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Abstract

An edge-coloring of a graph G is said to be odd if for each vertex v of G and each
color c, the vertex v either uses the color c an odd number of times or does not use it at all.
The minimum number of colors needed for an odd edge-coloring ofG is the odd chromatic
index χ′o(G). These notions were introduced by Pyber in [7], who showed that 4 colors
suffice for an odd edge-coloring of any simple graph. In this paper, we consider loopless
subcubic graphs, and give a complete characterization in terms of the value of their odd
chromatic index.
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1 Introduction
1.1 Terminology and notation

Throughout the article we mainly follow the terminology and notation used in [1, 11]. A
graph G = (V (G), E(G)) is always regarded as being finite, i.e. having a finite nonempty
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set of vertices V (G) and a finite (possibly empty) set of edges E(G). An edge with iden-
tical ends is called a loop, and an edge with distinct ends a link. Two or more links with
the same pair of ends are said to be parallel edges. The parameters n(G) = |V (G)| and
m(G) = |E(G)| are called order and size of G, respectively. A graph of order 1 is said to
be trivial, whereas a graph of size 0 empty. For every v ∈ V (G), EG(v) denotes the set of
edges incident to v, and the size of EG(v) (every loop being counted twice) is the degree of
v inG, with notation dG(v). The maximum (resp. minimum) vertex degree inG is denoted
by ∆(G) (resp. δ(G)). We speak of G as a subcubic graph whenever ∆(G) ≤ 3. Each
vertex v having an even (resp. odd) degree dG(v) is an even (resp. odd) vertex. In partic-
ular, if dG(v) equals 0 (resp. 1), we say that v is an isolated (resp. pendant) vertex of G.
Any vertex of degree d is also called a d-vertex. A graph is even (resp. odd) whenever all
its vertices are even (resp. odd). The set of neighboring vertices of v ∈ V (G) is denoted by
NG(v). For every u ∈ NG(v), the edge set EG(u)∩EG(v) is called the uv-bouquet in G,
with notation Buv . The maximum size of a bouquet inG is its multiplicity. We say thatG is
a simple graph whenever it is loopless and of multiplicity at most 1. Whenever the under-
lying graph G is clear from the context, the edge-complement of a subgraph H is denoted
by Ĥ , i.e. Ĥ = G − E(H). A co-forest in G is a subgraph whose edge-complement is a
forest. Every maximal path whose interior consists entirely of 2-vertices (of G) is called
an open thread; similarly, every cycle all of whose vertices except one are 2-vertices of G
is a closed thread. For every connected graph G that is not a cycle, each of its 2-vertices
belongs to a unique thread, either open or closed.

1.2 Odd edge-colorings and odd chromatic index

Any mapping ϕ : E(G) → S is referred to as an edge-coloring of G, and then S is called
the color set of ϕ. We say that ϕ is a k-edge-coloring when |S| ≤ k. Since the nature of
the colors is irrelevant, it is conventional to use S = [k] := {1, 2, . . . , k} whenever the
color set is of size k. For each color c ∈ S, Ec(G,ϕ) denotes the color class of c, being
the set of edges colored by c (i.e. Ec(G,ϕ) = ϕ−1(c)); whenever G and ϕ are clear from
the context, we denote the color class of c simply by Ec. Given an edge-coloring ϕ and a
vertex v of G, we say the color c appears at v if Ec ∩ EG(v) 6= ∅. Any decomposition
{H1, . . . ,Hk} of G can be interpreted as its k-edge-coloring for which the color classes
are E(H1), . . . , E(Hk).

An odd edge-coloring of a given graph G is an edge-coloring such that each nonempty
color class induces an odd subgraph. In other words, at each vertex v, for any appearing
color c the degree dG[Ec](v) is odd. Equivalently, an odd edge-coloring can be seen as a
decomposition of G into (edge disjoint) odd subgraphs. Such decompositions represent a
counterpart to decompositions into even subgraphs, which were mainly used while proving
various flow problems (see e.g. [6, 9]). Historically speaking, as a topic in graph theory,
decomposing into subgraphs of a particular kind started with the paper of Erdös et al. [2].
An odd edge-coloring of G using at most k colors is referred to as an odd k-edge-coloring,
and then we say that G is odd k-edge-colorable. Whenever G is odd edge-colorable, the
odd chromatic index χ′o(G) is defined to be the minimum integer k for which G is odd
k-edge-colorable.

