤ k.

Proposition 2.2. If G and H are cubic graphs, then χ=(G ◦ H) = 3 if and only if G ∈
Q2 ∪Q3, H ∈ Q2, and G has a strong equitable 3-coloring.

Proof. (⇐) Since G is strong equitably 3-colorable, the cardinality of its vertex set must
be divisible by 3. The thesis follows now from Theorem 2.1.
(⇒) Assume that χ=(G ◦H) = 3. This implies:

• H must be 2-chromatic, and due to (1.1) it must be also equitably 2-chromatic,

• G must be 3-colorable (not necessarily equitably), χ(G) ≤ χ=(G) ≤ 3, which
implies G ∈ Q2 ∪Q3.

Otherwise, we would have χ(G ◦H) ≥ 4 which is a contradiction.
Since H ∈ Q2 is connected, its bipartition is determined. Let H ∈ Q2(t), t ≥ 3.

Observe that every 3-coloring of G determines a 3-partition of G ◦ H . Let us consider
any 3-coloring of G with color classes of cardinality n1, n2 and n3, respecively, where
n = n1 + n2 + n3. Then the cardinalities of color classes in the implied 3-coloring of
G ◦H form a sequence ((n2 + n3)t, (n1 + n3)t, (n1 + n2)t). Such a 3-coloring of G ◦H
is equitable if and only if n1 = n2 = n3. This means that G must have a strong equitable
3-coloring, which, keeping in mind that χ=(G ◦ H) ≥ 3 for all cubic graphs G and H ,
completes the proof.

In the remaining cases of coronas G ◦ H , where H ∈ Q2, we have to use more than
three colors. However, it turns out that in all such cases four colors suffice.

Theorem 2.3. If G is a cubic graph, H ∈ Q2, then

χ=(G ◦H) =

{
3 if G ∈ Q2(s) ∪Q3, 3|s and G is equitably 3-colorable,
4 otherwise.

Proof. Due to Proposition 2.2, we only have to define an equitable 4-coloring of G ◦ H .
The cases of G ∈ Q2 ∪ Q4 are easy. We start from an equitable 4-coloring of the center
graph and extend it to the corona.

Let us assume that G ∈ Q3. First, we color equitably G with 3 colors and then extend
this coloring to equitable 4-coloring of G ◦H , H = H(U, V ) ∈ Q2(t). Since the number
of vertices of cubic graph G is even, we have to consider two cases.
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Case 1: n = 4k, for some k ≥ 2.

Since G is equitably 3-colorable, the color classes of equitable 3-coloring of G are
of cardinalities d4k/3e, d(4k − 1)/3e and d(4k − 2)/3e, respectively. And, since
|V (G ◦H)| = 4k(2t + 1), in every equitable 4-coloring of G ◦H each color class
must be of cardinality 2kt+ k.

We extend our 3-coloring of G to G ◦H as follows (see Fig. 1a)). We color:

• the vertices in one copy of H linked to a 1-vertex in G using t times color 3
(vertices in partitionU ), t−(d(4k−1)/3e−k) times color 2 and d(4k−1)/3e−k
times color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 2-vertex in G using t times color 1
(vertices in partitionU ), t−(d(4k−2)/3e−k) times color 3 and d(4k−2)/3e−k
times color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 3-vertex in G using t times color 2
(vertices in partition U ), t− (d4k/3e − k) times color 1 and d4k/3e − k times
color 4 (vertices in partition V ).

Figure 1: An example of coloring of W ◦K3,3, where W is the Wagner graph (C8 with 4
diagonals): a) partial 4-coloring; b) equitable 4-coloring.

So far, colors 1, 2 and 3 have been used 2t+ k times, while color 4 has been used k
times.

Now, we color each of uncolored copy of H with two out of three allowed colors in
such a way that in this step colors 1, 2 and 3 are used (2k − 2)t times and color 4 is
used 2kt times, which results in an equitable 4-coloring of the whole corona G ◦H
(see Fig. 1b)).

