
https://doi.org/10.31449/inf.v45i6.3675 Informatica 45 (2021) 133–140 133

A Fast Prototype for Modeling IP Cores Using in SoC with UML

Marte

Benabdallah Ahcene Youcef and Boudour Rachid

Embedded Systems Laboratory, Badji Mokhtar University, Annaba, Algeria

benabdallah.ahcene@gmail.com, racboudour@yahoo.fr

Keywords: IP, SoC, MDA, UML, Marte.

Received: August 8, 2021

The gap between production systems and technological development has been growing in recent times,

leading to the reuse of predesigned and pre-verified components called Intellectual Property (IP). The

growth of the latter is not going to happen without encountering some difficulties; we include among some

a lack of standards for the implementation of IPs, making integration difficult, only one incentive to some

types of hardware or software IPs, and generally an incomplete development approach. In this paper, we

present a comprehensive approach for modeling IPs starting from metamodeling. The approach is based

on a Model-Driven Engineering (MDA) methodology, used standards for SoC (Systems-on-Chip)

specification, MARTE, and Hardware Description Languages (HDLs). We illustrate our methodology in

the case of USB 3.1, using Papyrus for modeling. Results are encouraging and show that the proposed

approach allows creating cores of any size.

Povzetek: Hiter prototip za modeliranje jeder IP z uporabo v SoC z UML Marte, ponazorjen z USB3.1.

1 Introduction
The rapid evolution of society has led to the development

of equipment (systems) increasingly complex, capable of

processing information flows of very diverse nature and

origin and whose access must remain nevertheless simple

and fast.

Electronics enabled the progress of fields such as

designing larger chips with more layers. Actually, it is

possible to develop complex circuits for embedded

systems that contain embedded processors, memory

blocks, interface blocks and specific components for

applications, but with difficult and time-consuming task.

Currently, there are several possibilities to continue

Moore’s law for several decades, such as new

technologies including quantum computing or 3D chips

and sophisticated algorithms. [1]

Faced with these constraints, the designers are trying

to promote code reuse, by moving towards assembling

predesigned and pre-verified blocks referred to as virtual

components. Reuse and integration of heterogeneous

Intellectual Property (IP) from multiple vendors is a

complex task. All thus anomalies find the problem of

communication between them, which it comes to the

multiple methodology of development for these

components [2].

For these anomalies, VSIA (Virtual Socket Interface

Alliance) [3] has recommended standardizing the design

and the development of this component by defining a set

of rules and using the different standards recommended in

the domain of Embedded Systems (ES) and especially in

System on Chips (SoCs).

In order to favor the reuse of components,

architectures, and minimize the problem for developing

complex embedded systems, it is required to have a tool

providing flexibility, scalability and reusability

capabilities, especially at the beginning of the design

process [4].

 For this purpose, a model described in UML Marte

MDA methodologies make the building blocks of the

high-level models linked to the low implementations that

embody the related behavior. This is basically an IP reuse

problem, and in this way the components can be

configured, and a synthesizable top-level implementation

can be obtained. [5]

Absence of standard for IPs, and Lack of flexibility

and interoperability gave birth to several development

methods. Works related to development of IP cores using

in SoC, can be categorized in several families. Therefore,

we seek to make possible the design of standard virtual

components in order to facilitate good operation in terms

of integrating this IP into SoCs. In this work, we are

interested in the design of these components in the

modeling level that we try to elevate design abstraction

level. Raising the level of abstraction is an optimal

solution to improve design productivity.

This paper presents a fast prototype for modeling IPs

cores using in SoC based on a UML MARTE, which takes

into consideration both hardware and software

descriptions.

To present this approach, the paper is divided into

seven sections: in the sequel, we recall in section 2 the

preliminary concepts about IPs, section 3 is devoted to

previous works. Section 4 puts emphasis on our

development approach. Section 5, describes the

implementation details followed by an evaluation on a real

134 Informatica 45 (2021) 133–140 B.A. Youcef et al.

example. Section 6 presents results and discussions;

finally section 7 concludes the paper and outlines areas for

future research.