It is obvious that a necessary and sufficient condition for odd edge-colorability of G is
the absence of vertices incident only to loops. Apart from this, the presence of loops does
not influence the existence nor changes the value of the index χ′o(G). Therefore, while
studying these matters it is enough to confine to loopless graphs.
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Figure 1: A simple graph with odd chromatic index equal to 4.

As a notion, odd edge-coloring was introduced by Pyber in his survey on graph cover-
ings [7]. The mentioned work considers simple graphs and (among others) contains a proof
of the following result.

Theorem 1.1 (Pyber, 1991). For every simple graph G, it holds that χ′o(G) ≤ 4.

Pyber remarked that the upper bound is realized by the wheel on four spokes W4 (see
Fig. 1). This upper bound of four colors does not apply to the class of all looplees graphs
G. For instance, Fig. 2 depicts four graphs with the following characteristic property: each
of their odd subgraphs is of order 2 and size 1, i.e. a copy of K2. Consequently, for each
of them the odd chromatic index equals the size of the graph.

(1,1,1) (2,1,1) (2,2,1) (2,2,2)

Figure 2: Four Shannon triangles (the smallest one of each type).

As defined in [4], a Shannon triangle is a loopless graph on three pairwise adjacent
vertices. Observe that for any Shannon triangle, as a direct consequence of the handshake
lemma, the edge set of every odd subgraph is fully contained in a single bouquet. Let p, q, r
be the parities of the sizes of the bouquets of a Shannon triangle G in non-increasing order,
with 2 (resp. 1) denoting that a bouquet consists of an even (resp. odd) number of parallel
edges. Then G is a Shannon triangle of type (p, q, r), and it holds that χ′o(G) = p+ q + r.
The following result was proven in [4].

Theorem 1.2. For every connected loopless graph G, it holds that χ′o(G) ≤ 6. Equality is
achieved if and only if G is a Shannon triangle of type (2, 2, 2).

In this paper we study the odd chromatic index for the class of loopless subcubic graphs
G. We shall prove that over that class of graphs holds maxG χ

′
o(G) = 4. Moreover,

we will give a complete characterization of the loopless subcubic graphs in terms of the
value of their odd chromatic index. In doing so, we will use methods such as eliminating
characteristic subtrees and unicyclic subgraphs, or odd co-forests, developed in [3, 10, 12].

The rest of the article is divided into three sections. In the next one, as a preliminary,
are collected several ‘easy’ results (most of them previously known). Section 3 is devoted
to a derivation of our main result - a characterization of the loopless subcubic graphs G in
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terms of the value of χ′o(G). The final section briefly conveys some ideas on odd edge-
coverability of loopless subcubic graphs.

2 Preliminary results
We begin by recalling the definition of a T -join. For a graph G, let T be an even-sized
subset of V (G). Following [1], a spanning subgraph H of G is said to be a T -join if dH(v)
is odd for all v ∈ T and even for all v ∈ V (G) \ T . For example, if P is an x-y path
in G, the spanning subgraph of G with edge set E(P ) is an {x, y}-join. Observe that the
symmetric difference of a T -join and an S-join is a T 4S-join. With the use of this simple
fact and the mentioned example, it can be readily deduced (see [8]) that for any connected
graph G and any even-sized subset T of V (G), there exists a T -join of G. Note also that
by taking S = ∅ we infer that the symmetric difference of a T -join and a spanning even
subgraph is again a T -join. In particular, removal (resp. addition) of the edges of an edge-
disjoint cycle from (resp. to) a T -join, furnishes a T -join. Thus, whenever a T -join of
G exists, there also exists such a forest (resp. co-forest). The above discussion yields the
following conclusion.

Lemma 2.1. Given a connected graph G of even order, there exists an odd co-forest in G.

The next lemma originally appears in [7]. For a proof we refer the reader to [4].

Lemma 2.2. If F is a forest, then χ′o(F ) ≤ 2.

With the use of Lemmas 2.1 and 2.2, it can be easily shown that every connected graph
of even order is odd 3-edge-colorable.

Proposition 2.3. For every connected graph G of even order, it holds that χ′o(G) ≤ 3.

Proof. There exists an odd co-forest H in G. Take an odd edge-coloring of Ĥ with the
color set {1, 2} and extend it to E(G) by coloring E(H) with 3. Note that we have thus
constructed an odd 3-edge-coloring of G.