Case 2: n = 4k + 2, for some k ≥ 1.

Since G is equitably 3-colorable, its color classes are of cardinalities d(4k + 2)/3e,
d(4k+1)/3e and d4k/3e, respectively, in any equitable coloring of G. Since |V (G◦
H)| = (4k+ 2)(2t+ 1) = 8kt+ 4t+ 4k+ 2, in every equitable 4-coloring the color
classes must be of cardinality 2kt+ t+ k or 2kt+ t+ k + 1.
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We color:

• the vertices in one copy of H linked to a 1-vertex of G using t times color
3 (vertices in partition U ), t − (d(4k + 1)/3e − k − 1) times color 2 and
d(4k + 1)/3e − k − 1 times color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 2-vertex of G using t times color 1
(vertices in partition U ), t− (d4k/3e − k) times color 3 and d4k/3e − k times
color 4 (vertices in partition V ),

• the vertices in one copy of H linked to a 3-vertex of G using t times color
2 (vertices in partition U ), t − (d(4k + 2)/3e − k − 1) times color 1 and
d(4k + 2)/3e − k − 1 times color 4 (vertices in partition V ).

So far, colors 1 and 2 have been used 2t+ k + 1 times, while color 3 has been used
2t+ k times and color 4 has been used k times.

Finally, we color still uncolored copies of H with two (out of three) allowed colors
so that colors 1, 2 and 3 are used (2k−1)t times and color 4 is used 2kt times, which
results in an equitable 4-colorings of the whole corona G ◦H .

3 Equitable 5-coloring of coronas of cubic graphs
We start by considering cases when 5 colors are necessary for such graphs to be colored
equitably.

Proposition 3.1 ([6]). If G is a graph with χ (G) ≤ m+ 1, then χ=(G ◦Km) = m+ 1.

This proposition immediately implies

Corollary 3.2. If G is a cubic graph, then

χ=(G ◦K4) = 5.

It turns out that 5 colors may be required also in some coronas G ◦ H , where G ∈
Q2 ∪Q3 and H ∈ Q3.

Theorem 3.3. If G ∈ Q2(s) and H ∈ Q3, then

4 ≤ χ=(G ◦H) ≤ 5.

Proof. Since H ∈ Q3, we obviously have χ=(G ◦H) ≥ 4.
To prove the upper bound, we consider two cases. Let H = H(U, V,W ) with triparti-

tion of H satisfying |U | ≥ |V | ≥ |W |.

Case 1: s = 2k + 1, k ≥ 1.

We start with the following 4-coloring of G ◦H .
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1. Color graph G with 4 colors, using each of colors 1 and 2 k times and colors 3
and 4 (k + 1) times, respectively.

2. Color the vertices of each copy of H(U, V,W ) linked to an i-vertex of G using
color (i + 1) mod 4 for vertices in U , color (i + 2) mod 4 for vertices in V ,
and color (i+ 3) mod 4 for vertices in W (we use color 4 instead of 0).

Now, we have to consider three subcases, where we bound the number of vertices
that have to be recolored to 5.

Subcase 1.1: H ∈ Q3(t+ 1, t, t), where t = v = w.
The color sequence of the 4-coloring of this corona is C4 = (c1, c2, c3, c4) =
(3kt+ 2k + 2t+ 1, 3kt+ 2k + 2t, 3kt+ 2k + t+ 1, 3kt+ 2k + t+ 2).
In every equitable 5-coloring of the corona G ◦H , where G ∈ Q2(2k+ 1) and
H ∈ Q3(t+1, t, t), every color must be used γ15 = d(12kt+8k+6t+4)/5e =
(2kt+t+k+d(2kt+t+3k+4)/5e) or γ25 = (2kt+t+k+b(2kt+t+3k+4)/5c)
times. The number di of vertices colored with i, 1 ≤ i ≤ 4, that have to be
recolored is equal to ci − γ15 or ci − γ25 . We have

d1 ≤ c1 − γ15 ≤ c1 − γ25 = kt+ t+ k + 1− b(2kt+ t+ 3k + 4)/5c =

= (k + 1)(t+ 1)− b(2kt+ t+ 3k + 4)/5c ≤ (k + 1)(t+ 1).