2 Preliminary concepts

2.1 Intellectual property

Reuse of predesigned components is well known in the

field of software design concept. This technique is applied

to the design of silicon systems whose complexity and

heterogeneity are growing. The complexity of hearts

reused has therefore never ceased to grow, and originally

began to reuse logic gates level (assembly of transistors),

then evolved to use macro-functions (assemblies of logic

gates) eventually leading to reuse RTL components that

can go up many thousands of transistors [6].

An Intellectual Property is the specification of a

component performing a clearly defined function that can

be synthesized, thus reused, by a user who did not

participate in the specification of this component.

VSIA defines three classes of virtual components

depending on the level of abstraction of their

synthesizable description: hardware, firmware and

software [7]:

2.2 UML marte

UML MARTE Profile is the new standardized add

semantics to UML for Real time Embedded System. It

offers a number of functionalities organized as packages

[8]:

(1) The Non Functional Modeling is organized around

several packages: Properties (NFP) package enables

to describe features that are not directly related to the

business model (performance, memory usage, power

consumption, etc.) and mechanisms to attach them to

model elements,

(2) The Time package enables modeling of time

structure and access (continuous time, clock, etc.),

(3) The Generic Resource Modeling (GRM) package

enables modeling platform resources from high level

perspective and mechanisms to manage access to

those resources,

(4) The Allocation package enables modeling of spatial

and temporal allocations,

(5) The Detailed Resource Modeling (DRM) package

allows modeling of hardware and software resources

at several levels of granularity; it contains two sub-

packages enabling the modeling of Software

Resource (SRM) and Hardware Resource (HRM),

(6) The Generic Quantitative Analysis Modeling

(GQAM) package allows several types. It contains

two sub packages for modeling Performance

Analysis (PAM) and Schedulability Analysis

(SAM).

2.3 USB 3.1

The original Universal Serial Bus (USB) was driven by

the need to provide a user-friendly plugand- play way to

attach external peripherals to a Personal Computer (PC).

USB 3.0 was a revolutionary step for USB.

USB 3.1 is the next evolutionary step to increase the

bandwidth. The goal remains the same; end users view it

as the same as they viewed USB 2.0 and USB 3.0, just

faster, and to enable devices from different vendors to

interoperate in an open architecture [9].

 USB 3.1 Gen 2 is a new high-speed IO interface

running at 10 Gbps. It is expected to be widely used for

connection of external hard drives and flash drives. The

previous generation USB 3.1 Gen 1 design is used as a

starting point and a divide and conquer approach is used

to analyze the link. [10]

Figure 1: USB3.1 Dual Bus System Architecture [9].

The USB 3.1 system architecture in Figure 1 is

comprised of two simultaneously active buses: a USB 2.0

bus and an Enhanced SuperSpeed bus.

Version Described as Data Rate

USB1.1
Low Speed (LS)

1.5 Mbit/s
Full Speed (FS)

USB2.0 High Speed (HS) 480Mbit/s

USB3.0 Super Speed (SS) 5 Gbit/s

USB3.1 Super Speed Plus (SSP) 10 Gbit/s

Table 1: The evolution of USB terminology.

3 Related works
We can mention several initiatives that preceded Works

related to modeling an IPs and trying to elevate design

abstraction levels, such as providing specification in

system level language like UML and profile MARTE to

accelerate the production and decreasing the complexity

related to the creation of virtual component can be

categorized in several families. In this section, we mention

the following works:

A Fast Prototype for Modeling IP Cores Using... Informatica 45 (2021) 133–140 135

In [11] authors have proposed a soft IP customization

framework based on the concept of design process and

metaprogramming. The framework is independent of

specific HW synthesis tools, proprietary technological

libraries and HW description languages, and allows

implementing customization of soft IP components taken

from different providers and sources. HW and SW design

can be unified at a high level of abstraction using UML.