Corollary 2.4. Let v be a 2-vertex in a connected graph G of odd order. Then G admits a
3-edge-coloring that is nearly odd with the only exception being that EG(v) is monochro-
matic.

Proof. Suppress the vertex v, i.e. remove it and then add an edge e with ends in NG(v)
(the edge e is either a link or a loop depending on whether NG(v) is of size 1 or 2). Denote
the obtained graph by H . Since H is connected and of even order, the previous proposition
assures its odd 3-edge-colorability. Apply such an edge-coloring to H , and then ‘reinstate’
the vertex v on the edge e. We thus regain the graph G with a required edge-coloring.

3 Odd edge-colorability
As already mentioned, throughout this section we consider loopless subcubic graphs. We
begin by showing that four colors suffice for an odd edge-coloring of any such graph.

Proposition 3.1. If G is a loopless subcubic graph, then χ′o(G) ≤ 4.
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Proof. We may assume that G is connected and non-trivial. Moreover, by Proposition 2.3
we may assume that n(G) is odd. In case δ(G) = 1 it is easily shown that χ′o(G) ≤ 3.
Indeed, say v is one of its pendant vertices. Since the graph G − v is connected and of
even order, by Lemma 2.1 there exists an odd co-forest K in G − v. Let us denote its
edge-complement in G by F , i.e. F = G− E(K). Then {K,F} is a decomposition of G
into an odd subgraph K and a forest F . By coloring E(K) with 1, and applying to F an
odd 2-edge-coloring with the color set {2, 3}, we furnish an odd 3-edge-coloring of G.

Henceforth we assume that δ(G) = 2. Let v be one of its non-cut vertices. Either
dG(v) = 2 or dG(v) = 3. We study first the case when dG(v) = 2 (see Fig. 3).

G− v

v

G− v

v

e f e f

Figure 3: The two possibilities when dG(v) = 2.

Let EG(v) = {e, f}. By Lemma 2.1, consider a decomposition {K,F} of G − v
consisting of an odd subgraph K and a forest F . Then the graph F + e is also a forest.
Color E(K) with 1, the edge f by 2, and combine with an odd edge-coloring of F +e with
the color set {3, 4}. This confirms that G is odd 4-edge-colorable.

v

G− v

u

Figure 4: The only possibility when dG(v) = 3.

Now we study the case when dG(v) = 3 (see Fig. 4). Denote by u the neighbor of
v for which the uv-bouquet is of size 2. Clearly, u is a pendant vertex of G − v. Select
an odd co-forest K in G − v. Observe that in its edge-complement K̂ (taken in G − v),
the vertex u is isolated. Color E(K) with 1; apply to the forest K̂ an odd edge-coloring
with the color set {2, 3}; color the bouquet Buv with 2 and 3; finally, color the remaining
non-colored edge (incident to v) by 4. This gives an odd 4-edge-coloring of G.

The established upper bound (of four colors) for the odd chromatic index of any loop-
less subcubic graph is sharp. For example, consider the smallest Shannon triangle G of
type (2, 1, 1) (the second of the graphs depicted in Fig. 2). As already observed in the in-
troduction, χ′o(G) = 4. Note that this particular G can be obtained from a cubic bipartite
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graph (of order 2) by a single edge subdivision. As it turns out, every subcubic graph ob-
tainable in this manner requires four colors for an odd edge-coloring. On the other hand,
for any other connected loopless graph three colors suffice. In order to prove this assertion
we will use the following lemma.

Lemma 3.2. Let G be a connected graph having at least two 2-vertices. Then there exists
a tree T in G that satisfies the following two conditions:

(i) every 2-vertex of G belongs to V (T ),

(ii) every pendant vertex of T is a 2-vertex of G.

Proof. We argue by induction on the number k of 2-vertices in G. In case k = 2, we
merely take T to be a path in G connecting the only two 2-vertices. Assume that k > 2
and let the statement be true whenever the number of 2-vertices is less than k. Suppress
a 2-vertex v of G, i.e. remove v and add a new edge e between its neighbors; denote the
obtained graph by G′. The inductive hypothesis provides us with a tree T ′ satisfying the
conditions (i) and (ii) for G′. If e ∈ E(T ′), then by reversing the suppression, i.e. by
subdividing e, we arrive at the desired tree. Otherwise, T ′ is a subtree of G − v. If that is
the case, then let P be a v-V (T ′) path in G and set T = P ∪ T ′. Note that T is a tree in G
for which both (i) and (ii) hold.