Similarly, we have

d2 ≤ k(t+ 1) + t,

d3 ≤ k(t+ 1), and
d4 ≤ k(t+ 1).

Subcase 1.2: H ∈ Q3(t+ 1, t+ 1, t), where t = w.
The color sequence of the 4-coloring of this corona is C4 = (c1, c2, c3, c4) =
(3kt+ 3k + 2t+ 2, 3kt+ 3k + 2t+ 1, 3kt+ 3k + t+ 1, 3kt+ 3k + t+ 2).
In every equitable 5-coloring of the corona G ◦H , where G ∈ Q2(2k+ 1) and
H ∈ Q3(t+ 1, t+ 1, t), every color must be used γ15 = d(12kt+ 12k + 6t+
6)/5e = (2kt+ t+ 2k+ 1 + d(2kt+ t+ 2k+ 1)/5e) or γ25 = (2kt+ t+ 2k+
1 + b(2kt+ t+ 2k + 1)/5c) times.
Similarly, as in Subcase 1.1, we have

d1 ≤ c1 − γ15 ≤ c1 − γ25 ≤ (k + 1)(t+ 1),

d2 ≤ k(t+ 1) + y,

d3 ≤ k(t+ 1), and
d4 ≤ k(t+ 1).

Subcase 1.3: H ∈ Q3(t), where t = u = v = w.
The color sequence of the 4-coloring of this corona is C4 = (c1, c2, c3, c4) =
(3kt+ k + 2t, 3kt+ k + 2t, 3kt+ k + t+ 1, 3kt+ k + t+ 1).
In every equitable 5-coloring of the corona G ◦ H , where G ∈ Q2(2k + 1)
and H ∈ Q3(t, t, t), every color must be used d(12kt + 4k + 6t + 2)/5e =
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(2kt + t + d(2kt + t + 4k + 2)/5e) or (2kt + t + b(2kt + t + 4k + 2)/5c)
times.
Similarly, as in previous subcases, we have

d1 ≤ (k + 1)t,

d2 ≤ kt+ t,

d3 ≤ kt, and
d4 ≤ kt.

Consequently, in all subcases, the number of i-vertices that have to be recolored is
bounded by:

• (k + 1)u for i = 1,
• ku+ w for i = 2,
• ku for i = 3, 4.

To obtain an equitable 5-coloring from the 4-coloring of G ◦ H(U, V,W ), |U | ≥
|V | ≥ |W |, we recolor the appropriate number of i-vertices in partitions U linked to
(i − 1)-vertices of G for the vertices which were colored with color i. Due to the
above, this is possible in the cases of colors 1, 3 and 4. In the case of 2-vertices, the
number of vertices recolored in partition U in copies of H can be insufficient. In this
case, we can recolor the vertices in partition W (of cardinality w) in one copy of H
linked to 3-vertex of G.

Case 2: s = 2k, k ≥ 2.

Again, we start with 4-coloring of G ◦H , as follows.

1. Color graph G with 4 colors, using each of colors 1,2, 3 and 4 k times.

2. Color the vertices of each copy of H(U, V,W ) linked to an i-vertex of G using
color (i + 1) mod 4 for vertices in U , color (i + 2) mod 4 for vertices in V ,
and color (i+ 3) mod 4 for vertices in W (we use color 4 instead of 0).

Notice that the resulting 4-coloring does not require recoloring: it is equitable and
establishes that the lower bound is tight.