Different high-level abstractions can be used in the same

system design flow, and in [2] they have presented a

Design Process Model for adopting object- oriented

design concepts in HW design domain and implementing

HW design processes. The model combines UML class

diagrams, metaprogramming and SW generators. The

generation of HW models from UML class diagrams

combined with the metaprogramming-based generation

allowed us to raise the level of abstraction above the gate-

level HDL specifications usually generated from UML

behavioral models to system level soft IP-based design,

and to separate the compositional aspects of design from

the behavioral ones.

In [12], a method for synthesizing interfaces from

UML models for heterogeneous IP (Intellectual property)

integration is proposed. In order to maximize IP

integration, the framework offers both interface protocol

customisation and glue logic generation. The framework

also allows for the creation of communication links

between system blocks using UML profiles that are used

to define system-level communication interfaces.

The Gaspard Methodology [13] is intended to provide

a framework for developing parallel and distributed

applications implemented on SoC. This methodology is an

implementation of the MDA approach in the eclipse

framework and provides a set of transformation rules

allowing generation of optimized SystemC Code for

repetitive structure architecture.

This alternative approach was used in an extended

version of the MARTE profile and using model

transformations, able to integrate configurations at SoC

application and deployment design levels for different

purposes and execution platforms, such as implementing

run-time execution in state of the art FPGA based

reconfigurable SoCs[14].

MoPCoM [15,16] is a design environnement that

presented an automatic generation scheme from an unique

UML/MARTE model that targets MPSoPC. This approach

defines three models: functional, platform and allocation.

In the functional model the designer specifies the behavior

of the systems by means of an object oriented model. The

platform is a set of hardware components where behavior

will resides. The allocation maps the behavior onto the

platform components, where the HW/SW partition is

done. The code generation tool’s extract the new hardware

components to be generated and writes VHDL code for

each one. In order to generate code they define three

different parts to be generated: structure, behavior and

communication.

Three design levels are used in this approaches: AML

Abstract Modeling Level, EML Execution Modeling

Level and DML Detailed Modeling, which allows code

generation to be done[17].

In [18], authors introduced a new logic circuit design

methodology witch applied UML class diagrams on

hardware design and proposed an automatic skeleton

generator for hardware description language from UML..

They use UML tools to model hierarchical hardware

modules, by defining some attributes and visibilities for

this purpose. First they defined simple UML notation for

logic LSI designers. It defines correspondence of UML to

digital LSI modules. After they capture the requirements

of the target design with UML diagram such as use case

diagrams as software people. In the architectural design

process, we will produce architectural design diagram

such as class diagrams, state charts or activity diagrams.

In [19] The suggested method proposes a method for

automatically generating SW code for complex embedded

systems from a UML/MARTE model. The automatic

synthesis process makes it simple to experiment with

different SW component allocations in real

physical platforms. Initially, the system is described using

the UML/MARTE standard. The generated model has all

of the information needed to automated synthesis,

including functionality, HW platform, and allocation. A

generator uses this concept to create communication

wrappers that are totally ad-hoc and have a lower overhead

than more general alternatives. The application can be

split into clearly separable and reusable components,

enhancing the product's organization as well as its

reusability and modularity. In addition, each component's

internal behavior should be considered during the

specification process.

The work reported in [20] have detailed the approach

for enabling IP reuse and modeling of DRSoC capabilities

to the FAMOUS framework, in which a UML MARTE

modeling frontend allows the design of reconfigurable

platforms by importing component templates, which are

then used to specify the DRSoC structure and behavior.

The goal is to make it easy to reuse IP metadata between

vendors while also allowing the tool to integrate with other

back-end implementation tools. A MARTE « Platform

model », which may be developed by importing IP blocks

from the high-level library, connecting the bus interfaces

of the various IP blocks to a bus component, and

configuring the variable parts as needed, provides as the

entry point. Reco- MARTE, which facilitates the

deployment of IP-XACT components, including wrappers

with persistence management services, is used in the

application presented in this work.

Nevertheless, all the previous solutions are oriented

toa fixed models, that depend on designer experience.

These works are related to some types of software IPs

whose UML models proposed cannot be generalized to all

IPs.