Proposition 3.3. For any connected loopless subcubic graph G, the following two state-
ments are equivalent:

(i) χ′o(G) = 4;

(ii) G is obtainable from a cubic bipartite graph by a single edge subdivision.

Proof. (i) ⇒ (ii): Let G be a connected loopless subcubic graph that cannot be obtained
from a cubic bipartite graph by a single edge subdivision. We shall prove that χ′o(G) ≤ 3.
As in the proof of Proposition 3.1, we may assume that n(G) is odd and δ(G) = 2. There
are two cases to be considered.

Case 1: G has at least two 2-vertices. Let T be a tree in G as in Lemma 3.2. Note
that for each non-isolated vertex u of its edge-complement T̂ the degree dT̂ (u) is odd.
Therefore, the combination of an odd 2-edge-coloring of T with the color set {1, 2} and a
monochromatic edge-coloring of T̂ with the color 3 constitutes an odd 3-edge-coloring of
G.

Case 2: G has a unique 2-vertex. Denote this particular vertex by v. Assume first the
existence of an odd cycle (i.e. a cycle of odd length) Co in G that does not pass through
v. Since G is connected, there exists a nontrivial v-V (Co) path P . Let w be the other
endpoint of P (besides v) and consider the subgraph G′ = P ∪Co. Note that w is the only
isolated vertex of Ĝ′; moreover, every other vertex of Ĝ′ has an odd degree. Color the set
E(Ĝ′) with 3; use the color 1 for EG(w); color the remaining non-colored edges of P and
Co alternately by 1 and 2 such that the obtained edge-coloring of G′ fails to be proper only
at w (such a 2-edge-coloring of G′ is possible because Co is an odd cycle). This completes
an odd 3-edge-coloring of G.

Assume now that such an odd cycle does not exist in G, meaning that every cycle
avoiding v is even. We claim that there exists an even cycle Ce passing through v. To
prove this, we argue as follows. Suppress the vertex v, and let e be the new edge. The
obtained graph G∗ is cubic (since v is the only 2-vertex of G and δ(G) = 2), which further
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implies that G∗ is not bipartite (otherwise, G would be obtainable from the cubic bipartite
graph G∗ by a single edge subdivision). Consider an odd cycle C∗ of G∗. By our current
assumption, C∗ is not a cycle in G, which implies that e ∈ E(C∗). Therefore, v ∪ V (C∗)
constitutes the vertex set of an even cycle Ce passing through v. Once the existence of
Ce is established, we can construct an odd 3-edge-coloring of G as follows: take a proper
2-edge-coloring of Ce with the color set {1, 2}; then color the edge set of Ĉe with 3.

(ii) ⇒ (i): Let G be obtainable from a cubic bipartite graph by a single edge subdivi-
sion. We shall show that χ′o(G) = 4. Denote by v the unique 2-vertex of G, and let G′ be
the graph obtained from G by suppressing v. Since G′ is bipartite, there exists a partition
X,Y of V (G′) such that E(G′) = E(X,Y ). By Proposition 3.1, χ′o(G) ≤ 4. Suppose
this inequality is strict, i.e. suppose there exists an odd 3-edge-coloring of G with the color
set {1, 2, 3}. Without loss of generality, we may assume that the v-X edge is colored by 1,
whereas the v-Y edge is colored by 2. Let x1, x2, x3, x123 be respectively the number of
vertices u from X such that EG(u) is colored entirely with 1, entirely with 2, entirely with
3, or by all the three colors 1, 2, 3. Analogously, we employ notation y1, y2, y3, y123 for the
sizes of the respective subsets of Y .

By double counting the color class E1, we derive the equality

3x1 + x123 = 1 + 3y1 + y123 . (3.1)

Reasoning similarly for the class E2, we deduce

1 + 3x2 + x123 = 3y2 + y123 . (3.2)

Let us now consider the difference x123 − y123. From (3.1) it follows that x123 − y123 ≡
1(mod 3). On the other hand, (3.2) yields x123 − y123 ≡ −1(mod 3). This is the desired
contradiction.