Similar technique for obtaining an equitable coloring is used in the proof of the follow-
ing theorem, by introducing the fifth color.

Theorem 3.4. If G,H ∈ Q3, then

4 ≤ χ=(G ◦H) ≤ 5.

Proof. LetG = G(A,B,C), where |A| ≥ |B| ≥ |C| ≥ |A|−1, and letH = H(U, V,W ),
where |U | ≥ |V | ≥ |W | ≥ |U | − 1. We start with a 4-coloring of G ◦H .

1. Color the vertices of graph G with 3 colors: the vertices in A with color 1, in B with
2, and in C with color 3.
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2. Color the vertices of each copy of H linked to an i-vertex using color (i+ 1) mod 4
for vertices in U , color (i+ 2) mod 4 for vertices in V , and color (i+ 3) mod 4 for
vertices in W , i = 1, 2, 3 (see Fig. 2a)).

Figure 2: An example of coloring of W ◦ P , where W is the Wagner graph and P is the
prism graph: a) ordinary 4-coloring; b) equitable 5-coloring.

Since |V (G ◦ H)| = (m + 1)n, the color cardinality sequence C = (c1, c2, c3, c4) of
the above 4-coloring of G ◦H is as follows:

(
dn/3e+ d(n− 1)/3e d(m− 2)/3e+ d(n− 2)/3e d(m− 1)/3e ,

dn/3e dm/3e+ d(n− 1)/3e+ d(n− 2)/3e d(m− 1)/3e ,
dn/3e d(m− 1)/3e+ d(n− 1)/3e dm/3e+ d(n− 2)/3e ,

dn/3e d(m− 2)/3e+ d(n− 1)/3e d(m− 1)/3e+ d(n− 2)/3e dm/3e
)
,

respectively. This 4-coloring is not equitable. We have to recolor some vertices colored
with 1, 2, 3 and 4 into 5. The number of vertices colored with i, 1 ≤ i ≤ 4, that have to be
recolored is equal to ci − d((m+ 1)n− i+ 1)/5e.

We have the following claims:
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⌉
|U |. (3.4)

Proof of inequalities (3.1)-(3.4). Let us consider three cases, G ∈ Q3(s), Q3(s + 1, s, s),
andQ3(s+1, s+1, s), and in each case three subcases, H ∈ Q3(t), Q3(t+1, t, t), Q3(t+
1, t + 1, t), respectively. The estimation technique for the number of vertices that have to
be recolored to color 5 is similar to that used in the proof of Theorem 3.3.

Case 1: G ∈ Q3(s), where s = 2k for some k ≥ 1.

Subcase 1.1: H ∈ Q3(t), where t = 2l for some l ≥ 1.

We have |V (G◦H)| = (3t+1)3s = 5(7kl+k)+kl+k, while the color cardinality
sequence C of the 4-coloring of G ◦ H is C = (s + 2st, s + 2st, s + 2st, 3st) =
(8kl + 2k, 8kl + 2k, 8kl + 2k, 12kl).

Since in every equitable 5-coloring of G ◦H each of 5 colors has to be used (7kl +
k+d(kl+k)/5e) or (7kl+k+b(kl+k)/5c) times, we have to recolor some vertices
colored with 1, 2, 3 and 4 into 5. The number of vertices that have to be recolored is
as follows:

• the vertices colored with 1:
8kl + 2k − 7kl − k − d(kl + k)/5ee ≤ 2kl =

⌊
1
2 |C|

⌋
|V |,

• the vertices colored with 2:
8kl + 2k − 7kl − k − d(kl + k − 1)/5ee ≤ 2kl =

⌊
1
2 |A|

⌋
|U |,

• the vertices colored with 3:
8kl + 2k − 7kl − k − d(kl + k − 2)/5e ≤ 2kl ≤

⌊
3
4 |B|

⌋
|U |,

• the vertices colored with 4:
12kl − 7kl − k − d(kl + k − 3)/5e ≤ 4kl + dk2 · 2le =
=
⌈
1
2 |A|

⌉
|W |+

⌈
1
4 |B|

⌉
|V |+

⌈
1
2 |C|

⌉
|U |.