The contributions of this paper are the introduction of

an MDA approach that uses the UML MARTE profile for

modeling IP reuse in SoC, and that enables moving from

high level models to HDL code generation The novelty of

our approach is that take into account aspects of the both

software and hardware description with the third types of

IPs.

136 Informatica 45 (2021) 133–140 B.A. Youcef et al.

4 Prototype description
The methodology of our approach for mofeling IP

combines two aspects. The first one is applying Model-

Driven Architecture (MDA) principales in the

development of this component and getting the three

models of this , and the second one is present a

metamodel UML/Marte inspired of the architecture and

functionality of a reusable IP, defined as a common

starting point between all developers of this type of

component. This metamodel mainly contains the majority

the composition and information found in these

components.

4.1 Graphical representation of an IP

We choose this block like representation of the IP-XACT

standard [21]to facilitate their comprehension, and

communication in the phase of integration in a platform to

create a System on Chips, and to increase the automation

of IP development and getting the automatic code

generation to implement Intellectual Property (IP) blocks

for System on Chip (SoC). The elements contained in the

component schema are intended for describing as many

different kinds of IP cores as possible, but it is obvious that

not all of them will be required in all instances [22].

Figure 2: Graphical representation of an IP.

Here, we have included the most widely used

concepts for structural and logical implementation and

parameterization. As it is illustrated in Figure 2, the virtual

component consists essentially of:

Config-Reuse: This element is responsible for setting the

IP, we find several fields:

Parameter_IP: Parameterization of the IP in relationship to

the system with values,

Choices: Parameterization of the IP relative to the system

with functions ,

Type_Conf: It configures IP as master, slave or system ,

IP_Clock: The clock of the component in the hardware

description ,

IP_Reset: Resetting IP during the operation.

Port-Interface: This item is designed to exchange data

between the IP and the system, it is composed of:

Port: Area of exchanging data and messages in the

hardware description ,

Interface: Area of exchanging data and messages in the

software description.

Module: It represents the internal components of the IP.

Each module consisting of several codes Files

providing functionality in the IP.

Data: It is a set of data exchanged between the component

and the system.

Control: It is a set of features to control and adapt the IP

to the integration environment.

4.2 Methodology overview

According to the graphical representation of an IP

presented in Figure 2, our proposed model covers the

virtual components of different nature hardware and

software descriptions.

Figure 3: Our model with UML marte.

In a first step we model the virtual component from

his specification using the model of UML MARTE

proposed in Figure 3, to obtain an instantiation of the

desired component using one of the tools supporting this

profile.

 To do so, the modeling methodology must fulfill

three requirements. First, it has to minimize the modeling

effort and to reduce the number of mistakes; the modeling

methodology should be simple [4]

However, at the same time, the model must include all

the information required to automatically perform the

evaluation of each design alternative the designer selects,

as described in next section. Additionally, the capability

A Fast Prototype for Modeling IP Cores Using... Informatica 45 (2021) 133–140 137

to reuse components or to integrate legacy or third-party

components requires the use of standards. Thus, in this

paper, the OMG standards UML and MARTE, are used to

specify the system.

The system, which is intended to be developed, is

represented by the metaclass component, which includes

the following stereotypes:

Component: Application components are modular parts of

the system that indentify pieces of functionality that

represent a certain behavior. The functionality of the

system is separated into a series of interconnected

application components in this methodology. As a

result, application components are the center of the

platform-independent model

Port-Interface: This element captures the characteristics of

the services provided by an application component in

order to establish the communication. These interfaces

are modeled by means of UML interfaces specified by

the MARTE <<Port-Interface>> stereotype presented

in Figure 4.

The ports are specified by the MARTE stereotype <<IP-

Port>> in order to define the required/provided

interface which is used for communicating with other

application components, and managing the control

between the IP and the system. Port Interface is

composed of:

IP-port: iis reserved for hardware description in HDL.

IP-Interface is reserved for the description of the software

in C ++. In both of these components we find

stereotype and Control Data.

Confi-Reuse Its role is the configuring and the reuse of the

component on the system that we want to integrate the

IP on it. We have IP-Parameter, Choices, IP-IP-Clock

and Reset.