It is a trivial task to characterize the connected loopless subcubic graphs G that are
odd 1-edge-colorable. Namely, χ′o(G) = 0 if and only if G is K1, whereas χ′o(G) = 1
precisely when G is odd. We proceed to characterize odd 2-edge-colorability.

Proposition 3.4. IfG is a connected loopless subcubic graph, then the following two state-
ments are equivalent:

(i) χ′o(G) ≤ 2;

(ii) for every cycle C of G, the set {v ∈ V (C) : dG(v) = 2} is even-sized.

Proof. (i) ⇒ (ii): Assume (i) and apply to G an odd 2-edge-coloring. Consider an arbi-
trary cycle C of G. Note that for every v ∈ V (C) the edge set EC(v) is either monochro-
matic (when dG(v) = 3) or dichromatic (when dG(v) = 2). This clearly implies that the
set {v ∈ V (C) : dG(v) = 2} is even-sized.

(ii) ⇒ (i): Assume that (ii) holds. In case G is a cycle, it is readily seen that (i)
follows. Henceforth, we prove that (i) holds when G is not a cycle. For each pair x, y
of non-even vertices of G consider an arbitrary x-y walk W , and count the number of
traversed 2-vertices, i.e. count the 2-vertices of G appearing (possibly with repetition) in
the interior of W . We claim that the parity of this number is an invariant of the unordered
pair x, y, i.e. does not dependent on the choice of W . Indeed, if we suppose the existence
of an x-y walkW ′ which presents a counterexample combined withW , then the symmetric
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difference E(W ) ⊕ E(W ′) must contain the edge set of a cycle C of G for which the set
{v ∈ V (C) : dG(v) = 2} is odd-sized.

Let us employ notation x ∼ y (resp. x ≈ y) whenever the parity of the considered
number is odd (resp. even). Seen as binary relations on the set on non-even vertices, both∼
and ≈ are symmetric. Moreover, by concatenating suitable walks, one readily deduces that
≈ is an equivalence relation, whereas ∼ is non-transitive (i.e. x ∼ y & y ∼ z ⇒ x ≈ z).

This means that there are at most two equivalence classes of ≈. In other words, the set
of non-even vertices ofG can be written as a disjoint union of two (possibly empty) subsets
A,B such that x ∼ y holds if and only if x and y belong to distinct subsets. Note that there
is no A-B edge in G. For each u ∈ A color EG(u) with 1; similarly, for each u ∈ B color
EG(u) with 2. This gives a partial edge-coloring of G such that any non-colored edge is
incident to a 2-vertex. Apply the following procedure: as long as there exists a 2-vertex,
say v, with EG(v) not fully colored, consider the unique thread H that contains v. Two
edges of H are already colored, and this pre-coloring extends to an edge-coloring of H
with the color set {1, 2} that is proper at each 2-vertex belonging to V (H). (In case the
two pre-colored edges received the same color then the length of H is odd; on the other
hand, if they are of different colors, then the length is even.) This eventually completes an
odd 2-edge-coloring of G.

Since all the threads of a given connected loopless subcubic graph G can be detected
in linear time, it is linearly decidable whether the set on non-even vertices of G admits
a partition into two (possibly empty) subsets A and B as in the proof of the implication
(ii) ⇒ (i). Thus, it can be checked in linear time whether χ′o(G) ≤ 2. Moreover, the
proof of (ii) ⇒ (i) suggests the following constructive characterization of odd 2-edge-
colorability.

Corollary 3.5. Every connected loopless subcubic graph G satisfying χ′o(G) ≤ 2 is either
an even cycle or can be obtained from a connected odd subcubic graph Go (loops allowed)
in the following manner:

1. split V (Go) arbitrarily into two (possibly empty) subsets A and B;

2. subdivide an odd number of times each edge from E(A,B);

3. subdivide an even non-zero number of times each loop from E(Go);

4. subdivide an even (possibly zero) number of times each link whose endvertices be-
long to the same set from the pair A,B.

To summarize this section, we state the promised characterization of all connected loop-
less subcubic graphs in terms of their odd chromatic index.

Theorem 3.6. Let G be a connected loopless subcubic graph. Then

χ′o(G) =



0 if G is empty ;

1 if G is odd ;

2 if G has 2-vertices, with an even number of them on each cycle ;

4 if G is obtained from a cubic bipartite graph by a single edge
subdivision ;

3 otherwise .
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The above comments on the algorithmic aspects of odd 2-edge-colorability, combined
with the well-known fact that the decision problem whether a given graph is bipartite can be
solved in polynomial time (by using Breadth-First Search), assure that our characterization
is good.