Subcase 1.2: H ∈ Q3(t+ 1, t, t), where t = 2l + 1 for some l ≥ 1.

We have |V (G ◦H)| = (3t+ 2)3s = 5(7kl + 6k) + kl, while the color cardinality
sequence C of the 4-coloring ofG◦H is C = (s+2st, 2s+2st, 2s+2st, 3st+s) =
(8kl + 6k, 8kl + 8k, 8kl + 8k, 12kl + 8k).
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Since in every equitable 5-coloring of G ◦H each of 5 colors has to be used (7kl +
6k+dkl/5e) or (7kl+6k+bkl/5c) times, we have to recolor some vertices colored
with 1, 2, 3 and 4 into 5. The number of vertices that have to be recolored is as
follows:

• the vertices colored with 1:
kl − dkl/5e ≤ 2kl + k =

⌊
1
2 |C|

⌋
|V |,

• the vertices colored with 2:
k(l + 1) + k − d(kl − 1)/5e ≤ 2k(l + 1) =

⌊
1
2 |A|

⌋
|U |,

• the vertices colored with 3:
k(l + 1) + k − d(kl − 2)/5e ≤ b 34kc(2l + 2) =

⌊
3
4 |B|

⌋
|U |,

• the vertices colored with 4:
5kl + 2k − d(kl − 3)/5e ≤ 4kl + 2k + dk2 e(2l + 1) =
=
⌈
1
2 |A|

⌉
|W |+

⌈
1
4 |B|

⌉
|V |+

⌈
1
2 |C|

⌉
|U |.

Subcase 1.3: H ∈ Q3(t+ 1, t+ 1, t), where t = 2l for some l ≥ 1.

We have |V (G◦H)| = (3t+3)3s = 5(7kl+3k)+kl+3k, while the color cardinality
sequence C of the 4-coloring ofG◦H is C = (2s+2st, 2s+2st, 3s+2st, 3st+2s) =
(8kl + 4k, 8kl + 4k, 8kl + 6k, 12kl + 4k).

Since in every equitable 5-coloring of G ◦H each of 5 colors has to be used (7kl +
3k+ d(kl+ 3k)/5e) or (7kl+ 3k+ b(kl+ 3k)/5c) times, we have to recolor some
vertices colored with 1, 2, 3 and 4 into 5. The number of vertices that have to be
recolored is as follows:

• the vertices colored with 1:
kl + k − d(kl + 3k)/5e ≤ 2kl + k =

⌊
1
2 |C|

⌋
|V |,

• the vertices colored with 2:
kl + k − d(kl + 3k − 1)/5e ≤ 2kl + k =

⌊
1
2 |A|

⌋
|U |,

• the vertices colored with 3:
kl + 3k − d(kl + 3k − 2)/5e ≤ b 32kc(2l + 1) =

⌊
3
4 |B|

⌋
|U |,

• the vertices colored with 4:
5kl + k − d(kl + 3k − 3)/5e ≤ 4kl + k + dk2 e(2l + 1) =
=
⌈
1
2 |A|

⌉
|W |+

⌈
1
4 |B|

⌉
|V |+

⌈
1
2 |C|

⌉
|U |.

Case 2: G ∈ Q3(s + 1, s, s), where s = 2k + 1 for some k ≥ 1. The proof follows by a
similar argument to that in Case 1, we omit the details.

Case 3: G ∈ Q3(s + 1, s + 1, s), where s = 2k for some k ≥ 1. The proof follows by a
similar argument to that in Case 1, we omit the details.

End of the proof of inequalities (3.1)-(3.4).

Now, to obtain an equitable 5-coloring of G ◦H , we choose the vertices that have to be
recolored.