Module-IP: A set of modules constituting our IP, each

module has an implementation, which is made up of

several files that are described in software or hardware

programming language.

Figure 4 presents all these Stereotypes used in this

metamodel

Figure 4: Different stereotypes used.

The second step is applying Model-Driven

Architecture (MDA) principales in the development of

HW/SW Component presented in C/C++ or VHDL or

Verlog System.

System models are divided into three sub-models,

following of Y chart structure [23]. Designs start by

defining the two main starting points. The platform-

independent model is formed by the expected system

functionality, which contains all platform-independent

details (PIM). A platform description model (PDM) is

used to describe the HW/SW platform, which includes all

of the details needed to implement communication and

deployment codes. Finally, the platform-specific model is

created when these two models converge to define how to

enable that feature in the HW platform (PSM) [24].

5 Case study
In this section, we present a case study in which we show

how the methodology is used. The application test

consists of a USB 3.1 described in section 2.3. The global

processing of this application is divided into three main

phases following in Figure 5.

Figure 5: Global processing of the application.

The detail of this application is presented in figure 6.

Figure 6: Application modeling in detail.

The major blocks and functions of our case are [25] :

Super Speed: In addition to the three existing transfer

modes, the SuperSpeed bus includes a transfer mode

with a nominal rate of 5.0 Gbit/s. Physical symbol

encoding and connection level overhead are two

aspects that influence its performance. Each byte

requires 10 bits to transmit at a 5 Gbit/s signaling rate

with 8b/10b encoding, thus the raw throughput is 500

MB/s.

138 Informatica 45 (2021) 133–140 B.A. Youcef et al.

Super Speed Plus: USB 3.1 has two variants. The first one

preserves USB 3.0's SuperSpeed transfer mode and is

labeled USB 3.1 Gen 1, and the second version

introduces a new SuperSpeed+ transfer mode under

the label of USB 3.1 Gen 2. SuperSpeed+ doubles the

maximum data signaling rate to 10 Gbit/s, while

reducing line encoding overhead to just 3% by

changing the encoding scheme to 128b/132b.

USB 2.0 (High Speed and Full Speed) : The high-speed

and full-speed controller implements the USB 2.0

protocol for peripheral devices. Data transactions,

suspend and resume behavior, and interrupt generation

are all handled by the high-speed and full-speed

controller.

End Point Logic : The Endpoint Logic generates control

signals for one synchronous, single-port RAM

component, which is used for both IN and OUT

endpoints. RAM size is fully configurable for the

number, size, and buffering requirements of endpoints.

Control transfers are handled through a dedicated

IN/OUT endpoint pair with a 512 byte (64 byte for

Full-Speed and High-Speed) buffer.

Physic Interface : The Device Controller IP connects to

the IP for USB 3.1 PHY (Only Super Speed or Super

Speed Plus) through a configurable 8-, 16-, or 32-bit

PIPE 3.1 interface, and the IP for USB 2.0 PHY (High-

Speed and Full-Speed) through an 8- or 16-bit UTMI

or 8-bit ULPI interface.

Application Interface :The Device Controller IP supports

an 8-, 16- or 32-bit AHB (Advanced High-

performance Bus) or APB (Advanced Peripheral Bus)

slave interface for configuration and access to the

DMA Engine is through a 32 or 64-bit AXI (Advanced

Extensible Interface) or AHB master interface.The

DMA engine supports scatter-gather data transfers

between endpoint buffers and external memory.

The model of our application is creating by Papyrus of

Eclipse that supports the UML/MARTE model in [26].

First we instantiate the proposed model described in

MARTE which is presented in Figure 3. The Figure7

presents the modelisation of USB 3.1

The functional blocks that constitute the USB 3.1's

capabilities have been modeled as UML components

using the MARTE stereotype <<RtUnit>> as illustrated in

Figure 8.

The component starting triggers the application's

execution, after which the files that implement each

component's functionality are modeled and associated

with the appropriate components. as shown in Figure 9.