Corollary 3.7. For any loopless subcubic graph G, the odd chromatic index χ′o(G) can be
determined in polynomial time of n(G).

4 Odd edge-coverability
In this section we present an application of Theorem 3.6 while briefly studying the odd
edge-coverability of subcubic graphs, a related concept to odd edge-colorability. An edge-
covering of a graph G is a family {H1, . . . ,Hk} of subgraphs such that

⋃k
i=1E(Hi) =

E(G). Any edge-covering of G can be interpreted as a ‘generalized edge-coloring’, i.e. a
mapping ϕ∗ : E(G) → P∗([k]) assigning to each edge of G a nonempty subset of the set
of colors {1, . . . , k}. In other words, we pass from edge-colorings to edge-coverings by
allowing more than one color per edge. In the context of an edge-covering ϕ∗, the color
class Ec of any color c ∈ [k] consists of the edges e ∈ E(G) for which c ∈ ϕ∗(e). If each
non-empty color class induces an odd subgraph, then we speak of an odd edge-covering of
G. More verbosely, we say thatG is odd k-edge-coverable whenever it admits an odd edge-
covering with at most k colors. The minimum size (i.e. minimum number of colors) of an
odd edge-covering of G is denoted by covo(G). Similar to odd edge-colorability, a given
graph G is odd edge-coverable if and only if there are no vertices incident only to loops,
and apart from this, the presence of loops does not influence the existence nor changes the
value of covo(G). Therefore, any study of odd edge-coverability should be restricted to
loopless graphs. Since every odd edge-coloring of G is also an odd edge-covering, it holds
that

covo(G) ≤ χ′o(G) . (4.1)

As a notion, odd edge-covering was introduced in [5]. The scope of the mentioned
work are all simple graphs, and the following result is proven.

Theorem 4.1 (Mátrai, 2006). For every simple graph G, it holds that covo(G) ≤ 3.

In this section we consider the possible values of the index covo(G) taken over all
connected loopless subcubic graphs G. When G is the smallest Shannon triangle of type
(2, 1, 1) (the second graph in Fig. 2), the handshake lemma readily implies that covo(G) =
4; indeed, for every graph G of order n(G) = 3 the equality covo(G) = χ′o(G) holds. We
shall prove that this is the only exception to odd 3-edge-coverability of connected loopless
subcubic graphs. For this we should note that, according to (4.1) and Theorem 3.6, any
exception must be obtainable from a cubic bipartite graph by a single edge subdivision.
Thus, it is enough to consider the odd 3-edge-coverability of that particular class of graphs.

Proposition 4.2. Apart from the smallest Shannon triangle of type (2, 1, 1), every other
connected loopless subcubic graph is odd 3-edge-coverable.

Proof. Suppose the opposite, i.e. let G present a counterexample. Hence, G can be ob-
tained from a cubic bipartite graph H by a single edge subdivision. Say the subdivided
edge e ∈ E(H) has endpoints x and y, and let v be the introduced 2-vertex. Denote by ex
and ey the respective ‘parts’ of e in G (see Fig. 5).
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G

ex

v

H

v

x y

v

ey

x ye

Figure 5: The graphs H and G. (The possibility of another xy-edge in H , i.e. an xy-edge in G, is
not excluded.)

Let Bxy be the xy-bouquet of H . Since H is a cubic graph and G is not the smallest
Shannon triangle of type (2, 1, 1), the size of Bxy is either 1 or 2. We claim the latter.
To confirm this, we argue by contradiction. Suppose the opposite, i.e. let x and y be
non-adjacent in G. First we show that the graph G − v is connected. Otherwise, it must
consist of two components Hx and Hy , containing x and y, respectively. Moreover, since
the only even vertex of the graph Hx (resp. Hy) is the 2-vertex x (resp. y), the handshake
lemma implies that both n(Hx) and n(Hy) are odd. By Corollary 2.4, there exists an edge-
coloring ϕx (resp. ϕy) of Hx (resp. Hy) with the color set {1, 2, 3} that is nearly odd, the
only exception being that the edge set EHx

(x) is colored with 1 (resp. the edge set EHy
(y)

is colored with 2). Apply ϕx ∪ ϕy , and then color ex by 1 and ey by 2. We thus obtain an
odd 3-edge-coloring of G, a contradiction. This confirms that G− v is indeed connected.