• Since the number of 1-vertices that have to be recolored to 5 is not greater than
b 12 |C|c|V |, then the vertices colored with 1 are chosen from the partitions V of
b 12 |C|c copies of H linked to the vertices from partition C of G.
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• Similarly, 2-vertices that have to be recolored are chosen from the partitions U of
b 12 |A|c copies of H linked to the vertices from partition A of G.

• 3-vertices to be recolored are chosen from the partitions U of b 34 |B|c copies of H
linked to the vertices from partition B of G.

• 4-vertices are chosen from:

– partitions W of d 12 |A|e copies of H linked to the vertices from the partition A
of G (different copies than in recoloring of 2-vertices),

– partitions V of d 14 |B|e copies of H linked to the vertices from the partition B
of G (different copies than in recoloring of 3-vertices),

– partitions U of d 12 |C|e copies of H linked to the vertices from the partition C
of G (different copies than in recoloring of 1-vertices) (see Fig. 2b)).

Taking into account our claim, such recoloring is possible.

As we have already observed, the lower bound in Theorem 3.3 is tight. Also upper
bounds in Theorems 3.3 and 3.4 are tight. There are infinitely many coronas G ◦H , where
G ∈ Q2 ∪ Q3 and H ∈ Q3, that require five colors to be equitably colored. For example,
in such coronas graph H ∈ Q3 may be built of 3t (t must be even) vertices and it must
contain t disjoint triangles (cycles C3) (cf. Fig. 3). Let us consider for example G = K3,3.
In the corona K3,3 ◦ H , where H is defined as above, the number of vertices is equal to
36k + 6, for some positive integer k. In any equitable 4-coloring of the corona, the color
sequence must be (9k+ 2, 9k+ 2, 9k+ 1, 9k+ 1). Since modifying the tripartite structure
of H is impossible (it contains t = 2k disjoint triangles), such a coloring does not exist for
k ≥ 2.
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Figure 3: An example of graph H ∈ Q3 for which χ=(G ◦H) = 5, for G ∈ Q3.

4 Complexity results
Although we have only two possible values, 4 and 5, for χ=(G ◦H), where G ∈ Q2 ∪Q3

and H ∈ Q3, it is hard to decide which is correct1. All G,H are still cubic.
We consider the following combinatorial decision problems:

Note that the IS3(H, k) problem is NP-complete and remains so even if 10|m [8]. This
is so because we can enlargeH by adding j (0 ≤ j ≤ 4) isolated copies ofK3,3 to it so that
the number of vertices in the new graph is divisible by 10. Graph H has an independent set
of size at least k if and only if the new graph has an independent set of size at least k + 3j.

1graphs considered in this section need not be connected
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IS3(H, k): Given a cubic graph H on m vertices and an integer k, the question
is: does H have an independent set I of size at least k?

and its subproblem for m = 10q, k = 4m/10 = 4q, i.e. IS3(H, 4q).

Lemma 4.1. Problem IS3(H, 4m/10) is NP-complete.

Proof. Our polynomial reduction is from IS3(H, k). For anm-vertex cubic graphH , 10|m,
and an integer k, let r = |4m/10 − k|. If k ≥ 4m/10 then we construct a cubic graph
G = H + rK4 + rP else we construct G = H + rK4 + 2rP + 4rK3,3, where P ∈ Q3(2)
is the prism graph. It is easy to see that the answer to problem IS3(H, k) is ’yes’ if and
only if the answer to problem IS3(G, 4m/10) is ’yes’.

Lemma 4.2. LetH be a cubic graph and let k = 4/10m, wherem is the number of vertices
of H . The problem of deciding whether H has a coloring of type (4m/10, 3m/10, 3m/10)
is NP-complete.

Proof. We prove that H has a coloring of type (4m/10, 3m/10, 3m/10) if and only if
there is an affirmative answer to IS3(H, 4m/10).