The plateform independant model (PIM) of our

application is illustrated in Figure 10, describes the

functionnal components interne (their interface,

fonctionnal code) and the interconnections among them.

Figure 7: The model of USB 3.1.

Figure 8: Application Component.

Figure 9: Application components and the associated files.

A Fast Prototype for Modeling IP Cores Using... Informatica 45 (2021) 133–140 139

Figure 10: Application PIM.

6 Result and discussion
The method that we have proposed has been successfully

applied to the USB 3.1 Core (Family of Serial Interface

Communication), which contains five modules:

USB2.0(TX, RX), EndPoint, SS, SSP,CTRL, and one

interface with six principal files will be described in

VHDL tx.vhd, rx.vhd, ss.vhd, ssp.vhd, ctrl.vhd and the

main file will USB3.1.vhd assembled all these files.

Compared to the related works of this domain, we

have defined our proper MARTE model according to the

standard of IP-XACT, which contains interface,

component, design description, parameterization and set

of files. This model can be explored to instance and getting

the specification of the IP desired to development.

Our approach is clear and comprehensive that allows

the development of IPs understandable in their schema

and easy to verify and integrate them thanks to their

modular architecture as shown in Figure 3 and also thanks

to the use of UML MARTE as a modeling language

starting from our model which includes both descriptions,

software in C ++ and HDL hardware.

This approach allows generating both hardware and

software descriptions with the three types of IP (Soft,

Firm, Hard), which is absent in other approaches

presented in related works. A set of transformation rules

accomplishes the transition from one level to another to

generate target code or model. The use of high-level

unified modeling notation accelerates up design time and

system integration, and we can create all UML MARTE

models for our virtual component whether of time or

architecture, and creating cores of any size and shape, and

it is easy to migrate to new technology..

Works exist are related to some types of software IPs

whose UML models proposed cannot be generalized to all

IPs. All the previous solutions are oriented to the

generation of previously fixed models, leaving

architectural decisions that depend on designer

experience.

7 Conclusion
In this paper, a draft is proposed as a guide for the

modelisation of IPs, recommended by the VSIA to reduce

the gap between production of systems and technological

change that has steadily increased in recent decades. This

draft, in addition to its clarity and interoperability, offers

the possibility to create good quality components, reliable

and easy to be implemented in a system.

Our goal was to create IP cores that can be developed

using the standard modeling tools to elevate the

interoperability of these components that in the future we

will reuse them easily and quickly in several systems and

platforms without posing the problem of communication

between other cores. This approach allows backtracking

when errors appeared. The experiments were carried out

successfully on a set of USB3.1 and we have provided a

correct component thanks to the modular architecture of

our model, the clarity of our approach, and the separating

tasks of modeling and behavioral description to achieve

the standardization goal recommended by VSIA.

This model, inspired by the architecture and

functionality of a reusable Virtual Component, defined as

a common starting point between all developers of this

type of component. It makes the component

understandable, clear and flexible, which facilitates the

detection of errors and anomalies in the validation and

verification phase. The model allows the scalability of the

IP in the event of re-integration into a SoC.

Our future works will focus firstly on enriching the

our model, secondly, developping the Physical

communication links described in the PDM model,

architectural mappings among PIM components and PDM

resources lead to PSM models. Secondly proposed a set of

rules for generating automatically the code (C++, VHDL),

and finally get a series of syntheses of models produced

by ISE of Xilinx thanks to its very rich component library.

References
[1] M. Gams, T. Kolenik. (2021) Relations between

Electronics, Artificial Intelligence and Information

Society through Information Society Rules.