Denote by P a shortest x-y path inG−v, and say x, u1, . . . , uk−1, y are the consecutive
vertices met on a traversal of P . Since H is bipartite with x and y belonging to different
partite sets, the length k is an odd integer greater than 2. Suppose that NG−v(x) = {u1},
i.e. let the bouquet Bxu1

be of size 2. We can then apply to G the following edge-covering
with the color set {1, 2, 3}: color ex with 1; for ey use both 2 and 3; color Bxu1 with 1; for
the u1u2-edge of P use both 1 and 3; color the rest of E(G) with 3. This clearly implies
covo(G) ≤ 3, a contradiction. Therefore, it must be that, besides u1, there exists another
neighbor of x in G − v; let us denote this particular vertex by u. The choice of P assures
u /∈ V (P ). We construct an odd 3-edge-covering of G as follows: color ex by 1; color
ey by 2; for the unique xu-edge use both 1 and 3; apply to P a proper edge-coloring with
the color set {1, 2} such that the xu1-edge receives the color 1; for the rest of E(G) use
3. But the obtained odd 3-edge-covering presents a contradiction, thus establishing that
|Bxy| = 2, as claimed.

Now, let u be the third neighbor of x in G (besides v and y). Apply to G the following
edge-covering ϕ∗ with the color set {1, 2, 3}: color ex by 1; color ey by 2; color the unique
xy-edge of G by 1; for the unique xu-edge use both 1 and 3; color the rest of E(G) with
3. It is readily checked that ϕ∗ is an odd 3-edge-covering of G. But this contradicts the
choice of G as a counterexample, and thus settles the proposition.

There are plentyful of connected loopless subcubic graphs G satisfying covo(G) = 3.
For instance, every nontrivial odd cycle is such. As another example we may take any G
that possesses an even cycle C passing through only one 3-vertex (i.e. the rest of V (C)
consists entirely of 2-vertices of G). Yet another example is the graph obtained from K3,3
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by a single edge-subdivision. In order to derive a result for odd edge-coverability analogous
to Theorem 3.6, we need to characterize the odd 2-edge-coverability of connected loopless
subcubic graphs. The final proposition of this section can be seen as a step towards such a
characterization.

Proposition 4.3. For every connected loopless subcubic graph G the following two state-
ments are equivalent:

(i) covo(G) ≤ 2;

(ii) There exists an S ⊆ E(G) such that

• S is not incident to any 2-vertex of G,
• every pendant vertex of G− S is a pendant vertex of G,
• for every cycle C of G− S, the set {v ∈ V (C) : dG(v) = 2} is even-sized.

Proof. (i)⇒ (ii): Assume the existence of an odd 2-edge-covering ofG with the color set
{1, 2}. Define S = E1 ∩ E2, i.e. let S be the collection of edges that are colored by both
colors. It is easily seen that this particular choice for S meets all the requirements of (ii).

(ii)⇒ (i): Let S ⊆ E(G) be as stated in (ii). We claim that the third requirement for
S assures G − S admits an edge-coloring with the color set {1, 2} which is dichromatic
precisely at each 2-vertex of G. To construct such a 2-edge-coloring of G − S we follow
a similar pattern to the one in the proof of the second implication from Proposition 3.4:
namely, in the graph G− S, for each pair of vertices x, y neither of which is a 2-vertex of
G, we consider an arbitrary x-y walk W and count the 2-vertices of G appearing (possibly
with repetition) in the interior of W ; the third requirement for S assures that the parity of
this number is an invariant of the unordered pair x, y; let the notation x ≈ y mean that this
parity is even; as before, it is easily shown that ≈ is an equivalence relation with at most
two equivalence classes; and so on.

Once such an edge-coloring of G − S is constructed, we can extend it to a 2-edge-
covering ϕ∗ of G simply by coloring each edge in S by both 1 and 2. The first two require-
ments for S clearly imply that ϕ∗ is odd.

We conclude the paper with the following remark regarding potential further work.
In [4] it was conjectured that the problem of determining whether an arbitrary loopless
graph G is odd 2-edge-colorable is NP-hard. Perhaps for some values of ∆(G) beyond 3
this is still decidable in polynomial time. The authors believe that an analogous result to
Theorem 3.6 is possible for ∆(G) = 4.
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