Suppose first that H has the above 3-coloring. Then the color class of size 4m/10 is an
independent set that forms a solution to IS3(H, 4m/10).

Now suppose that there is a solution I to IS3(H, 4m/10). Thus |I| ≥ 4m/10. We
know from [7] that in this case there exists an independent set I ′ of size exactly 4m/10
such that the subgraph H − I ′ is equitably 2-colorable bipartite graph. This means that H
can be 3-colored so that the color sequence is (4m/10, 3m/10, 3m/10).

In the following we show that, given such an unequal coloring of H , we can color
K3,3 ◦H equitably with 4 colors.

(i) Color the vertices of K3,3 with 4 colors - the color sequence is (2, 2, 1, 1).

(ii) Color the vertices in copies of H = H(U, V,W ), |U | = 4m/10, |V | = |W | =
3m/10, in the following way:

• vertices in partitions U of H adjacent to a 1-vertex of K3,3 are colored with
color 2, in partitions V - with 3, and in partitions W - with 4,

• vertices in partitions U of H adjacent to a 2-vertex of K3,3 are colored with
color 1, in partitions V - with 3, and in partitions W - with 4,

• vertices in partition U of H adjacent to the 3-vertex of K3,3 are colored with
color 1, in partition V - with 2, and in partition W - with 4,

• vertices in partition U of H adjacent to the 4-vertex of K3,3 are colored with
color 2, in partition V - with 1, and in partition W - with 3.

Color sequence of the corona is (15m/10+2, 15m/10+2, 15m/10+1, 15m/10+1).
On the other hand, let us assume that the corona K3,3 ◦ H , where H ∈ Q3(t) and

t = 10k, is equitably 4-colorable, where the color sequence for K3,3 is (2, 2, 1, 1). Since
|V (K3,3 ◦ H)| = 6(3t + 1) = 18t + 6 and t = 10k for some k, then each of the four
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colors in every equitable coloring is used 45k+1 or 45k+2 times. Since color 1 (similarly
color 2) can be used only in four copies of H , then in at least one copy we have to use
it 12k = 12t/10 times. It follows that there must exist an independent set of cardinality
12t/10 in H . Since H has 3t vertices, the size of this set is 4m/10.

The above considerations lead us to the following

Theorem 4.3. The problem of deciding whether χ=(K3,3 ◦H) = 4 is NP-complete even
if H ∈ Q3(t) and 10|t. �

A similar argument implies the following

Corollary 4.4. The problem of deciding whether χ=(P ◦ H) = 4, where P is the prism
graph, is NP-complete even if H ∈ Q3(t) and 10|t. �

In this way we have obtained the full classification of complexity for equitable coloring
of cubical coronas.

5 Conclusion
In this paper, we presented all the cases of corona of cubic graphs for which 3 colors suffice
for equitable coloring. In the remaining cases we have proved constructively that 5 colors
are enough for equitable coloring. Since there are only two possible values for χ=(G◦H),
namely 4 or 5, our algorithm is 1-absolute approximate. Due to Theorem 4.3 and Corollary
4.4 the algorithm cannot be improved unless P=NP. Since time spend to assign a final color
to each vertex is constant, the complexity of our algorithm is linear. Finally, the algorithm
confirms the Equitable Coloring Conjecture [14].

Our results are summarized in Table 2. This table contains also the values of classical
chromatic numbers of appropriate coronas and the complexity classification. Let us notice
that all cases are polynomially solvable for ordinary coloring.

PPPPPPPPG
H

Q2 Q3 Q4

Q2, Q3 3 3 or 4 4 4 or 5∗ 5 5
Q4 4 4 4 4 5 5

Table 2: The exact values of classical chromatic number (in italics) and possible values of
the equitable chromatic number (in bold) of coronas G ◦ H . Asterix (∗) means that this
case is NP-complete. The other cases are solvable in linear time.
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