Electronics 2021, 10, 514.

https://doi.org/10.3390/electronics 10040514

[2] R. Damaševičius, and V. Štuikys (2005). Soft IP

Customization Models Based on High-Level

Abstractions. Information Technology and Control,

34(2), 125-134.

https://doi.org/10.15388/informatica.2004.049

[3] http://www.vsi.org

[4] H. Posadas, J. Merino and E. Villar (2020). Data

flow analysis from UML/MARTE models based on

binary traces. Conference on Design of Circuits and

Integrated Systems (DCIS), pp. 1-6,

https://doi.org/10.1109/dcis51330.2020.9268671

[5] G. Ochoa-Ruiz, O. Labbani, E. Bourennane, Cherif,

S. Meftali, and J. Dekeyser (2012). Enabling

Partially Reconfiguration IP Cores Parametrisation

and integration Marte and IP-XACT .23rd IEEE

International Symposium on Rapid System

https://doi.org/10.3390/electronics
https://doi.org/10.3390/electronics
https://doi.org/10.15388/informatica.2004.049
http://www.vsi.org/
https://doi.org/10.1109/dcis51330.2020.9268671

140 Informatica 45 (2021) 133–140 B.A. Youcef et al.

Prototyping (RSP), (pp.107-113),Finland. PA :IEEE

Publishing.

https://doi.org/10.1109/rsp.2012.6380698

[6] M. Keating and P. Bricaud (2002). Reuse

Methodology manual for System-on-chip designs,

Kluwer Academic Publishers. 3th editions, (pp.

312).

http://www.ime.cas.cn/icac/learning/learning_3/201

9 07/P020190716574161163126.pdf

[7] VSI Alliance. (1997). Architecture Document –

Version 1.0. Technical report.

http://xilinx.pe.kr/_hdl/1/VSI/vsi-or.pdf

[8] OMG. (2011). UML Profile for MARTE: Modeling

and Analysis of Real-Time Embedded Systems.

Version 1.1, 11-06-02, June 2011

http://www.omg.org/spec/MARTE/1.1

[9] Universal Serial Bus 3.1 Specification July 26,

2013.https://manuais.iessanclemente.net/images/b/b

c/USB_3_1_r1.0.pdf

[10] N. Srivastava, A. C. Scogna and H. Shim (2018).

Enabling the next generation USB 3.1 (Gen 2) in

mobile devices. IEEE International Symposium on

Electromagnetic Compatibility and 2018 IEEE Asia-

Pacific Symposium on Electromagnetic

Compatibility (EMC/APEMC), pp. 18-23,

https://doi.org/10.1109/isemc.2018.8393730

[11] R. Damasevicius and V. Stuikys (2004). Application

of UML for hardware design based on design process

model. ASP-DAC 2004 : Asia and South Pacific

Design Automation Conference 2004 (IEEE Cat.

No.04EX753), pp. 244-249.

https://doi.org/10.1109/aspdac.2004.1337574

[12] S. Zhenxin and W. Weng-Fai (2009).A UML-based

approach for heterogeneous IP integration. ASP-

DAC09.

https://doi.org/10.1109/aspdac.2009.4796473

[13] E. Piel , R B. Atitallah, P. Marquet , S. Meftali,

S.Niar, A. Etien, J. Dekeyser and P. Boulet (2008).

Gaspard2: from MARTE to SystemC Simulation,

Proceedings of the DATE'08 workshop on Modeling

and Analyzis of RealTime and Embedded Systems

with the MARTE UML profile DATE’08, USA, 26-

31.

[14] A. Koudri, D. Vojtsiek, P. Soulard, C. Moy,

J.Champeau, J. Vidal and J C. Le lann (2008). Using

MARTE in the mopcom soc/sopc methodology. In

workshop MARTE, Germany.

[15] I.R. Quadri, A. Gamatié, P. Boulet, S. Meftali, J.L.

Dekeyser (2012). Expressing embedded systems

configurations at high abstraction levels with UML

MARTE profile: advantages, limitations and

alternatives. Journal of System and Architecture. 58.

https://doi.org/10.1016/j.sysarc.2012.01.001

[16] J. Vidal, F. De Lamotte, G. Gogniat, J P. Diguet and

P. Soulard, P. (2009). IP reuse in an MDA MPSoPC

co-design approach. International Conference on

Microelectronics (ICM). (pp.256-259). PA: IEEE

Publishing.

https://doi.org/10.1109/icm.2009.5418638

[17] J. Vidal, F. De Lamotte, G. Gogniat, P. Soulard, J.P.

Diguet. (2009). A Co-design approach for

Embedded System Modeling and code generation

with UML and MARTE. In Proceedings of Design

Automation and Test in Europe, (DATE’09), (pp.

226– 231). Dresden, PA: IEEE Publishing.

https://doi.org/10.1109/date.2009.5090662

[18] N. Shimizu, M. Ikura, W. Wiriya, and S.

Chivapreecha (2009). A new logic circuit design

methodology with UML. In Proceedings of ITC-

CSCC’09. (pp.62-65).

https://citeseerx.ist.psu.edu/viewdoc/download?doi

=10.1.1.467.333&rep=rep1&type=pdf

[19] H. Posadas, P. Peñil, A. Nicolás, and E. Villar

(2013).Automatic synthesis of embedded SW for

evaluating physical implementation alternatives

from UML/MARTE models supporting memory

space separation. Microelectronics Journal. ISSN

0026-2692.

https://doi.org/10.1016/j.mejo.2013.11.003

[20] G. Ochoa-Ruiz, O. Labbani, E. Bourennane, P.

Soulard, and S. Cherif (2012). A high-level

methodology for automatically generating dynamic

partially reconfigurable systems using IP-XACT and

the UML MARTE profile. Journal of Design

Automation for Embedded Systems, 16(3), 93-128,

PA: Springer Publishing.

https://doi.org/10.1007/s10617-012-9098-6

[21] IEEE Standard for IP-XACT, Standard Structure for

Packaging, Integrating, and Reusing IP within Tools

Flows," IEEE Std 1685-2014, vol., no., pp.C1-510,

June. 12 2014.

https://doi.org/10.1109/ieeestd.2014.6898803

[22] A. Rautakoura, M. Käyrä, T. D. Hämäläinen, W.

Ecker, E. Pekkarinen and M. Teuho, "Kamel: IP-

XACT compatible intermediate meta-model for IP

generation," 2020 23rd Euromicro Conference on

Digital System Design (DSD), 2020, pp. 325-331.

https://doi.org/10.1109/dsd51259.2020.00060

[23] D D. Gajski and R. Kuhn (1983). Introduction: New

VLSI Tools. Guest Editors', IEEE Computer, 16(12),

11-14.

https://doi.org/10.1109/mc.1983.1654264

[24] H. Posadas, P. Peñil, A. Nicolás and E. Villar (2015).

Automatic synthesis of communication and

concurrency for exploring component-based system

implementations considering UML channel

semantics. Journal of Systems Architecture. Volume

61, Issue 8, 2015, Pages 341-360, ISSN 1383-7621.

https://doi.org/10.1016/j.sysarc.2015.07.002

[25] http://www.cadence.com

[26] http://www.eclipse.org/papyrus

https://doi.org/10.1109/rsp.2012.6380698
http://www.ime.cas.cn/icac/learning/learning_3/2019%20%2007/P020190716574161163126.pdf
http://www.ime.cas.cn/icac/learning/learning_3/2019%20%2007/P020190716574161163126.pdf
http://xilinx.pe.kr/_hdl/1/VSI/vsi-or.pdf
http://www.omg.org/spec/MARTE/1.1
https://manuais.iessanclemente.net/images/b/bc/USB_3_1_r1.0.pdf
https://manuais.iessanclemente.net/images/b/bc/USB_3_1_r1.0.pdf
https://doi.org/10.1109/isemc.2018.8393730
https://doi.org/10.1109/aspdac.2004.1337574
https://doi.org/10.1109/aspdac.2009.4796473
https://doi.org/10.1016/j.sysarc.2012.01.001
https://doi.org/10.1109/icm.2009.5418638
https://doi.org/10.1109/date.2009.5090662
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.333&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.333&rep=rep1&type=pdf
https://doi.org/10.1016/j.mejo.2013.11.003
https://doi.org/10.1007/s10617-012-9098-6
https://doi.org/10.1109/dsd51259.2020.00060
https://doi.org/10.1016/j.sysarc.2015.07.002
http://www.cadence.com/
http://www.eclipse.org/papyrus/

